2022-02-05   93875

From Topological Spaces to Smooth Manifolds

A topological space is one with enough structure for defining continuity. A topological manifold is intermediate between a topological space and a smooth manifold. A smooth manifold is one with enough structure for defining derivatives. The smooth manifold RN, the set of N-tuples of real numbers equipped with the standard smooth structure, is a familiar example from which all others can be constructed patchwise. This article is a brief reminder of the basic ideas. For good introductions, I recommend the books by Lee listed at the end of this article.

Download PDF (200 KB)

Revision history

www.cphysics.org updated 2022-09-25