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From Topological Spaces
to Smooth Manifolds

Randy S

Abstract A topological space is one with enough structure for
defining continuity. A topological manifold is intermediate between
a topological space and a smooth manifold. A smooth manifold is one
with enough structure for defining derivatives. The smooth manifold
RN , the set of N -tuples of real numbers equipped with the standard
smooth structure, is a familiar example from which all others can be
constructed patchwise. This article is a brief reminder of the basic
ideas. A list of relationships between various types of topological spaces
is given at the end, summarized graphically by a Venn diagram.
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1 Topological spaces and continuity

A topological space is a space on which some notion of continuity is defined. More
precisely: a set X is called a topological space if it comes with a topology, and a
topology is a list of distinguished subsets called open sets with these properties:

• Any union of open sets is also an open set.

• The intersection of any finite number of open sets is also an open set.

• The empty set and X itself are both open sets.

For constructing examples of topological spaces, the concept of a basis is helpful.
A basis for the topology of X is a collection of open sets Bk ⊂ X such that every
other open subset of X can be expressed as a union of Bks. The topology is said
to be generated by the Bks. More vocabulary:

• An element of X is called a point.

• For any point p, an open set containing p is called a neighborhood of p.

• A subset of X is called closed if its complement is open.

Again, a topological space provides enough structure for defining continuity.
Here’s the definition: If X and Y are topological spaces, then a map

X
f // Y

is called continuous if, for each open set O ⊂ Y , the pre-image f−1(O) ⊂ X is
also open. Section 2 shows an example.
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2 Example: the topological space R
Let I(a, b) denote the set of all real numbers x satisfying a < x < b. Let R
denote the set of real numbers with the topology generated by the sets I(a, b)
– that is, declare each interval I(a, b) to be open, along with all other sets that
can be obtained from these by unions and finite intersections. This is the standard
topology of R.

These examples illusrate the definition of continuity:

• The function f(x) = x2 + 1 is continuous. In particular,

– The pre-image of the open set I(5, 10) is the union of I(2, 3) and I(−3,−2),
which is open.

– The pre-image of the open set {x > 0} is R, which is open.

• In contrast, the function

f(x) =

{
x+ 1 if x ≥ 0
x− 1 if x < 0

is not continuous. In particular, the pre-image of the open set {x > 0} is the
set {x ≥ 1}, which is not open: it includes 1 but doesn’t include anything
less than 1, and a union or finite intersection of open intervals I(a, b) cannot
have that property.
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3 Generalization: the topological space RN

Let x denote an N -tuple of real numbers:

x = (x1, x2, ..., xN).

Given an N -tuple y ∈ RN and a positive number R, define the (open) ball B(y,R)
to be the set of all N -tuples x ∈ RN for which

N∑
n=1

(xn − yn)2 < R2.

Intuitively, this is the interior of a ball of radius R centered on the point y.1 The
topological space RN is the set of all N -tuples x, with the topology generated by
the balls, which are themselves taken to be open sets. The example in the previous
section is the special case N = 1.

1Be careful with this intuition, though, because geometric notions like distance are not defined by topology alone.
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4 Homeomorphisms

A homeomorphism2 is a map3 between two topological spaces that preserves all of
the properties that make them topological spaces. More precisely, if X and Y are
topological spaces, then a homeomorphism is a continuous map f : X → Y with
a continuous inverse f−1 : Y → X. (Calling f−1 the inverse of f means that the
composition of f with f−1, in either order, is the identity map.) If such a map
exists, then X and Y are called homeomorphic or topologically equivalent to
each other.

If two topological spaces are homeomorphic to each other, then they are the
same as far as topology is concerned. They may differ from each other in other
ways, but not in ways that affect the concept of continuity. Here’s an example from
the previous section:4 all of the balls in RN are homeomorphic to each other and
also to RN . They are all equivalent as far as topology is concerned, even though
they are different subsets of RN .

2Notice the e in homeomorphism. Don’t confuse this with homomorphism (no e), which is a map between
algebraic objects (like groups or rings) that preserves the relevant algebraic structure.

3The words map and function are often used interchangeably, but sometimes the word function is reserved for a
map into a set of numbers.

4Lee (2011), page 29, example 2.25
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5 Topological manifolds

A topological manifold is a special kind of topological space, one with especially
nice properties. A topological space X is called an N-dimensional topological
manifold if it satisfies all of these conditions:5

• Every point of X has a neighborhood homeomorphic to RN . (In other words,
X is locally euclidean.)

• Every two distinct points of X have neighborhoods that don’t intersect each
other. (In other words, X is Hausdorff.) Intuitively, this means that there
are “enough” open sets.

• A countable basis for X exists.6 (In other words, X is second-countable.)
Intuitively, this means that there are not “too many” open sets.

Basic properties of any N -dimensional topological manifold include:

• Every point is closed.7

• Any open subset is an N -dimensional topological manifold by itself.8

• If a nonempty topological manifold X is homeomorphic to an N -dimensional
topological manifold Y , then X is also N -dimensional.9

• Every topological manifold is homeomorphic to a subset of RN for some suf-
ficiently large N .10

Topological manifolds with boundaries are defined in article 44113.
5Lee (2000), chapter 2, page 33; Adachi (1993), definition 1.1; Badzioch (2018), definition 13.1; and Davis and

Petrosyan (2012), page 2
6Some authors omit this condition (Cohen (2023), definition 1.1; Hatcher (2001), section 3.3, page 231).
7Lee (2011), page 32, proposition 2.37
8Lee (2011), page 39, proposition 2.53
9Lee (2011), page 40, theorem 2.55

10Lee (2011), page 41
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6 Examples of topological manifolds

The topological space RN described in section 3 is an example of N -dimensional
topological manifold.

Another important example is the (N − 1)-dimensional sphere, denoted SN−1.
Roughly, this is the surface of an N -dimensional ball – just the surface, excluding
the interior.11 More precisely, we can define SN−1 to be the set of points x ∈ RN

satisfying
N∑
n=1

x2
n = 1,

with this topology: every intersection of an open ball B ∈ RN with SN−1 is open,
and the topology of SN−1 is generated by these open sets.12

Another important example is the N -dimensional torus, denoted TN . It can
be defined as the set of N -tuples of real numbers, each of which is in the interval
0 ≤ xn < 1, with a topology that treats 0 and 1 as equivalent (so that the inter-
val “wraps” back into itself instead of having endpoints). To define the topology
precisely, start with the map f : RN → TN defined by

f(x1, ..., xN) = (x1 mod 1, ..., xN mod 1),

and take a subset O ⊂ TN to be open if and only if f−1(O) ⊂ RN is open.13 The
simplest example is the circle T 1, which is homeomorphic to S1. The next simplest
example is the torus T 2, which can be visualized as the surface of a donut/bagel,
excluding the interior. This is not homeomorphic to S2, which can be visualized
as the surface of a 3d ball, excluding the interior.

11The open ball defined in section 3 is just the interior, excluding the surface.
12This is a special case of a construct called the subspace topology.
13This is a special case of a construct called the quotient topology.

8



cphysics.org article 93875 2024-03-24

7 Topological manifolds and metric spaces

This section introduces the concept of a metric space and uses it to give an equiv-
alent definition of topological manifold.

A metric space is a set X equipped with a metric,14 which is a function that
assigns a real number m(x, y) to every pair of elements x, y ∈ X and that satisfies
these conditions:15

• m(x, y) = m(y, x),

• m(x, y) ≥ 0,

• m(x, y) = 0 if and only if x = y,

• m(x, z) ≤ m(x, y) +m(y, z) for all x, y, z ∈ X.

Given a point b ∈ X and a positive real number r > 0, a subset B ⊂ X consisting
of all points x with m(b, x) < r is called an open ball. For any metric space with
metric m, the topology induced by m is defined by declaring every union of any
number of open balls to be an open set.16 A topological space is called metrizable
if it admits a metric m for which the topology induced by m is the same as the
original topology.17 Metrizability is invariant under homeomorphisms.18

Every topological manifold is metrizable.19,20 In fact, a topological manifold may
be defined as a locally euclidean metric space,21 and this definition turns out to be
equivalent to the one that was given in section 5.22

14This should not be confused with the concept of a (pseudo)riemannian metric (articles 21808 and 48968).
15Badzioch (2018), definition 2.3
16Badzioch (2018), example 3.14
17Badzioch (2018), definition 3.19
18Badzioch (2018), exercise E7.18
19This is theorem 13.20 in Badzioch (2018), which allows the manifold to have a boundary (article 44113).
20Corollary 13.30 in Lee (2013) confirms that every smooth manifold (with boundary) is metrizable.
21Rolfsen (1976) uses this definition (page 33).
22This follows from the fact that every metric space is Hausdorff (Badzioch (2018), note 9.5) combined with the

fact that if a connected topological space is Hausdorff and locally euclidean, then it is second countable if and only
if it is metrizable (Gauld (2009), theorem 2, items 1 and 26).
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8 Smooth manifolds

Topology provides enough structure for defining continuity, but it doesn’t provide
enough structure for defining derivatives. An N-dimensional smooth manifold
is an N -dimensional topological manifold equipped with a smooth structure,
which is enough extra structure for defining derivatives. The smooth structure is
defined like this:23

• A chart (U, σ) is an open subset U ⊂ M together with a homemorphism
σ from U to an open subset of RN . The subset U is called the domain
of the chart. A chart is often called a coordinate chart, because it labels
the points of its domain with N -tuples of real numbers, which we can use as
coordinates for points within U .

• Two charts (U, σ) and (U ′, σ′) are called smoothly compatible with each
other if the homeomorphism from σ(U ∩ U ′) to σ′(U ∩ U ′) that we get by
composing σ′ with σ−1 has well-defined partial derivatives (of all orders) with
respect to each coordinate xn.

• A smooth atlas is a collection of smoothly compatible charts whose domains
cover M . A smooth structure is maximal smooth atlas, one that already
contains every chart that is smoothly compatible with all of its charts.24

Every smooth atlas is contained in a unique maximal smooth atlas.25

Smooth manifolds with boundaries are defined in article 44113.
The topological manifold RN can be covered by a single chart, so it’s clearly a

smooth manifold. The sphere SN−1 and the torus TN−1 (section 6) are also smooth
manifolds, with smooth structures inherited in a natural way from RN .

23Lee (2013), pages 11-13, after exploiting proposition 1.17
24We could use any smooth atlas to define a smooth structure, but using a maximal smooth atlas allows replacing

phrases like “...for some chart that is smoothly compatible with those in M ’s smooth structure” with simpler phrases
like “...for some chart in M ’s smooth structure.”

25Lee (2013), proposition 1.17
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9 Smooth maps and diffeomorphisms

The appropriate notion of equivalence between topological spaces is homeomor-
phism (section 4). Similarly, the appropriate notion of equivalence between smooth
manifolds is called diffeomorphism.

A smooth map f : X → Y is defined by the condition that every point p ∈ X
is contained in a smooth chart (U, σ), and its image f(p) ∈ Y is contained in a
smooth chart (U ′, σ′) with f(U) ⊆ U ′, such that the composite map

σ(U) σ−1 // U
f // U ′ σ′ // σ′(U ′) (1)

is smooth. If X and Y are smooth manifolds, a diffeomorphism is a smooth map
f : X → Y with a smooth inverse f−1 : Y → X. If a diffeomorphism X → Y
exists, then X and Y are called diffeomorphic to each other.26

Beware of this subtlety in the definitions: two smooth structures may be distinct
from each other even if they are diffeomorphic to each other. In more detail: if X
is a topological manifold and α and α′ are two different smooth structures for X,
then the smooth manifolds (X,α) and (X,α′) may be diffeomorphic to each other
even if α and α′ are not smoothly compatible with each other.27

A given topological manifold may also admit different smooth structures that
are not diffeomorphic to each other. In other words, two smooth manifolds may be
homeomorphic to each other even if they’re not diffeomorphic to each other.28,29

26Lee (2013), pages 34 and 38, and previewed on page 11
27Lee (2013) demonstrates this in example 1.23 on page 17, which is continued on pages 39-40. Exercise 3.8 in

Crainic (2023) describes a family of examples.
28Examples exist in each dimension ≥ 4 (Lee (2013), page 40; Scorpan (2000); Scorpan (2004)). Theorem 1.1.8 in

Gompf and Stipsicz (1999) addresses the dimension-dependence of this phenomenon for compact manifolds.
29Here’s an excerpt from pages 39-40 in Lee (2013): “... as long as n 6= 4, Rn has a unique smooth structure (up

to diffeomorphism); but R4 has uncountably many distinct smooth structures, no two of which are diffeomorphic
to each other!” This special feature of R4 is also mentioned in Manolescu (2020), section 1, and in Crainic (2023),
chapter 3, section 5. Brans (1994) highlights some implications for spacetime geometries.
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10 CW complexes

A CW complex is another special kind of topological space. Roughly, a CW
complex can be constructed by gluing n-dimensional cells together, for various n.

For each n ≥ 1, let Bn denote an n-dimensional ball. Its boundary ∂Bn is an
n-sphere, and int(Bn) will denote its interior. Examples: B1 is a line segment and
∂B1 is a pair of points, B2 is a disc and ∂B2 is a circle, and so on. A topological
space X is called a CW complex if it is Hausdorff30 and can be decomposed into
subsets called cells satisfying these conditions:31

• The cells do not intersect each other.

• Each cell is either a point (zero-dimensional cell) or is homeomorphic to the
interior of an n-dimensional ball, for some n ≥ 1.

• For each n-dimensional cell with n ≥ 1, a continuous map c : Bn → X exists
with these properties:

1. c : int(Bn)→ X is a topological embedding onto the given cell.32

2. c(∂Bn) is contained in a finite union of lower-dimensional cells.

• A subset Y ⊂ X is closed in X’s topology if and only if its preimage c−1(Y ) is
closed in the topology of Bn for every map c : Bn → X that was used above,
for every n.

If a CW complex has at least one n-dimensional cell but no cells of higher dimension,
then it’s called n-dimensional. If it has n-dimensional cells with arbitrarily large
n, then it’s called infinite-dimensional.33

30A topological space X is called Hausdorff if every two distinct points of X are contained in two open neigh-
borhoods that don’t intersect each other.

31Mitchell (1997); Hatcher (2001), proposition A.2
32Article 44113 defines topological embedding.
33Mitchell (1997), page 1
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11 Examples

This picture above shows an example of a connected 2-dimensional CW complex
with five 2-cells, sixteen 1-cells, and twelve 0-cells. It is not a manifold.

Here’s a more natural example of a CW complex that is not a manifold. Choose
some large value of n and consider the points in Rn whose coordinates are all
integers. Take this set of points to be the set of 0-cells. Then declare the interior of
each line segment that connects two neighboring points (so that the line segment
has length 1) to be a 1-cell. So far, this is a 1-dimensional CW complex, also called
a graph. If we declare the interior of each square whose edges are 1-cells to be a
2-cell, then we get a 2-dimensional CW complex. Continuing up to n-cells would
give all of Rn, which is a manifold, but stopping earlier gives a lower-dimensional
CW complex that is not a manifold.

For a fun example of a CW complex that is also a manifold, consider the 3d real
projective space RP3. We can think of RP3 as a CW complex with one 3-cell, one
2-cell, one 1-cell, and one 0-cell. To arrive at this description, start by thinking of
RP3 as S3 with antipodal points identified. Thanks to these identifications, we only
need one hemisphere of S3, which is a 3-dimensional ball B3 except that antipodal
points on its boundary ∂B3 = S2 are identified with each other.34 The interior of
this ball is a 3-cell. Its boundary is S2 with antipodal points identified, so we only
need one hemisphere of S2, which is a 2-dimensional disk B2 except that antipodal
points on its boundary ∂B2 = S1 are identified with each other. The interior of
this disk is a 2-cell. Its boundary is S1 with antipodal points identified, so we only
need half of S1, which is a line segment except that its endpoints are identified with
each other. The interior of this line segment is a 1-cell, and its endpoints – after
identifying them with each other – give a single 0-cell. The union of these cells,
one of each dimension from 0 to 3, is the manifold RP3 that we started with.

34The manifold RP3 does not have a boundary, but we can construct it by starting with a manifold that does have
a boundary (namely B3) and then gluing antipodal points on the boundary to each other.
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12 Manifolds and complexes

Many published results that may be applied to manifolds are stated for other spaces,
like CW complexes (which includes all smooth manifolds, in the sense that any
smooth manifold may be given the structure of a CW complex). To help determine
which published results hold for which types of manifold, section 13 summarizes
some relationships between some of the most commonly studied spaces.

The preceding sections defined topological space, topological manifold,35 smooth
manifold, and CW complex. Other commonly studied spaces include:

• simplicial complexes and their geometric realizations,36,37

• Piecewise linear (PL) manifolds.38

A manifold of any type (topological, PL, or smooth) is called triangulable if it is
homeomorphic to the geometric realization of a simplicial complex.39

Section 13 lists some relationships between these spaces. Some relationships
are manifest in the definitions, and some of them are difficult theorems. The
relationships are not all independent of each other: some of them may be inferred
from others. All of them are summarized in a Venn diagram in section 14.

35Some authors use a more general definition of topological manifold (footnote 6 in section 5).
36These are defined in Hatcher (2001), section 2.1, page 107; Manolescu (2016), section 2.1; and Hocking and

Young (1961), sections 5.4 and 5.7.
37A geometric realization of a simplicial complex is called a polyhedron (Lee (2011), text above proposition 5.33;

https://ncatlab.org/nlab/show/polyhedron).
38These are defined in Davis and Petrosyan (2012), page 2.
39Lee (2000), chapter 5, page 100; and Manolescu (2016), section 2.1
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13 Manifolds and complexes: some relationships

The Venn diagram in section 14 summarizes these relationships:

• Every smooth manifold is a topological manifold.40

• Every topological manifold is a topological space.41

• Every smooth manifold is homeomorphic to a PL manifold.42

• Every PL manifold is a topological manifold.42

• Every simplicial complex is a CW complex.43,44

• Every CW complex is a topological space.45

• Every PL manifold is triangulable.46

• Every smooth manifold is triangulable.47

• Some topological spaces are not topological manifolds.48

• Some topological manifolds don’t admit a PL structure.49

40Section 8
41Section 5
42Davis and Petrosyan (2012), page 2
43This combines two facts from Hatcher (2001):, every simplicial complex is a ∆-complex (page 107), and every

∆-complex is a CW complex (page 534).
44https://math.stackexchange.com/questions/1528005/simplicial-complex-vs-delta-complex-vs-cw-complex

compares different types of complexes.
45Hatcher (2001), appendix, page 519
46Manolescu (2016), section 2.2; https://ncatlab.org/nlab/show/triangulation+theorem
47Davis and Petrosyan (2012), page 2; and Manolescu (2016), section 2.2
48Example: if M is the union of the x-axis and the y-axis in R2, then M ⊂ R2 with the subspace topology (which

is defined in article 44113) is a topological space space but not a topological manifold (Lee (2000), problem 4-2).
49Davis and Petrosyan (2012), examples 2.1 and 3.9; Manolescu (2016), section 2.2; Rudyak (2001), example 21.3
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• Some topological manifolds are not triangulable.50,51

• Some triangulable topological manifolds don’t admit a PL structure.52

• Every n-dimensional topological manifold with n 6= 4 is homeomorphic to a
CW complex, but the situation for n = 4 is unknown.53,54

• Some topological spaces are not homeomorphic to any CW complex.55

• Some CW complexes are not homeomorphic to any simplicial complex.56,57

• Some simplicial complexes are not homeomorphic to a topological manifold.58

• Some topological manifolds that are homeomorphic to a CW complex are not
triangulable.59

• Some topological manifolds are not smoothable.60

• Some PL manifolds are not smoothable.61,62

50Manolescu (2016), theorem 1.1, with more detail in the answer to question 2 in section 2.2; Rudyak (2001),
example 21.6; Hatcher (2001), text below corollary A.12

51Not triangulable means not homeomorphic to any simplicial complex, but every n-dimensional topological man-
ifold is homotopy equivalent to an n-dimensional simplicial complex (Manolescu (2016), section 2.2). Homotopy
equivalence is a more relaxed equivalence relation than homeomorphism (article 61813).

52Rudyak (2001), example 21.4
53Manolescu (2016), section 2.2; Hatcher (2001), text below corollary A.12
54Every compact manifold with boundary is homotopy equivalent to a finite CW complex (Lurie (2014), claim 2).
55Example: https://ncatlab.org/nlab/show/Hawaiian+earring+space
56Manolescu (2016), section 2.1
57Every CW complex is homotopy equivalent to a simplicial complex (https://ncatlab.org/nlab/show/CW+

complex, thoerem 3.6), and every compact manifold and every finite CW complex is a retract of a simplicial complex
(Hatcher (2001), text below theorem 2C.3).

58Example of a geometric simplicial complex that isn’t a topological manifold: three distinct points each connected
to a fourth point by line segments (1-simplexes).

59This combines two facts from Manolescu (2016), section 2.2: some n-dimensional manifolds with n ≥ 5 are not
triangulable (page 3), and every n-dimensional manifold with n ≥ 5 is homeomorphic to a CW complex (page 4).

60Lee (2013), text above proposition 1.17 and page 40 in chapter 2
61Crowley and Hambleton (2013)
62Every n-dimensional PL manifold with n ≤ 7 is smoothable (Milnor (2011), theorem 2).

16

https://ncatlab.org/nlab/show/Hawaiian+earring+space
https://ncatlab.org/nlab/show/CW+complex
https://ncatlab.org/nlab/show/CW+complex


cphysics.org article 93875 2024-03-24

14 Manifolds and complexes: Venn diagram

This Venn diagram depicts the relationships that were listed in section 13.63

Topological Spaces

Topological Manifolds

CW Complexes

Smooth Manifolds

Simplicial Complexes

PL Manifolds

63This diagram allows for the possible existence of (4-dimensional) topological manifolds that aren’t homeomorphic
to a CW complex.
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15 Other generalizations

As defined in this article, manifolds (topological or smooth) don’t have boundaries.
Article 44113 introduces manifolds (topological or smooth) with boundaries.

As defined in this article, manifolds are finite-dimensional. The definition can
be generalized to allow infinite-dimensional manifolds.64 One such generalization is
the concept of a Hilbert manifold,65 which uses a Hilbert space as a local model
instead of using Rn.

Category theory is one of the most important unifying themes in math.
Roughly, a category is the collection of all mathematical objects of a given type,
together with all type-preserving morphisms (maps) between them. The category
of topological manifolds and continuous maps does not have all of the convenient
properties that many other natural categories have, nor does the larger category of
all topological spaces and continuous maps. A nicer category of topological spaces
– using compactly generated spaces and continuous maps – is commonly used
in algebraic topology.66 Every CW complex is compactly generated,67 and every
topological manifold is compactly generated.68

Similarly, the category of smooth manifolds with smooth maps as morphisms
does not have all of the nice properties that many other natural categories have,
but the definitions can be generalized to give a more convenient category. Two such
generalizations, Chen spaces and diffeological spaces, are reviewed in Baez and
Hoffnung (2011).69

64Schmeding (2022); Michor (1991); https://ncatlab.org/nlab/show/infinite-dimensional+manifold
65Meier (2014) (html version: http://www.map.mpim-bonn.mpg.de/Hilbert_manifold)
66The beginning of chapter 5 in May (2007) says that this is “the category of spaces in which algebraic topologists

customarily work.” The end of the same chapter says, “From here on, we agree that all given [topological] spaces
are to be compactly generated...” Every compactly generated space X is weakly equivalent to a CW complex Y
(May (2007), chapter 10, section 5), which means that a map X → Y exists that induces isomorphisms of all of their
homotopy groups (May (2007), chapter 9, section 6).

67Mitchell (1997), section 1
68https://ncatlab.org/nlab/show/compactly+generated+topological+space
69Baez and Hoffnung (2011) uses the name smooth space for both. The introduction says, “Every smooth manifold

is a smooth space, and a map between smooth manifolds is smooth in the new sense if and only if it is smooth in
the usual sense. ... We can use the big category for abstract constructions, and the small one for theorems that rely
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