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Determining the Relative Sign in the
Einstein Field Equation

Randy S

Abstract The Einstein field equation describes the dynamics of the spacetime
metric field by relating it to the matter tensor (stress-energy tensor). In this
relationship, the relative sign of the matter tensor term should be such that
test objects are attracted by positive masses. This article uses that criterion to
determine the appropriate sign. The approach used here starts with a simple
ansatz for the spacetime metric tensor that is static, spherically symmetric, and
diagonal, generalized to an arbitrary number N of spacetime dimensions. The
components of the Einstein tensor are calculated, and those results are used to
do three things: to determine the appropriate sign of the matter tensor term,
to derive an N -dimensional generalization of the Schwarzschild solution (article
24902), and to highlight an exceptional feature of the case N = 3.
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1 Introduction

Like Maxwell’s equations, the gravitational field equation in general relativity is
one of the most iconic equations in physics. When the cosmological constant term
is omitted, the equation has the form1

Rab −
1

2
gabR = κTab, (1)

where κ is a universal constant,2 Rab are the components of the the Ricci tensor,
gab are the components of the metric tensor, gab are the components of the inverse
metric tensor, R ≡ gabRab are the components of the Ricci scalar,3 and Tab are the
components of the matter tensor.4,5,6

This article determines the sign of κ by requiring that test objects are gravita-
tionally attracted (not repelled) by a static isolated concentration of positive mass.
The result is that if N ≥ 4, then κ should be positive: κ > 0.

The analysis uses a simple ansatz for the metric tensor. The number N of space-
time dimensions is arbitrary for most of the calculation, but the final steps require
N ≥ 4. As a byproduct, an N -dimensional generalization of the Schwarzschild
solution7 will be obtained.

1This article uses the mostly-minus convention for the metric tensor gab and standard sign conventions for other
related tensors as described in article 80838.

2When the number N of spacetime dimensions is 4, the constant κ is usually written as 8π times Newton’s
gravitational constant. The factor of 8π is convenient in the Newton-model approximation when N = 4, but it is
inconvenient in general (Blau (2022), end of section 19.4; Robinson (2006); and article 00669).

3As usual in general relativity, a sum is implied over any index that appears both as a subscript and as a superscript
in the same term.

4Various names are used, including matter tensor (Martin (1988)), energy-momentum tensor (Blau (2022)),
stress-energy-momentum tensor (Wald (1984)), and stress-energy tensor (Misner et al (2017)).

5Articles 11475 and 78463 describe examples of matter tensors.
6In general relativity, the word matter usually refers to everything other than the metric field, so matter includes

the electromagnetic field.
7Article 24902 reviews some properties of the Schwarzschild metric in the physically relevant case N = 4.
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2 The ansatz

This article uses an ansatz for the metric tensor that is static, spherically symmetric,
and diagonal. The metric tensor may be specified by writing out the equation for
the proper time increment dτ in N -dimensional spacetime. This equation has the
form8,9

dτ 2 =

{
gab(x) dxa dxb in the mostly-minus convention,

−gab(x) dxa dxb in the mostly-plus convention.

This article will use the mostly-minus convention, but the sign of κ in equation (1)
is the same for either convention.10

For both conventions, the ansatz is

dτ 2 = A(r) dt2 −B(r) dr2 − r2 ds2 A(r) > 0 B(r) > 0, (2)

with
ds2 ≡

∑
k

Sk(φ) dφ2
k. (3)

The independent coordinates are t, r, and φk with k ∈ {1, 2, ..., N − 2}. The func-
tions Sk(φ) depend only on the angular coordinates φ1, φ2, ..., φN−2. The functions
Sk(φ) are defined so that (3) is the proper distance increment ds for the unit sphere
in (N−1)-dimensional euclidean space. With that definition of the functions Sk(φ),
the metric defined by (2) is flat when A = B = 1. This implies that the curvature
tensor is zero when A = B = 1, and this is the only thing we’ll need to know about
the functions Sk(φ).

8Article 48968
9As usual in general relativity, dτ2 is an abbreviation for (dτ)2, not to be confused with d(τ2). The superscript

on dxa is an index, not an exponent.
10Article 80838
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3 The geodesic equations

Section 5 will express the Ricci tensor in terms of the Levi-Civita connection coef-
ficients Γcab, which are also the coefficients in the geodesic equations.11 This article
derives the geodesic equations using a method introduced in article 33547. Section
4 will extract the connection coefficients from these geodesic equations.

The geodesic equations are

d

dλ

δL

δṫ
=
δL

δt

d

dλ

δL

δṙ
=
δL

δr

d

dλ

δL

δφ̇k
=

δL

δφk
, (4)

with the lagrangian

L = A(r) ṫ2 −B(r) ṙ2 − r2 ṡ2 ṡ2 ≡
∑
k

Sk(φ) φ̇2
k. (5)

This corresponds to the ansatz (2). Each overhead dot is a derivative with respect
to a worldline parameter λ. where the variational derivatives δ/δt and δ/δṫ are
defined by temporarily treating t and ṫ as independent variables, and likewise for
the other coordinates r and φk.

Using (5) and the abbreviations A′ ≡ dA/dr and Skj ≡ dSk/dφj, the variational
derivatives are

δL

δṫ
= 2Aṫ

δL

δt
= 0

δL

δṙ
= −2Bṙ

δL

δr
= A′ṫ2 −B′ṙ2 − 2r

∑
k

Sk φ̇
2
k

δL

δφ̇k
= −2r2Skφ̇k

δL

δφk
= −r2

∑
j

Sjkφ̇
2
j .

11Article 03519
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Using those results, the left-hand sides of the geodesic equations (4) are

d

dλ

δL

δṫ
= 2
(
Aẗ+ A′ṙṫ

)
d

dλ

δL

δṙ
= −2

(
Br̈ +B′ṙ2

)
d

dλ

δL

δφ̇k
= −2

(
r2Skφ̈k + 2rSkṙφ̇k + r2

∑
j

Skjφ̇jφ̇k

)
.

After rearranging, the geodesic equations become

ẗ+
A′

A
ṙṫ = 0 (6)

r̈ +
B′

2B
ṙ2 +

A′

2B
ṫ2 − r

B

∑
k

Sk φ̇
2
k = 0 (7)

φ̈k +
2

r
ṙφ̇k +

∑
j

Skj
Sk
φ̇jφ̇k −

1

2

∑
j

Sjk
Sk
φ̇2
j = 0. (8)
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4 The connection coefficients

The connection coefficients Γcab may be extracted from equations (6)-(8) by com-
paring to the general form12

ẍc = Γcabẋ
aẋc = 0

with the understanding that Γcba = Γcab. Using the symbol 0 for the index cor-
responding to t, using the symbol r for the index corresponding to r, using the
symbol k for the index corresponding to φk, the nonzero connection coefficients are

Γ0
r0 = Γ0

0r =
A′

2A

Γrrr =
B′

2B

Γr00 =
A′

2B

Γrkk =
−rSk
B

Γkrk = Γkkr =
1

r
(no sum over k)

Γkjk = Γkkj =
Skj
2Sk

(no sum over k, and j 6= k)

Γkjj =
−Sjk
Sk

(j and k may be equal).

These imply13

Γ••r =
A′

2A
+
B′

2B
+
N − 2

r
. (9)

12Article 03519
13The symbol • is used here as an index, and a sum over • is implied.
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5 The Ricci tensor

The Ricci tensor is14,15,16

Rab = ∂•Γ
•
ab − ∂aΓ••b + Γ××•Γ

•
ab − Γ×a•Γ

•
×b. (10)

The functions Sk in (3) are defined so that the ansatz (2) is flat when A = B = 1,
so the Ricci tensor must be zero when A = B = 1. This implies

Rab = δRab = ∂•δΓ
•
ab − ∂aδΓ••b + δ

(
Γ××•Γ

•
ab

)
− δ

(
Γ×a•Γ

•
×b
)

(11)

with δf(A,B) ≡ f(A,B)− f(1, 1). For R00, use the results from section 4 to get

∂•δΓ
•
00 = ∂rΓ

r
00 ∂0δΓ

•
•0 = 0 δ

(
Γ××•Γ

•
00

)
= Γ××rΓ

r
00 δ

(
Γ×0•Γ

•
×0

)
= 2Γr00Γ

r
0r,

and use these together with (9) to get

R00 = ∂r
A′

2B
+

(
A′

2A
+
B′

2B
+
N − 2

r

)
A′

2B
− (A′)2

2AB

=
A′′

2B
+

(
−A

′

2A
− B′

2B
+
N − 2

r

)
A′

2B
. (12)

For Rrr, use

∂•δΓ
•
rr = ∂rΓ

r
rr δ

(
Γ××•Γ

•
rr

)
= Γ××rΓ

r
rr δ

(
Γ×r•Γ

•
×r
)

=
(
Γ0

0r

)2
+ (Γrrr)

2

to get

Rrr = ∂r
B′

2B
− ∂r

(
A′

2A
+
B′

2B

)
+

(
A′

2A
+
B′

2B
+
N − 2

r

)
B′

2B
−

((
A′

2A

)2

+

(
B′

2B

)2
)

= −A
′′

2A
+

(
A′

2A
+
N − 2

r

)
B′

2B
+

(
A′

2A

)2

. (13)

14The symbols • and × is used here as indices, and sums over these indices are implied.
15∂a denotes the partial derivative with respect to the ath coordinate.
16This convention for the overall sign of the Ricci tensor seems to be standard (article 80838).
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For Rkk, use

∂•δΓ
•
kk = ∂rδΓ

r
kk ∂kδΓ

•
•k = 0

δ
(
Γ××•Γ

•
kk

)
= Γ××rΓ

r
kk + (N − 2)Sk δ

(
Γ×k•Γ

•
×k
)

= 2ΓkkrδΓ
r
kk

to get

Rkk = ∂r

((
1− 1

B

)
rSk

)
−
(
A′

2A
+
B′

2B
+
N − 2

r

)
rSk
B

+ (N − 2)Sk − 2

(
1− 1

B

)
Sk

=

(
B′

B
− A′

A

)
rSk
2B

+ (N − 3)

(
1− 1

B

)
Sk. (14)

The off-diagonal components of Rab are zero:17

Rab = 0 when a 6= b.

17The results for the connection coefficients Γ··· in section 4 may be used to check that each term in equation (11)
is zero when a 6= b.
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6 The Einstein tensor

The Einstein tensor is

Gab ≡ Rab −
1

2
gabR

with R ≡ gabRab. Equations (2)-(3) for the metric give

G00 =
1

2

(
R00 +

A

B
Rrr +

∑
k

A

r2Sk
Rkk

)

Grr =
1

2

(
Rrr +

B

A
R00 −

∑
k

B

r2Sk
Rkk

)

Gkk =
1

2

Rkk −
∑
j 6=k

Sk
Sj
Rjj +

r2Sk
A

R00 −
r2Sk
B

Rrr


and then equations (12), (13), and (14) for the Ricci tensor give18,19

G00 =
N − 2

2r

(
B′

B
+
N − 3

r
(B − 1)

)
A

B
(15)

Grr =
N − 2

2r

(
A′

A
− N − 3

r
(B − 1)

)
(16)

Gkk =
r2Sk
2B

(
A′′

A
−
(
A′

A
+
B′

B

)
A′

2A
+
N − 3

r

(
A′

A
− B′

B

)
− (N − 3)(N − 4)

r2
(B − 1)

)
.

(17)

18When N = 4, these results agree with equations (6.2.3)-(6.2.5) in Wald (1984) except for overall factors of A
and 1/B in equations (6.2.3) and (6.2.4), respectively. This apparent discrepancy is because Wald (1984) uses a
non-coordinate basis (shown in equations (6.1.6)) and this article uses a coordinate basis. Wald (1984) uses the
mostly-plus convention for the metric tensor, and this article uses the mostly-minus convention, but changing the
overall sign of the metric tensor doesn’t affect the Ricci tensor or the Einstein tensor (article 80838).

19For any metric, the Einstein tensor is identically zero when N = 2 (Martin (1988), chapter 10, problem 2).
Equations (15)-(16) are consistent with this. The components Gkk are absent when N = 2 (section 2).
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7 Determining the sign of κ

In terms of the Einstein tensor, the gravitational field equation (1) is

Gab = κTab. (18)

This section determines the sign of κ using this criterion: a test object should be
gravitationally attracted toward a static and spherically symmetric concentration
of positive mass.

The sign will be determined by analyzing just one configuration of matter.
That’s sufficient because equation (18) – with the same value of κ – governs all
configurations. This configuration will be used:

• T00 is positive20 for r < r0 and zero for r > r0, for some r0 > 0.

• For r < r0, the mass density T00 has spherical symmetry about r = 0.

• The other components of Tab are zero everywhere.

To simplify the analysis, an approximation will be used: terms that are quadratic
in the dimensionless quantities A − 1 and B − 1 (and their derivatives) will be
neglected. This is not a good approximation for all configurations, but it is for
some configurations,21 and that’s sufficient for determining the sign of κ.

For the configuration described above, equation (18) gives

Grr = 0 Gkk = 0.

In the approximation described above, equation (17) implies

Gkk ≈
r2Sk

2

(
A′′ +

N − 3

r
(A′ −B′)− (N − 3)(N − 4)

r2
(B − 1)

)
.

20The mass density is assumed to be small enough so that a black hole has not formed. Section 9 will show that
this is consistent with the conditions A > 0 and B > 0 in the ansatz (2).

21This can be anticipated intuitively from the fact that the ansatz (2) is flat when A = B = 1.
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After using Grr = 0 to express B − 1 in terms of A′/A ≈ A′, this becomes

Gkk ≈
r2Sk

2

(
A′′ +

N − 3

r
(A′ −B′)− (N − 4)

r
A′
)

=
r2Sk

2

(
A′′ +

A′

r
− N − 3

r
B′
)
,

and G00 becomes

G00 ≈
N − 2

2r
(B′ + A′) . (19)

If N 6= 3, then the condition Gkk = 0 implies

B′ ≈ r

N − 3

(
A′′ +

A′

r

)
.

Use this in equation (19) to get

G00 ≈
N − 2

2(N − 3)

(
A′′ +

N − 2

r
A′
)

=
N − 2

2(N − 3)rN−2
× d

dr

(
rN−2A′

)
.

Use this in the 00 component of (18) to get

N − 2

2(N − 3)
× d

dr

(
rN−2A′

)
≈ κrN−2T00, (20)

and integrate over r from r = 0 to r = s to get

N − 2

2(N − 3)
× sN−2A′(s) ≈ κ

∫ s

0

dr rN−2T00(r). (21)

We can choose s > r0 so that the left-hand side is evaluated at a point where matter
is absent. Now we can apply the criterion from the beginning of this section: a test
object should be gravitationally attracted toward a static and spherically symmetric
concentration of positive mass. In particular, a test object which is initially at rest
in this coordinate system should start to fall toward r = 0. According to geodesic
equation (7), this requires A′ > 0. The integrand on the right-hand side of (21) is
also positive, so if N ≥ 4, then κ must be positive.

12
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8 The exceptional case N = 3

Now suppose N = 3. In a region of spacetime where Tab = 0, the field equation
(18) says Gab = 0. The exact results (15)-(17) for the Einstein tensor Gab then give
A′ = B′ = 0 when N = 3, so the quantities A and B in the ansatz (2) are both
constants. This implies that the curvature tensor Rabc

d is zero, so this spacetime
is flat. Using A′ = 0 in the geodesic equation (7) shows that a test object that is
initially at rest in this coordinate system does not fall.

In fact, when N = 3, the field equation (18) implies that the metric must be
flat wherever Tab = 0.22 This feature of the case N = 3 showed up in section 7 as
an obstruction to the existence of a nontrivial weak-curvature approximation.

In Newton’s model of gravity,23 the force on a test object is proportional to ∇V ,
the gradient24 of a function V that is related to the mass density T00 by ∇2V ∝ T00,
where ∇2 is the laplacian. When N ≥ 4, general relativity reproduces Newton’s
model under the appropriate approximations.25,26 In contrast, when N = 3, general
relativity does not reproduce the N = 3 version of Newton’s model.25 This is
another manifestation of the fact that when N = 3, the equation (18) requires the
metric to be flat wherever Tab = 0.

Even though A and B are constants when N = 3, they may still be different
from 1. For B > 1 the metric (2) has a conical singularity at r = 0, so falling
objects can meet twice if they travel past the central mass on opposite sides.27,28,29

In this sense, the central mass affects the motion of test objects in general relativity
even when N = 3, even though the spacetime outside the mass is flat.

22Martin (1988), section 8.3
23Article 50710
24Here, ∇k denotes the partial derivative with respect to the kth space coordinate, not a covariant derivative.
25Robinson (2006)
26Equation (20) confirms this, thanks to the identity rN−2∇2A(r) = d

dr

(
rN−2A′(r)

)
.

27Jackiw (1990)
28The name conical singularity comes from an analogy with the surface of a cone: geodesics (straight lines) drawn

on the surface of a cone can intersect each other twice, even though the surface of the cone is intrinsically flat.
29Derivation: write B dr2 +r2 dφ2 = dr̃2 + r̃2 dφ̃2 with r̃ ≡ B1/2r and φ̃ = φ/B1/2. The original coordinates satisfy

r > 0 and φ ∼ φ+ 2π, so the new coordinates satisfy r̃ > 0 and φ̃ ∼ φ̃+ 2π/B1/2, where “∼” means equivalence.
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9 The Schwarzschild-Tangherlini solution

This section determines the form the functions A(r) and B(r) in the part of space-
time where Tab = 0, without using any approximations. Where Tab = 0, equation
(18) says Gab = 0. Combine this with equations (15)-(16) to get

A′

A
+
B′

B
= 0, (22)

and use this in Grr = 0 to get

B′

B
+
N − 3

r
(B − 1) = 0 ⇒

(
1− 1

B

)′
+
N − 3

r

(
1− 1

B

)
= 0

which implies
1

B
= 1− β

rN−3
. (23)

for some constant β. Equation (22) implies A ∝ 1/B. The proportionality factor
must be positive so that the ansatz (2) has lorentzian signature, and then the
proportionality factor may be absorbed into the definition of the coordinate t, so
we might as well set A = 1/B.

This holds for all N ≥ 3. If N > 3, then the condition A′ > 0 implies β < 0, so

A = 1−
(rs
r

)N−3

B = A−1 (24)

for some rs > 0 called the Schwarzschild radius. This solution is called the
Schwarzschild-Tangherlini metric.30 It generalizes the Schwarzschild metric to
an arbitrary number of dimensions. The N = 4 version of this metric has real-world
applications as a good approximation near (but outside) an isolated non-rotating

30Myers (2012), section 5.1

14
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spherical body whose mass density is not too extreme.31,32 The constant β in (23)
is related to the body’s total mass.33

The result (24) was derived using only two components of the field equation
(18), namely G00 = 0 and Grr = 0. The result (24) is also consistent with Gkk = 0,
which we can check using equation (17), and the off-diagonal components of Gab

are zero for arbitrary A(r) and B(r). This shows that when N ≥ 4 and Tab = 0,
the ansatz (2) satisfies the field equations (18) for all r > 0 when A and B are
given by (24).

For the purpose of determining the sign of the constant κ in the field equation
(18), section (2) asserted that A > 0 and B > 0 in the ansatz (2). This is consistent
with the approximation used in section 7, because the condition A ≈ 1 implies
rs/r � 1. However, the solution (24) is also valid for 0 < r < rs, where A and B
are both negative. In this case, the signature of (2) is still lorentzian, but the ∂t
and ∂r directions are spacelike and timelike, respectively – the opposite of the case
where A and B are both positive. Article 24902 clarifies the relationship between
the regions 0 < r < rs and r > rs, using N = 4 as an example.

31Article 24902
32It is also valid for non-rotating spherical bodies with extreme mass densities, but real bodies with extreme mass

densities – like real neutron stars – are expected to be rotating rapidly.
33Wald (1984), section 6.2
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