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Causality in Classical Field Theory
Randy S

Abstract In special relativity, the causality principle says that
the speed at which information propagates from one place to another
cannot exceed a finite maximum speed, usually called the speed of light.
In classical field theory, this means that if two solutions of the field
equations have initial data that differ only within a bounded region of
space, then any differences between the two solutions should remain
contained within a bounded region that does not grow any faster than
a finite maximum speed. This article reviews proofs of causality in
simple cases, namely free scalar fields and the free electromagnetic
field, and also describes some intuition suggesting that it still holds
when the equations of motion are nonlinear.
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1 Causality: definitions

The principle of causality says that information cannot propagate faster than a
finite maximum speed.1 Article 48968 introduced the principle of causality as a
constraint on an object’s worldline: the worldline representing an object’s journey
through spacetime cannot be spacelike anywhere.2 In this article, that version of
the principle of causality will be called worldline causality.

For fields, the principle of causality is expressed differently, because the dynam-
ics of a field is not expressed in terms of worldlines. The equations of motion for
a classical field are partial differential equations (PDEs). For classical fields, the
principle of causality is a condition on those PDEs. Given a system of PDEs and
a hypersurface3 H on which initial data4 is specified, the domain of influence5

of a subset h ⊂ H is the region of dimensional space(time) in which the solution
of the PDE can be affected by a change of its initial data in h.6 The principle of
causality for classical fields7 says that the part of spacetime that can be reached
by causal worldlines through h should contain the domain of influence of h. This
version of the principle of causality will be called field causality.

To determine whether a system of PDEs has this property, we need to under-
stand something about the set of solutions to those PDEs. This makes the study
of field causality – the subject of this article – more challenging than the study
of worldline causality. For the rest of this article, the unqualified word causality
refers to field causality.

1In the physics literature, the concept of group velocity is sometimes used in discussions about causality, but
the concept of group velocity cannot generally be equated to the speed at which information propagates. Robinett
(1978) highlights a counterexample.

2A worldline that is not spacelike anywhere is called a causal worldline.
3A hypersurface is a submanifold with one less dimension than the ambient manifold (Berger (2003), section

4.1.3.1). Here, the ambient manifold is spacetime, and we can take the initial hypersurface to be space at time t = 0.
4Section 2 explains what initial data means.
5Klainerman (2006), page 27
6Example: for equation (2) with V = 0 (the wave equation), when h is a single point, the boundary of its

domain of influence is known to be what physicists call the light cone whose apex is at that point.
7Article 21916 introduces a version of causality that makes sense for quantum fields.
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2 The family of models

In this article, φ(t,x) denotes a real-valued scalar field in Minkowski spacetime with
one “time” coordinate t and D space coordinates x = (x1, ..., xD). The coordinate
system is such that the equation for proper time τ is8

dτ 2 = dt2 − dx2. (1)

Let V (r) be a real-valued function of a single real variable r, and let V ′(r) denote
its derivative with respect to r. This article is mostly about equations of motion
of the form9

φ̈−∇2φ+ V ′(φ) = 0. (2)

Each overhead dot is a derivative with respect to t, and ∇ is the gradient with
respect to the spatial coordinates x. Equation (1) implies that (2) has Lorentz
symmetry.9 Equation (2) implies that total energy9

E ≡
∫
dDx

(
φ̇2(t,x) +

(
∇φ(t,x)

)2

2
+ V

(
φ(t,x)

))
(3)

is independent of time.
In the context of equation (2), specifying initial data means specifying the

values of φ(t,x) and φ̇(t,x) at any one time (called the initial time).10 Beware
that even if the initial data is finite and smooth, the corresponding solution may
not be defined everywhere in spacetime. Example: with V = −φ4/4, equation (2)
has a solution φ(t,x) =

√
2/(a− t), which is undefined at t = a. General questions

about the existence, uniqueness, and domain of definition of solutions with the
given initial data won’t be addressed in this article.11

8Article 48968
9 Article 49705. Equation (2) is sometimes called a nonlinear Klein-Gordon equation.

10More generally, initial data can be specified on a spacelike hypersurface, but see section 7.
11Examples of research in this area include Cazenave et al (2019), Bilgin and Kalantarov (2018), Chatzikaleas and

Donninger (2017), and Keel and Tao (1999).
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3 Causality for free scalar fields

A partial differential equation is called linear if any linear combination of solutions
is also a solution. If V ∝ φ2, then equation (2) is linear, and in this case the scalar
field is called a free.12 This section proves13 that the free scalar field satisfies
causality as defined in section 1 if V ≥ 0.14

When (2) is nonlinear (example: when V = φ4), the calculation in this section
doesn’t quite prove causality, but it does prove a weaker property that I’ll call
partial causality: if a solution’s initial data is nonzero only in a given region
of space, then the region in which the solution is nonzero cannot grow any faster
than a finite maximum speed if V ≥ 0. If the equation of motion is linear, then
partial causality implies causality, because the difference of two solutions is itself a
solution, and because the difference is zero wherever the two original solutions are
equal to each other.

Let H be the hypersurface t = 0, and let h(0) be a subset of H. Define the
future causal completion15 of h(0) to be the set of points in spacetime with
t ≥ 0 that cannot be reached by any causal worldline unless it also intersets h(0).16

Let h(t) be the intersection of the causal completion of h(0) with the constant-time
hyperplane at the specified time t. Define

E(t) ≡
∫

x∈h(t)

(
φ̇2 + (∇φ)2

2
+ V (φ)

)
. (4)

The condition V ≥ 0 implies that this is nonnegative and that it is zero if and only
if φ and its time-derivative φ̇ ≡ ∂tφ are both zero in h(t) at the specified time.
Consider t > 0, so that h(t) shrinks as t increases, and take the time-derivative of

12Article 30983 explains the reason for this name.
13Wang (2015) describes a generalization of this proof.
14Section 4 considers the “tachyonic” free scalar field, which has V < 0.
15Witten (2018)
16 Example: if spacetime is 2 + 1-dimensional and h(0) is a disc, then its future causal completion is a cone whose

based is h(0) and whose apex is a point in the future of h(0).
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(4) to get

Ė =

∫
x∈h(t)

(
φ̈φ̇+ (∇φ) · (∇φ̇) + V ′(φ)φ̇

)
−
∫

x∈∂h(t)

(
φ̇2 + (∇φ)2

2
+ V (φ)

)
=

∫
x∈h(t)

(
φ̈−∇2φ+ V ′(φ)

)
φ̇+

∫
x∈h(t)

∇ ·
(
φ̇∇φ

)
−
∫

x∈∂h(t)

(
φ̇2 + (∇φ)2

2
+ V (φ)

)
,

where ∂h(t) denotes the boundary of h(t). The second integral in the first equation
comes from the t-dependence of the integration domain h(t), and this is where the
derivation uses the fact that h(t) is the causal completion of h(0): as a function of
t, the boundary of h(t) moves inward with speed 1. If φ satisfies the equation of
motion (2), then the first term in the second equation is zero. The second term in
the second equation may be written as an integral over the boundary ∂h(t), with
unit normal n. This gives

Ė =

∫
x∈∂h(t)

n ·
(
φ̇∇φ

)
−
∫

x∈∂h(t)

(
φ̇2 + (∇φ)2

2
+ V (φ)

)

= −
∫

x∈∂h(t)

((
nφ̇−∇φ

)2

2
+ V (φ)

)
.

This is nonpositive, so E(t) must be a decreasing function of time for t > 0. But
E(t) is nonnegative, so if it’s zero initially, then it’s zero for all t > 0, because it
cannot decrease any further.

This proves partial causality: if the initial data is zero in a given spatial region
h(0) at time t = 0, then it remains zero at all points in spacetime with t ≥ 0 that
cannot be reached by any causal worldline that doesn’t intersect h(0). When the
equation of motion is linear, this implies full causality.
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4 Why require nonnegative energy?

The analysis in section 3 assumes V ≥ 0, but causality may hold even if V does not
have a lower bound. The real reason for requiring V ≥ 0 in physics is stability.
Causality doesn’t require V to have a lower bound, but stability does.

Consider the case V (φ) = −(m2/2)φ2, where m is real-valued. The equation of
motion (2) in this case is17

φ̈−∇2φ−m2φ = 0. (5)

Robinett (1978) shows that equation (5) satisfies causality,18 so causality doesn’t
require V to have a lower bound.

Stability is a different issue. Define

ω(p) ≡
{√

p2 −m2 if p2 > m2√
m2 − p2 otherwise.

Then equation (5) is satisfied by any function of the form

φ(t,x) =

∫
p2>m2

dDp eip·x
(
f1(p)eiω(p)t + f2(p)e−iω(p)t

)
+

∫
p2<m2

dDp eip·x
(
f3(p)eω(p)t + f4(p)e−ω(p)t

)
.

If the term involving eωt isn’t zero,19 then the solution’s magnitude grows exponen-
tially. In this sense, equation (5) is unstable.20

17This example has what is sometimes called “a mass term with the wrong sign.” This example is often associated
with literature about tachyons, a concept that is more relevant to the entertainment industry than it is to physics.

18This result is reviewed briefly in Garbarz and Palau (2021), section 5.4.
19If the solution’s initial data is nonzero only in a finite region h(0) of space at t = 0, then the terms involving eωt

and e−ωt must both be nonzero.
20The energy (3) is still conserved: the individual terms have different signs, so their exponentially growing

contributions to the energy cancel each other.
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5 Causality for the free electromagnetic field

For simplicity, most of this article focuses on scalar fields. Those are toy models:
they share some features (like Lorentz symmetry) with more realistic models, but
they are not intended to have realistic applications by themselves. For an example
that does have realistic applications, this section shows that the free21 electromag-
netic field satisfies causality, using the same approach that was used for scalar fields
in section 3.

Both for scalar fields and for the electromagnetic field, the first part of the proof
can be expressed in terms of the stress-energy tensor T ab. Explicit expressions for
T ab are given in articles 49705 and 78463 for scalar fields and the electromagnetic
field, respectively. The indices a, b take values in {0, 1, 2, ..., D}. The component
T 00 is the energy density, and T 0j with j ∈ {1, 2, ..., D} are the components of the
momentum density. The equations of motion22 imply the local conservation law

∂aT
ab = 0, (6)

with an implied sum over the index a ∈ {0, 1, 2, ..., D}. To derive causality, define
the time-dependent region h(t) as in section 3, and consider the energy in that
region:

E(t) =

∫
h(t)

T 00. (7)

Take the derivative of this with respect to t to get

Ė =

∫
h(t)

∂0T
00 −

∫
∂h(t)

T 00,

use (6) to get

Ė = −
∫
h(t)

∂jT
j0 −

∫
∂h(t)

T 00,

21Free means that the field doesn’t interact with anything else. This is a model in which charges and currents
don’t exist.

22For the scalar field, the equation of motion is equation (2). For the free electromagnetic field, the equations of
motion are Maxwell’s equations with no charges or currents (article 31738).

8



cphysics.org article 98038 2024-02-25

with an implied sum over the index j ∈ {1, 2, ..., D}. Now use integration-by-parts
to get

Ė =

∫
∂h(t)

njT
j0 −

∫
∂h(t)

T 00, (8)

where nj are the components of a unit vector field normal to ∂h(t).
For a scalar field, the energy and momentum densities are (article 49705)

T 00 =
φ̇2 + (∇φ)2

2
+ V (φ) T 0j = T j0 = −φ̇∇jφ.

We can use these in (8) to reproduce the calculation in section 3. For the electro-
magnetic field, the energy and momentum densities are (article 78463)

T 00 =
1

2

∑
k

(Ek)
2 +

1

2

∑
j<k

(Bjk)
2

T 0j = T j0 =
∑
k

BjkEk, (9)

where Ek and Bjk = −Bkj are the electric and magnetic components of the field.
This expression for T 00 implies

E ≥ 0. (10)

To streamline the rest of the equations, use this matrix notation:

• n is a column matrix with components nk.

• E is a column matrix with components Ek.

• B is a square matrix with components Bjk.

• The transpose of a matrix M is denoted MT .

The fact that n is a unit vector implies that the square matrix P ≡ nnT is a
projection matrix (P 2 = P and P T = P ). Let I denote the identity matrix, and

9
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use the abbreviation P ≡ I − P . With this notation, the terms in equations (9)
are ∑

k

(Ek)
2 = ETE = ETPE + ETPE

∑
j<k

(Bjk)
2 =

1

2

∑
j,k

(Bjk)
2 =

1

2
〈BBT 〉∑

j

njT
j0 = nTBE

where 〈M〉 denotes the trace of M . The fact that B is antisymmetric (BT = −B)
implies nTBn = 0, which may also be written PBP = 0. Use this to get

nTBE = nTBPE

and

〈BBT 〉 = −〈BB〉 (use BT = −B)

= −
〈
(P + P )B(P + P )B

〉
(use P + P = I)

= −〈PBPB〉 − 〈PBPB〉 − 〈PBPB〉 (use PBP = 0)

= −〈PBPB〉 − 2 〈PBPB〉 (use 〈XY 〉 = 〈Y X〉)
= −〈PBPB〉 − 2

〈
(P + P )BPB

〉
(use PBP = 0)

= −〈PBPB〉 − 2 〈BPB〉 (use P + P = I)

=
〈
(PBP )(PBP )T

〉
+ 2 (Bn)T (Bn).

Use these equation (8) to get

Ė = −1

2
ETPE − 1

2
(PE −Bn)T (PE −Bn)− 1

4

〈
(PBP )(PBP )T

〉
< 0.

Together with (10), this shows that E is nonnegative and Ė is nonpositive, which
proves that Ė must be zero if E is zero initially. As explained in section 3, this
proves that the free electromagnetic field satisfies causality.

10
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6 Nonlinear equations of motion and causality

When the equation of motion (2) is nonlinear, the calculation in section 3 proves
what that section called partial causality, but not full causality, and only when
V (φ) has a lower bound. When V (φ) doesn’t have a lower bound, the calculation
in section 3 doesn’t prove anything at all.

Does causality hold for every PDE of the form (2), regardless of the function
V (φ)? This is a simple question, but I’m not aware of any theorem that answers it
in complete generality.23,24 In lieu of a general proof, the rest of this article describes
two sources of intuition, both suggesting that the causality property probably does
hold for arbitrary V (φ):

• Sections 7-13 use the concept of a characteristic (hyper)surface as a
source of intuition suggesting that equation (2) satisfies causality.

• Sections 14-20 use a discretized (lattice) version of equation (2) as a source
of intuition suggesting that the continuum version satisfies causality.

These sources of intuition complement the result that was already derived in section
3.

23All of the proofs I’ve found are either limited to the linear case or else prove only what section 3 calls partial
causality, but maybe I just haven’t looked in the right places. (The study of PDEs is not my specialty.) If you know
of a general proof of causality for equation (2) with arbitrary V , you could post it as an answer to this question:
https://math.stackexchange.com/questions/3746464.

24In the literature about PDEs, the name finite speed of propagation sometimes seems to refer to what I’m
calling causality (Klainerman (2006), page 27), but more often it seems to be used as a synonym for what section 3
calls partial causality (Klainerman (2006), page 23, footnote 12, and Keel and Tao (1999), section 1).

11
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7 Characteristic hypersurfaces: definition

Causality is a statement about the dependence of a solution on its initial data.
Questions about solutions of nonlinear PDEs tend to be difficult, but we can gain
some insight by asking this easier question about initial data: which hypersurfaces
allow both the field and its first derivative to be specified without any constraints?
To make the question more precise, let H be a hypersurface in D + 1-dimensional
spacetime, and choose a coordinate system in which one of the coordinates ξ is
zero everywhere on H. The question is whether the field φ and its derivative ∂ξφ
can both be specified on H without any constraints. This will be true only if
equation (2) involves the second derivative ∂2

ξφ. If it doesn’t, then H is called a

characteristic (hyper)surface.25

A relationship between characteristic hypersurfaces and causal completions26

will be established in sections 12-13: ifH is the hyperplane t = 0, then the boundary
of the future causal completion of a region h ⊂ H is a characteristic hypersurface
for equation (2). A connection with field causality – the main subject of this article
– is suggested on page 28 in Klainerman (2006), which asserts for a hyperbolic PDE
like equation (2),

The boundaries of domains of dependence27 ...are characteristic hyper-
surfaces...

The scope of that assertion isn’t clear,28 and no proof was given, but it is plausible
because the relationship between a solution of equation (2) and its initial data on
a characteristic hypersurface does involve some degree of arbitrariness. This will
be illustrated in sections 8-10.

25Vitagliano (2014), section 1.2.1
26This was defined in section 3.
27The domain of dependence of a given region R consists of all points in the region’s past to which the solution in

R is sensitive. This is complementary to the domain of influence.
28The text says “This is a general fact,” but it doesn’t say how general.
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8 Example: 1 + 1-dimensional spacetime, part 1

The geometry is simplest in 1 + 1-dimensional spacetime, so let’s start there. In
this case, the equation of motion (2) is

∂2
t φ− ∂2

xφ+ V ′(φ) = 0 (11)

where ∂t and ∂x are the partial derivatives with respect to t and x. If we define

r ≡ (t− x)/2 s ≡ (t+ x)/2,

then the partial derivatives with respect to these new variables are

∂r = ∂t − ∂x ∂s = ∂t + ∂x,

so the equation of motion (11) may also be written29

∂r∂sϕ+ V ′(ϕ) = 0 with ϕ(r, s) ≡ φ(r + s, s− r). (12)

If the V ′ term were absent, then this equation would imply that ∂rϕ is independent
of s and that ∂sϕ is independent of r. That, in turn, would imply that every
solution can be written as a sum of two functions, one depending only on r and
one only on s. With a generic V ′ term, such an explicit description of the general
solution is not available, but writing the equation of motion in the form (12) still
leads to some insights: section 9 shows that the hypersurface defined by r = 0
is a characteristic hypersurface, and section 11 explains why this is related to the
subject of causality.

29I’m using different symbols for φ and ϕ because they’re expressed in different coordinate systems, so they are
different functions of their respective arguments even though they’re the same function of spacetime (article 09894).
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9 Example: 1 + 1-dimensional spacetime, part 2

Equation (11) involves the second derivative of φ with respect to t. As a conse-
quence, when initial data is specified on the spacelike hypersurface defined by t = 0,
the values of the functions φ and ∂tφ can both be specified independently of each
other at t = 0,30 and any such choice determines a unique solution for t 6= 0.31

In contrast, equation (12) involves only the first derivative of ϕ with respect to
r. As a consequence, when initial data is specified on the hypersurface r = 0, the
values of ϕ and ∂rϕ cannot be specified independently of each other on H: given
the values of ϕ at r = 0, equation (12) is a condition that the values of ∂rϕ must
satisfy on H in order to be consistent with the specified values of ϕ.32 (In the case
V ′ = 0, the condition is that ∂rϕ must be the same everywhere on H.) This shows
that the hypersurface r = 0 is an example of a characteristic hypersurface.33

The next section generalizes this example to any number of dimensions.

30To make this precise, we should work within some appropriate class of functions, like the class of smooth functions.
I won’t try to be that precise here, but beware that the class of analytic functions is not sufficient for addressing
causality, because the difference between two analytic functions (on the initial hypersurface) cannot be contained in
any finite region of space. This follows from the fact that an analytic function has a unique analytic continuation
(Hadamard (1923), chapter 1, page 11).

31To make this precise, we would need to account for the possibility that a solution may eventually become singular
even if its initial data is nonsingular (section 7), but I won’t try to be that precise here.

32To see this, use the identity ∂r∂sϕ = ∂s(∂rϕ).
33By taking n derivatives of equation (12) with respect to r, we also get conditions that the values of ∂n+1

r ϕ must
satisfy on H.
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10 A generalization to arbitrary dimensions

The preceding example of a characteristic hypersurface can be generalized to D+1-
dimensional spacetime for any D. To do this, choose one of the spatial coordinates
and call it x. Write the other D − 1 spatial coordinates collectively as x⊥, and
write the field as

φ
(
t, x, x⊥

)
.

Then equation (2) may be written

∂2
t φ− ∂2

xφ−∇2
⊥φ+ V ′(φ) = 0.

With r and s defined as before, we can also write the equation of motion (2) as

∂r∂sϕ = ∇2
⊥ϕ− V ′(ϕ) (13)

with
ϕ
(
r, s,∇⊥

)
≡ φ

(
r + s, s− r, x⊥

)
.

The reasoning that was used in the 1 + 1-dimensional case (section 9) can be
used again here to show that the hypersurface defined by r = 0 is a characteristic
hypersurface.

15
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11 Characteristic hypersurfaces and causality

Sections 8-10 described an example of a characteristic hypersurface for equation
(2). This sections shows that the relationship between a solution and its initial
data on these characteristic hypersurfaces involves a degree of arbitrariness that
suggests a connection with causality. For simplicity, this section considers only
1 + 1-dimensional spacetime. This picture summarizes some of the terminology
that will be used:34

article 98038

half-line h

(t = 0, x < 0)

future wedge
(r > 0, s > 0)

past wedge
(r < 0, s < 0)

right wedge
(r < 0, s > 0)

left wedge
(r > 0, s < 0)

© 2018-2022 Randy S
For noncommercial use only

1

The preceding sections showed that on the hypersurface r = 0, the field ϕ
and its derivative ∂rϕ cannot be independently specified. On the other hand,
specifying only ϕ on that hypersurface doesn’t determine a unique solution of (12).
This becomes obvious when the derivatives in equation (12) are replaced by finite
differences:

1

εr

(
ϕ(r + εr, s+ εs)− ϕ(r + εr, s)

εs
− ϕ(r, s+ εs)− ϕ(r, s)

εs

)
+ V ′(ϕ) = 0,

where εr and εs are the step-sizes in the r and s directions. Re-arrange this to get

ϕ(r + εr, s+ εs)− ϕ(r + εr, s) = ϕ(r, s+ εs)− ϕ(r, s)− εrεsV ′(ϕ). (14)

34In this picture, t increases upward and x increases to the right.
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Suppose that a solution of (14) is specified at all points in the discretized spacetime
with r < 0. In the original coordinate system, this is the region of spacetime defined
by x > t, which covers the right and past wedges in the picture. Given a solution
in that region, equation (14) almost tells us what the values of ϕ at the next step
r + εr must be, but not quite: it allows us to add an arbitrary s-independent
constant to all of the values at r + εr. Equation (14) also allows us to add such an
arbitrary s-independent constant at every subsequent step in the r-direction (every
step toward the upper-left).35 We can use this freedom to assign arbitrary values
to the field along the half-line h defined by t = 0 and x < 0 (the dashed line in the
picture). This means that the given solution in the region x > t is consistent with
arbitrary values of the field on h.

To establish causality, we need to show that a given solution in the right wedge is
consistent with arbitrary values of both φ and ∂tφ on h. With that motive, suppose
that a solution is specified only in the right wedge (the intersection of r < 0 and
s > 0). In this case, we can use equation (14) to determine the solution in the future
wedge modulo an arbitrary s-independent constant at each step in the positive r-
direction, and after rearranging equation (14), we can also use it to determine the
solution in the past wedge modulo an arbitrary r-independent constant at each step
in the negative s-direction. Those two sets of arbitrary constants, one independent
of s and one independent of r, can be chosen to achieve consistency with arbitrary
values of φ and ∂tφ on h. This suggests that causality holds, at least with respect
to initial data on h.

The virtue of this argument is that it doesn’t depend on the form of V (φ) at all,
so it suggests that causality holds for arbitrary V in 1 + 1-dimensional spacetime.
This argument isn’t quite a proof, because it doesn’t address exactly how solutions
of the finite-difference equation (14) relate to solutions of the continuous-spacetime
equation (2), but it at least passes an important test: it is consistent with (a
discretized version of) the result that was derived in section 3.

35This constant doesn’t need to be small compared to the step-size εr, so this implies that a solution of equation
(12) can even be singular (∂rϕ may be infinite) at r = 0 in the continuum limit.
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12 An equation for characteristic hypersurfaces

Motivated by the claim quoted in section 7 that the boundaries of domains of influ-
ence are characteristic hypersurfaces, this section derives a general equation for the
characteristic hypersurfaces of the equation of motion (2). Section 13 will use this
result to relate characteristic hypersurfaces to the geometry of causal completions.

Write the original coordinates t and x collectively as xa (the superscript is an
index, not an exponent), with t = x0 and x = (x1, x2, ..., xD). Let xa be another
coordinate system, and let H be the hypersurface defined by x0 = 0. Let ∂a denote
the partial derivative with respect to xa, with the other coordinates in that system
held fixed, and let ∂a denote the partial derivative with respect to xa, with the
other coordinates in that system held fixed.

In the original coordinate system, the equation of motion (2) is

ηab∂a∂bφ+ V ′(φ) = 0,

where ηab are the components of the Minkowski metric in the mostly-minus con-
vention. To write this in the new coordinate system, use the identities

∂a = (∂ax
c)∂c

to get
ηab(∂ax

c)∂c(∂bx
d)∂dφ+ V ′(φ) = 0.

The derivative ∂c acts on everything to its right, so this may also be written

ηab(∂ax
c)(∂bx

d)∂c∂dφ+ ηab(∂ax
c)(∂c∂bx

d)∂dφ+ V ′(φ) = 0. (15)

The hypersurface H defined by x0 = 0 is a characteristic hypersurface if the coeffi-
cient of the ∂0∂0φ term is zero (section 7). Equation (15) says that this condition
may be written

ηab(∂ax
0)(∂bx

0) = 0. (16)

Equation (16) says that gradient of x0 is lightlike (article 48968), so the hypersurface
x0 = 0 is a characteristic hypersurface if the gradient of x0 is lightlike.
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13 Relationship to causal completion

The previous section showed that if the gradient of a function x0 is lightlike where
x0 = 0, then the hypersurface H defined by x0 = 0 is a characteristic hypersurface
for equation (2). This section uses that result to show that the future boundary of
a causal completion is a characteristic hypersurface.

First, here’s some notation. Let H0 be the hypersurface t = 0, and let h0 be a
subset of H0. Let ĥ0 be the future causal completion of h0, the region of spacetime
with t ≥ 0 that cannot be reached by any causal worldline unless the worldline also
intersects h0. The boundary of ĥ0 consists of two parts: one part h0 at t = 0, and
another part hc with t > 0.36

To relate that geometry to equation (16), consider any neighborhood of a point
on hc, and let xa be a coordinate system in which that part of hc is defined by the
condition x0 = 0. Because of the way hc was defined, it cannot have a timelike
tangent vector at any point, and it must have one lightlike tangent vector at every
point.37 The condition for va to be the components of a tangent vector is va∂ax

0 = 0,
which may also be written ηabv

aub = 0 with ub ≡ ηbc∂cx
0. The condition ηabv

aub = 0
must be satisfied by one lightlike vector v and must be violated by every timelike
vector v. This is impossible unless u is lightlike, which implies equation (16). This
proves that hc is a characteristic hypersurface for equation (2).

When combined with the intuition described in section 11, this suggests that
hc might also be the boundary of the domain of influence for the complement of h0

in H0. This would be consistent with the quote in section 7.

36In the example described in footnote 16, hc is the curved surface of the cone. More generally, hc can be called a
conoid – an imprecise term for something resembling a cone (Hadamard (1923), chapter 3, section 1, page 72).

37Intuitively: hc and h0 share the same boundary, and h0 is spacelike. The definition of hc means that it can be
constructed by deforming h0 into the future (keeping its boundary fixed) until it is just barely no longer spacelike
everywhere.
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14 Lattice models and maximum speed: outline

Section 11 used a lattice model that came from discretizing the derivatives with
respect to the “lightlike” coordinates r and s. Section 15 introduces a different
lattice model, one that comes from discretizing the derivatives with respect to the
nominal time (t) and space (x) coordinates instead. In this model, changing the
value of the field at one point in space cannot affect the value of the field in another
point in space if the number of steps in space exceeds the number of steps in time.
In this sense, the region in which two solutions differ from each other cannot grow
any faster than a finite maximum speed. This is true without any restrictions on
V (φ), which suggests that equation (2) always satisfies causality.

To turn this into a proof, we would need to answer these questions:

• Does the lattice model give equation (2) in the continuum limit?
For the special case V = 0, Courant et al (1928) shows that the appropriate
continuum limit does exist if the coefficients in the lattice model satisfy an
inequality called the CFL stability condition, and section 16 shows that the
CFL stability condition is necessary. That’s a warning that the existence of
an appropriate continuum limit is not as obvious as it might näıvely seem to
be. A comparable analysis is not available for general V , as far as I know.

• Does the maximum speed remain finite in the continuum limit?
Section 17 argues heuristically that the answer is yes – if the appropriate
continuum limit exists. To test the reasoning, sections 18-19 analyze a dif-
ferent kind of equation, one that doesn’t have a finite maximum speed in
continuous spacetime even though its lattice version does. In that case, the
same reasoning correctly predicts the absence of any finite maximum speed.

The key would be to prove that an appropriate continuum limit exists, which I
don’t know how to do when the equation of motion is nonlinear. As a substitute,
section 20 presents computer results that would be surprising if an appropriate
continuum limit didn’t exist.
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15 The lattice model

Let εt and εx denote the lattice spacings in the time and space directions, respec-
tively. (Section 16 will explain why we should allow them to be different.) Let
e1, ..., eD be basis vectors for the spatial lattice, each with magnitude εx. The
derivatives in the equation of motion (2) can be discretized like this:38

φ̈(t,x)→ 1

εt

(
φ(t+ εt,x)− φ(t,x)

εt
− φ(t,x)− φ(t− εt,x)

εt

)
=
φ(t+ εt,x) + φ(t− εt,x)− 2φ(t,x)

ε2t

∇2φ(t,x)→
∑
j

1

εx

(
φ(t,x + ej)− φ(t,x)

εx
− φ(t,x)− φ(t,x− ej)

εx

)
=
∑
j

φ(t,x + ej) + φ(t,x− ej)− 2φ(t,x)

ε2x
. (17)

That gives this discrete version of the equation of motion (2):

φ(t+ εt,x) = 2φ(t,x)− φ(t− εt,x)

+ β
∑
j

(
φ(t,x + ej) + φ(t,x− ej)− 2φ(t,x)

)
(18)

− ε2tV ′
(
φ(t,x)

)
with

β ≡
(
εt
εx

)2

. (19)

Equation (18) determines the values of φ for all spatial points x at time t+εt, if the
values of φ at times t and t − εt are specified. In the continuous-spacetime limit,
this corresponds to specifying the initial values of φ and φ̇.

38Article 71852
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16 When does a continuum limit exist?

In the continuous-spacetime version (2), we can change the relative coefficients of
the time- and space-derivative terms just by changing the units in which the time
and space coordinates are expressed. Such a change of units has no real effect,
because it can be compensated by rescaling the independent variables t and x.
This might lead us to expect that the value of β isn’t really important, but that’s
not quite true.

This section considers the simplest case V = 0, for which equation (2) is called
the wave equation. This section shows that when V = 0, the lattice version (18) is
unstable when β > 1/D, meaning that a typical solution diverges exponentially as
time passes, even for initial data that is relatively smooth compared to the spatial
step size εx. We can avoid that instability by taking β ≤ 1/D, in which case the
lattice version of the wave equation becomes equivalent to its continuous-spacetime
version in the appropriate limit, as long as we consider initial data φ and φ̇ that
remain smooth as εx → 0 (with β held fixed).

To show that the lattice wave equation is unstable when β > 1/D, consider the
ansatz39

φ(nεt,x) = zn exp(ip · x), (20)

where the components of p are real constants and z is a complex number to be
determined. Substitute this ansatz into the V = 0 version of equation (18) to get
this equation for z:

z = 2− 1

z
+ β

∑
j

(
2 cos(p · ej)− 2

)
,

which may be rearranged to get the quadratic equation

z2 + 2γz + 1 = 0 (21)

39This approach to analyzing stability is called von Neumann stability analysis.
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with
γ ≡ β

∑
j

(
1− cos(p · ej)

)
− 1. (22)

The solutions of (21) are

z = −γ ±
√
γ2 − 1. (23)

When γ2 ≤ 1, the two solutions for z are both complex numbers with magnitude
|z| = 1. In this case, the magnitude of (20) remains constant in time. But when
γ2 > 1, the two solutions (23) are both real numbers, and one of them has mag-
nitude greater than 1. In this case, the magnitude of (20) grows exponentially in
time, growing by a factor of z > 1 with every discrete time-step. That’s disastrous
for a continuum limit in which any nonzero time-interval corresponds to infinitely
many discrete time-steps. This shows that the condition γ2 ≤ 1 is a prerequisite
for a sensible continuum limit. Use

0 ≤ 1− cos θ ≤ 2

in equation (22) to see that the condition γ2 ≤ 1 holds for all p only if

β ≤ 1

D
. (24)

If β doesn’t satisfy this condition, then γ2 > 1 whenever the components of p are
all small enough compared to 1/εx. Any initial data that becomes smooth in the
continuum limit may be expressed (using a Fourier transform) as a superposition
of solutions of the form (20) with such values of p, so this shows that (24) is a
necessary condition for a sensible continuum limit.

This result is called the Courant-Friedrichs-Lewy (CFL) stability condi-
tion. It’s named after the authors of Courant et al (1928), who also showed that if
the condition (24) is satisfied, then the wave equation does have a continuum limit
that agrees with the continuous-spacetime version of the wave equation.
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17 Maximum speed in the continuum limit

Equation (18) determines the values of φ for all spatial points x at time t+εt, if the
values of φ at times t and t−εt are specified. According to that equation, the effect
of a disturbance at one point cannot propagate any faster than one space-step per
time-step, so the maximum possible speed is

vmax ≡
εx
εt
. (25)

What happens to this restriction in the continuum limit?
First, we need to think about what “continuum limit” means. We could use

the limits εt → 0 and εx → 0 as the definitions of the partial derivatives in the
original equation of motion (2), but that would presume that the function φ(t,x)
is defined for a continuum of values of t and x, so that the arguments of φ(t,x)
can be varied continuously. Here, a different perspective will be used: in the lattice
model, the field φ(t,x) is defined only where its arguments are integer multiples of
the fixed quantities εt and εx, and taking the “continuum limit” means considering
field configurations that change only infinitesimally between consecutive values of
those discrete arguments. For such configurations, a time T or distance X over
which the field changes by a finite (not infinitesimal) amount must be infinite when
expressed in units of εt or εx, but we can use “macroscopic” units in which T and
X are finite. Units are arbitrary, but not completely arbitrary: we must choose the
“macroscopic” units so that the time and space derivatives of the field are finite
when expressed in those units.

Speed is a comparison between a spatial scale and a time scale (“How far does
something move in a given amount of time?”). The question is whether the speed
at which field disturbances propagate is finite or infinite when expressed in macro-
scopic units, given that the derivatives of the field are all finite when expressed
in those units. The answer to this question depends on the form of the equation
of motion. If we choose the configuration at two consecutive times t − εt and t,
then equation (18) tells us what the configuration must be at all subsequent times.
This means that the relationship between the macroscopic units of time and space
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is not arbitrary: it’s constrained by equation (18) if we want the time and space
derivatives of the field to be finite when expressed in macroscopic units, because
that equation determines the solution’s time-dependence.

In the special case V = 0, this constraint on the relationship between the
macroscopic units of time and space must be expressible in terms of the quantity
β defined in (19), because equation (18) depends on the parameters εt and εx only
through β (when V = 0). This implies that β must be finite when expressed in
macroscopic units. Since β = 1/v2

max, this means that vmax must be finite when
expressed in macroscopic units. In other words, when V = 0, the continuum limit
of equation (18) satisfies causality: a disturbance in the field cannot propagate
faster than a maximum speed that is finite when expressed in macroscopic units.

Section 18 tests this intuition by applying it to another model, namely the heat
equation, which does not satisfy the causality principle. When applied to a lattice
version of the heat equation, the same line of reasoning that was used above leads to
the correct conclusion that the maximum speed should be infinite when expressed
in macroscopic units.

The purpose of considering this intuition is that we might be able to use it even
when V 6= 0 in equation (18). The word might is in that sentence because when
V 6= 0, the quantity β by itself does not account for all of the εt and εx dependence in
equation (18). However, the V term in equation (18) does not contribute directly
to propagation: if the other terms on the right-hand side of equation (18) were
absent, then the field could not propagate. Heuristically, this suggests40 that the
constraint on the relationship between the macroscopic units of time and space
should depend only on β, so the qualitative conclusion reached above for the case
V = 0 should still hold when V 6= 0.

40This is the weak link in the argument.
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18 Testing the intuition, part 1

Section 17 used intuition to deduce that equation (2) has a finite maximum speed.
To test that intuition, this section applies it to a different lattice model, one whose
continuum version does not have a finite maximum speed even though the lattice
model does. In this section, space is one-dimensional (D = 1), so x has only one
component x.

The lattice model considered here is similar to the V = 0 version of (18), but
with only one time-derivative instead of two:

ϕ(t+ εt, x)− ϕ(t, x)

εt
=
α

εx

(
ϕ(t, x+ εx)− ϕ(t, x)

εx
− ϕ(t, x)− ϕ(t, x− εx)

εx

)
, (26)

which can be rearranged like this:

ϕ(t+ εt, x) = ϕ(t, x) +
αεt
ε2x

(
ϕ(t, x+ εx) + ϕ(t, x− εx)− ϕ(t, x)

)
. (27)

This is a lattice version of the heat equation,41 whose continuum version will be
considered in section 19. Like the other lattice model (18), this one has a finite
maximum speed: disturbances introduced at one point cannot propagate any faster
than

vmax ≡
εx
εt
, (28)

just like equation (25). Just like in section 17, the question is whether this speed
is finite or infinite when expressed in macroscopic units, given that the derivatives
of the field are all finite when expressed in those units. We can answer this using
the same intuition that was used in section 17, but here that intuition leads to a
different conclusion.

If we choose the configuration of the field at one time, then equation (27) tells
us what the configuration must be at later times. This means that equation (27)

41This is not the best discretization for numerical approximations. Discretizations that are better for that purpose
are described in Bender and Tovbis (1997).
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may constrain the relationship between the macroscopic units of time and space,
if we want the time and space derivatives of the field to be finite when expressed
in those units. This constraint on the relationship between the macroscopic units
of time and space must be expressible in terms of the quantity

αεt
ε2x

=
α

vmaxεx
, (29)

because equation (27) depends on the parameters εt and εx only through this quan-
tity. This implies that the quantity (29) must be finite when expressed in macro-
scopic units. But the factor εx in (29) is zero when expressed in macroscopic units,
so the quantity vmax must be infinite when expressed in macroscopic units. This
is only an upper bound,42 but leaves us with no reason to expect the continuum
limit of equation (27) to satisfy causality, if the continuum limit exists at all. This
conclusion is correct: the next section shows that the continuum version of (26)
does not satisfy causality.

42Footnote ?? in section 17
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19 Testing the intuition, part 2

In two-dimensional spacetime, the heat equation is

∂ϕ

∂t
= α

∂2ϕ

∂x2
, (30)

with constant α > 0. The lattice model studied in the previous section is a dis-
cretization of this. Equation (30) does not have any maximum speed, even though
its lattice version does (equation 28). To see that the heat equation (30) does not
have any finite maximum speed, consider the function

ϕ(t, x) =
1√
t

∫ ∞
−∞

dy f(y) exp

(
−(x− y)2

4αt

)
. (31)

This function satisfies the heat equation (30) for all t > 0, because the left- and
right-hand sides of (30) are both equal to

1√
t

∫ ∞
−∞

dy f(y) exp

(
−(x− y)2

4αt

)(
− 1

2t
+

(x− y)2

4αt2

)
.

To deduce what happens at t = 0, use these properties:

• As t→ 0, the exponential factor in (31) approaches zero whenever x− y 6= 0,
so the function f(y) in the integrand might as well be replaced with f(x) in
that limit.

• If the function f(y) is replaced with f(x), then the integral is independent of
t. (The proof is easy: just change the integration variable y to absorb both
x and t.) Most importantly, this shows that the limit t→ 0 is finite.

Altogether, this shows that (31) satisfies the heat equation (30) with the initial
condition ϕ(0, x) ∝ f(x). Now suppose that ϕ(0, x) is nonzero only within a finite
interval, say

ϕ(0, x) = f(x) =

{
1 if − 1 < x < 1,

0 otherwise.
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Even with this initial condition, the solution (31) is nonzero for all −∞ < x <∞
as soon as t > 0. This is clear from the fact that the integrand is positive for all
x whenever t > 0. This shows that the heat equation (30) does not satisfy the
causality principle: a disturbance in one location immediately affects the solution
in all other locations. The effect in distant locations may be very small, but this
article is concerned with strict causality, so any nonzero effect counts.
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20 The emergence of isotropy

The reasoning in section 17 suggests that equation (2) has a finite maximum speed
for any V , assuming that the lattice model (18) reproduces (2) in the continuum
limit. However, the maximum speed deduced using that reasoning is only an upper
bound. It can’t be a tight bound. The reason is simple: when D ≥ 2, equation
(2) has rotation symmetry, but the lattice model (18) does not. In particular, the
maximum speed in equation (2) is isotropic (the same in all directions), but the
maximum speed in equation (18) is not. If equation (2) emerges from (18), then
this discrepancy must resolve itself somehow. On the other hand, if equation (2)
doesn’t emerge from (18), then we would have no reason to expect this discrepancy
to resolve itself. If computer calculations with the lattice model show a tendency
for the maximum speed to become isotropic, then this is evidence that the lattice
model does reproduce (2) in the continuum limit.

The results shown below were generated with a computer,43 using the D = 2
version of the lattice equation (18) to propagate the field forward in time, starting
with a configuration that is zero everywhere except at a single point. The pictures
show a tendency for the field’s magnitude to be concentrated within a (growing)
circle, even though equation (18) only strictly constrains it to a (growing) diamond-
shaped region that contains the circle. This tendency for an isotropic speed limit to
emerge is what we would expect if the lattice model reduces to the original equation
of motion (2) in the continuum limit. Otherwise, we would have no reason to expect
such isotropy to emerge. In that sense, these computer results may be regarded as
evidence (not proof) that the lattice model has a continuum limit consistent with
the original equation of motion (2) even when V 6= 0.

Each picture on the left shows a contour plot of the field’s magnitude after Nt

time steps, using the values of β, V , and Nt indicated in the figure’s title. The
dashed red diamond is the boundary of the set of points that can be reached from
the center in Nt steps. The dashed blue circle has radius Nt

√
β, the significance of

which is explained below. Each picture on the right shows a slice along a canonical

43The source code is posted here: https://cphysics.org/extras/98038a.html
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axis, to show how quickly the (natural log of the) field’s magnitude decreases beyond
the radius Nt

√
β.

All three pairs of pictures use V ∝ φ4, which makes the equation of motion (2)
nonlinear. The first two pairs of pictures use β = 0.3, with V > 0 and V < 0,
respectively. The third pair of pictures uses β = 0.5, which is the maximum value
of β allowed by the CFL stability condition (24).
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These pictures show that the field’s magnitude tends to be concentrated inside
a circle of radius Nt

√
β, even though points outside of this circle (but inside the

diamond) can be reached from the center in Nt steps. This is significant because it
is consistent with the emergence of an isotropic maximum speed as the continuum
limit is approached, if such a limit exists at all. If such a limit didn’t exist, then
we would have no reason to expect isotropy to emerge, so these pictures can be
regarded as evidence that a continuum limit does exist, even when the equation of
motion is nonlinear and even when V doesn’t have a lower bound.

The radius Nt

√
β can be explained intuitively. The factor of β in equation (18)

affects the number of time steps that are needed in order to accumulate a significant
effect at the point x, given a disturbance that occurred at the origin. Decreasing
the value of β increases the number of time steps that are needed. (Example: if
β ≪ 1, then a large number of time-steps would be needed even just to accumulate
a significant effect at the origin’s nearest neighbors.) Assuming that an isotropic
continuum limit exists, the region in which the field’s magnitude is significant
should approach an isotropic shape (a circle when D = 2) when Nt increases. For
a given value of Nt, the intuition just described says that the radius of this circle
should be an increasing function of β. To quantify this, we can use dimensional
analysis: the only increasing function of β that is proportional to Nt and has the
correct dimensions is ∝ Nt

√
β. To fix the proportionality factor, consider the case
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β = 1: in this case, equation (18) says that each time step carries the field’s
magnitude as-is from one point in space to the next, so the proportionality factor
should be 1. Altogether, this intuition suggests the radius inside which the field’s
magnitude can be significant should be Nt

√
β. This is consistent with the pictures

shown above.
To test this intuition, we can ask whether it’s consistent with the CFL condition

(section 16). Choose some point x in the spatial lattice, and let Nx denote the
minimum number of spatial-lattice-steps needed to reach the point Nx, starting
from the origin. According to equation (18), a disturbance at the origin can affect
the field at x if and only if the number Nt of time steps is Nt ≥ Nx. For the case
D = 2, the boundary of this region is indicated in the pictures by the dashed red
diamond. Along a canonical axis, the maximum distance that can be reached in
Nt steps is Nt, expressed in units of εx. Along a diagonal (same number of steps in
each of the D spatial dimensions), the pythagorean theorem says that the maximum
distance that can be reached in Nt steps is Nt/

√
D, because the Nt steps must be

divided equally among the D dimensions. This is a strict bound, independent of
the value of β, but the intuition in the preceding paragraph suggests that the effect
at x can be significant out to a radius Nt

√
β. That intuition assumed the existence

of an isotropic continuum limit, so the existence of an isotropic continuum limit
should be expected only if this β-dependent radius complies with the strict bound.
This gives

Nt

√
β ≤ Nt/

√
D ⇒ β ≤ 1

D
,

which is precisely the CFL condition that was derived rigorously in section 16, so
the intuition that was used in the previous paragraph passes this test.

Altogether, the computer results shown in this section may be regarded as
evidence (not proof) that equation (2) satisfies causality for any V , even if V
doesn’t have a lower bound.44 This complements the evidence given in section 3,
which was limited to the case V ≥ 0, and it’s consistent with the evidence given in
section 12.

44Stability is a separate issue, as illustrated in section 4.
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21 Huygen’s principle in various dimensions

The previous sections were all focused on the principle of causality, which is a
statement about what can(not) happen outside a region’s light cone. For extra
fun, this section mentions something interesting about what happens inside the
light cone when V = 0 in equation (2).

When V = 0, equation (2) reduces to the wave equation. In three-dimensional
space (D = 3), the wave equation satisfies Huygen’s principle.45 Precise state-
ments of the principle are given in Balakrishnan (2004a) and in theorem 5.8 of
Ben-Artzi (2015). Here’s a rough translation: a wave equation satisfies Huygen’s
principle if a pulse remains a pulse – if a configuration of the field that is initially
confined to a tiny region of space remains confined to a tiny neighborhood of that
region’s light cone, without leaving any “residue” deeper inside the light cone.

Huygen’s principle depends on D, the number of dimensions of space, in an
interesting way. The calculations reviewed in Balakrishnan (2004a) and Balakr-
ishnan (2004b) show that Huygen’s principle holds only for D ∈ {3, 5, 7, 9, ...}.
In other words, it holds only when the number of dimensions of space is odd and
no less than three. For other values of D, a pulse does not remain a pulse: as it
propagates, it leaves a residue of nonzero magnitude inside the light cone.

45The name Huygen’s principle seems to be used inconsistently, for at least two related-but-different things. The
version I’m highlighting here is sometimes called the Strong Huygen’s principle.
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