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The Action Principle
in Classical Electrodynamics

Randy S

Abstract The action principle for fields was introduced
in article 11475. This article introduces the action principle
for electrodynamics in flat spacetime.
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1 Review of the equations of motion

Maxwell’s equations and the Lorentz force equation are introduced in articles 31738
and 54711. This article uses the same notation and conventions, but using upper-
case for the functions that describe the particle’s worldline.

The electromagnetic (EM) field is represented by the Faraday tensor, whose
components are denoted Fab(x). The Faraday tensor is antisymmetric, which
means

Fab(x) = −Fba(x). (1)

The relationship between Fab and E,B is described in article 31738.
Maxwell’s equations can be written as two equations. The first equation1

∂[aFbc] = 0 (2)

does not depend on a metric field. The second equation

∂aF
ab = −J b (3)

does depend on a metric field, which is assumed here to be the Minkowski metric.
The J on the right-hand side accounts for charges and currents.

Now consider a pointlike spin-0 particle of mass m and charge q. The particle’s
worldline can be described by specifying its coordinates as functions of its proper
time: xa = Xa(τ). The particle’s behavior is governed by the Lorentz force
equation

dpc

dτ
=

q

m
pa Fab

(
X(τ)

)
ηbc (4)

where ηab are the components of the Minkowski metric, and

pa ≡ m
dXa

dτ
. (5)

The relationship between the current density J and the particle’s coordinates X
will be addressed later in this article.

1 Square brackets around indices indicate complete antisymmetrization.
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2 The gauge field

Spacetime as we know it is topologically trivial: it can be completely covered by
a single coordinate system.2 In this case, the pair of equations (1) and (2) is
equivalent to the single equation

Fab(x) = ∂aAb(x)− ∂bAa(x), (6)

where A is called the gauge field.3 Using the gauge field, electrodynamics can be
formulated in terms of an action principle with a local lagrangian. The gauge field
is not uniquely determined by Fab, because the combination (6) is invariant under
the gauge transformation

Aa(x)→ Aa(x) + ∂aθ(x) (7)

for any function θ(x). This shows that the electromagnetic field Fab can represented
by a gauge field in many different ways, called different gauges.

Physical predictions do not depend on which gauge we use. In physics, part of
the task of specifying any model is to specify how the formalism relates to the real
world – that is, which things represent observables. Observables for the EM field
are invariant under gauge transformations (7).

One mathematical consequence of gauge invariance is that Maxwell’s equations
cannot completely determine the future of the gauge field. To see this, consider any
configuration A of the gauge field. By choosing θ(x) to be zero everywhere except
within a bounded region R of spacetime, we obtain another configuration A′ that
is equal to A everywhere except within R. Even if we specify A everywhere in the
past of R, Maxwell’s equations cannot determine the behavior of the gauge field in
R. They do determine the behavior of F , but A′ and A both give the same F , so
Maxwell’s equations cannot completely determine the behavior of the gauge field.

2 General relativity encourages us to consider other possibilities, but we’ll ignore those possibilities here.
3 In a model where spacetime has nontrivial topology, we would need to cover the spacetime manifold with

topologically trivial patches, using a representation of the form (6) within each patch and using transition functions
to describe how the patches are related to each other.
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3 The action

In classical electrodynamics, the dynamic variables are:

• The electromagnetic field, represented in terms of a gauge field Aa.

• One or more charged particles, each represented in terms of a worldline Xa(λ)
parameterized by λ. The parameterization is arbitrary: λ is not necessarily
the particle’s proper time.

With a single charged particle, the action is

S = SA + SX + SXA (8)

with this notation:

• SA includes all terms that depend on A but not on X,

• SX includes all terms that depend on X but not on A,

• SXA includes all terms that depend on both X and A.

Explicitly, the field-only part of the action is

SA = −1

4

∫
dD+1x FabF

ab (9)

with Fab given by (6). The gauge field is a function of the D+ 1 spacetime coordi-
nates, collectively denoted by a lowercase x. (Uppercase X denotes the particle’s
worldline.) The particle-only part of the action is

SX = −m
∫
dλ

√
ẊaẊa. (10)
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An overhead dot denotes a derivative with respect to the parameter λ. The inter-
action part of the action is

SXA = q

∫
dλ ẊaAa

(
X(λ)

)
. (11)

In terms of the action, the equation of motion for the gauge field is

δS

δAb(x)
= 0, (12)

and the equation of motion for the particle is

δS

δXb(λ)
= 0. (13)

Equations (12) and (13) are studied in sections 5 and 6, respectively.
The generalization to multiple charged particles is straightforward: for each

particle, the action has one term of the form SX and one term of the form SXA.
Each particle may have a different mass m and charge q. The equation of motion
for the nth particle is

δS

δXb
n(λ)

= 0,

where Xa
n(λ) are the coordinates along the nth particle’s worldline. Instead of

carrying the extra index n to distinguish between different particles, this article
considers only the single-particle case.
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4 Invariance properties of the action

The action shown above has three invariance properties:

• Lorentz invariance,

• reparameterization invariance,

• gauge invariance.

Article 00418 addresses Lorentz invariance. Reparameterization invariance
means that the action does not depend on how the particle’s worldline is parame-
terized. If the parameterization is changed by regarding the old parameter λ as a
function of a new parameter λ′, then SA is obviously unaffected (because it doesn’t
involve the particle’s worldline at all), and the other two terms also retain the same
form because

dλ = dλ′
dλ

dλ′
dXa

dλ
=
dλ′

dλ

dXa

dλ′
,

so all of the factors of dλ/dλ′ and dλ′/dλ cancel each other. (The square-root in
SX is essential for this.) Gauge invariance means that the action is invariant
under the transformation

Aa → Aa + ∂aθ (14)

for any function θ(x) that approaches a constant at infinity. The term SA is gauge-
invariant because Fab is, and the term SXA is gauge-invariant because the effect of
the gauge transformation (14) on SXA is

δSXA =

∫
dλ Ẋa∂aθ(X) =

∫
dλ θ̇

(
X(λ)

)
.

If θ(x) approaches the same constant at infinity in all directions in spacetime, then
the integral of the derivative is zero. The action is invariant under these gauge
transformations.
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5 Equations of motion from the action, part 1

This section focuses on the equation of motion for the gauge field – equation (12).
The term SX does not depend on the gauge field, so it does not contribute to that
equation. The remaining terms have different structures: SA is an integral over all
of the spacetime coordinates, and SXA is an integral over the worldline’s parameter
λ. To make the action principle easier to handle, we can start by writing both
terms the same way, as integrals over all of the spacetime coordinates, like this:

SA =

∫
dD+1x LA(x) SXA =

∫
dD+1x LXA(x)

with4

LA(x) = −1

4
Fab(x)F ab(x) (15)

LXA(x) = Ja(x)Aa(x) (16)

Ja(x) ≡ q

∫
dλ Ẋa δD+1

(
x−X(λ)

)
. (17)

Now, just like in article 49705, the action principle leads to the Euler-Lagrange
equation

∂a
δL

δ∂aAb(x)
=

δL

δAa(x)
(18)

with L = LA + LXA. Use equations (15) and (16) in (18) to recover equation (3),
where now the current density J in that equation is given by (17).

The metric-independent equation of motion (2) is already implied by equation
(6): instead of coming from the action principle, it comes from the relationship of
Fab to the gauge field, which is the independent entity in the action principle.

4 In the multi-particle version of the model, equation (17) is Ja(x) =
∑

n qn
∫
dλ Ẋa

n δ
D+1

(
x−Xn(λ)

)
.
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6 Equations of motion from the action, part 2

This section focuses on the equation of motion for the particle – equation (13). For
this, we can leave the other terms SX and SXA in their original form, as integrals
over the paramter λ along the particle’s worldline. The term SA does not depend
on the particle’s worldline X(λ), so it doesn’t contribute to the particle’s equation
of motion (13). Equation (13) leads to the Euler-Lagrange equation

d

dλ

δL

δẊb(λ)
=

δL

δXb(λ)
(19)

where now L = LX(λ) + LXA(λ), with LX(λ) and LXA(λ) being the integrands of
equations (10) and (11), respectively. The variational derivatives are

δL

δẊb(λ)
= −m Ẋb

(ẊcẊc)1/2
+ qAb

(
X(λ)

)
δL

δXb(λ)
= qẊa∂bAa

(
X(λ)

)
.

Use these together with the identity

Ȧb

(
X(λ)

)
= Ẋa∂aAb

(
X(λ)

)
in the Euler-Lagrange equation to get the equations of motion for the particle:

m
d

dλ

Ẋb

(ẊcẊc)1/2
= qẊa(λ)Fab

(
X(λ)

)
. (20)

After choosing the worldline parameter λ to be the particle’s proper time τ so that
(ẊcẊc)

1/2 = 1, this becomes the Lorentz force equation (4).
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7 The stress-energy tensor

The (Hilbert) stress-energy tensor is defined by5

T ab(x) ≡ −2√
| det g|

δS

δgab(x)
. (21)

To use the definition (21), the action introduced in section 3 needs to be generalized
to an arbitrary metric gab. The generalization is

S = SA + SX + SAX (22)

with

SA = − 1

4

∫
dNx

√
| det g|gabgcdFacFbd

SX = −m
∫
dλ

√
gabẊaẊb

SXA = q

∫
dλ ẊaAa(X(λ)).

The term SXA does not involve the metric tensor, so only SA and SX contribute to
the stress-energy tensor (21). The contribution from SA can be worked out using
the identities shown in article 11475, and the result is shown in article 32191. The
contribution from SX is calculated in article 41182. Altogether, the result is

T ab =
1

4
ηabF cdFcd − F acF b

c +m

∫
dτ ẊaẊb δ4

(
x−X(τ)

)
after specializing to the Minkowski metric.6

5 Article 11475 introduces the Hilbert stress-energy tensor, and article 32191 explains its relationship to the
canonical stress-energy tensor – the one associated with translation symmetry via Noether’s theorem (in flat space-
time).

6 We can choose a specific metric after calculating the variational derivative in the definition (21).
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8 Non-relativistic approximation

The non-relativistic Lorentz force equation can be derived in either of two ways: by
applying the non-relativistic approximation directly to the Lorentz force equation,
as in article 54711, or by applying the non-relativistic approximation to the action
and then using the action principle. This section uses the second approach.

Use the notation

X ≡ (X1, X2, ..., XD)

A ≡ (A1, A2, ..., AD).

In the action shown in section 3, the particle’s worldline is parameterized by an
arbitrary parameter λ. As explained in section 4, the action is invariant under
reparameterizations. To facilitate the nonrelativistic approximation, we can take
the parameter λ to be the “time” coordinate t ≡ x0. Then SX and SXA (equations
(10) and (11)) become

SX = −m
∫
dt
√

1− Ẋ2 (23)

SXA = q

∫
dt (A0 + Ẋ ·A) (24)

because Ẋ0 = 1 in this parameterization. (An overhead dot denotes a derivative
with respect to the time coordinate t.) The quantities A0 and A in the integrand
are evaluated at the point on the particle’s worldline specified by the parameter t.

The non-relativistic approximation applies when all of the particles’ velocities
are much less than the speed of light (which is 1 in the units assumed here), so

Ẋ2 � 1. (25)

In this approximation, we can use√
1− Ẋ2 ≈ 1− 1

2
Ẋ2
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to get the approximate action7

Snonrel =

∫
dt Lnonrel Lnonrel =

Ẋ2

2
+ qẊ ·A + qA0 + const. (26)

Requiring that x(t) satisfy the condition of stationary action δSnonrel/δX = 0 gives
the Euler-Lagrange equation

d

dt

δLnonrel

δẊ
=
δLnonrel

δX
.

Use
δLnonrel

δẊ
= mẊ + qA

δLnonrel

δXj
= qẊ · (∇jA) + q∇jA0

and
d

dt
A =

∂

∂t
A + Ẋ · ∇A

to reduce the Euler-Lagrange equation to

mẌj = q(Ej +BjkẊ
k)

with8

E ≡ ∇A0 −
∂

∂t
A Bjk ≡ Fjk.

For D = 3, this reduces to

d

dt
v =

q

m
(E + v ×B) (27)

v ≡ Ẋ B ≡ (B23, B31, B12) = ∇×A.

This agrees with the result derived in article 54711 for the nonrelativistic approx-
imation to the Lorentz force equation. Equation (27) is exact in the context of
the model defined by the action (26), because in this approach the nonrelativistic
approximation is already built into the action (26).

7 Unlike the original action (10)-(11), the action (26) is not reparameterization-invariant. That’s okay, because
we have already chosen the worldline parameter to be the “time” coordinate, and we won’t need to change this.

8 With this sign convention, A0 is the negative of the traditional electric potential V .
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