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’t Hooft Operators
from GNO Configurations

Randy S

Abstract Quantum models with gauge fields typically include observables called
Wilson operators and ’t Hooft operators. These operators are nominally
localized on lower-dimensional submanifolds of spacetime, in the same sense that
electric and magnetic field operators are nominally localized at individual points
in spacetime. This article introduces a type of ’t Hooft operator that is nominally
localized on a (d−3)-dimensional closed submanifold Γ in d-dimensional spacetime,
treating spacetime as discrete to make the math clear. The gauged group G can
be any compact connected Lie group. The operators are constructed by modifying
the action in a tubular neighborhood of Γ so that the path integral is dominated by
configurations of the gauge field the approach a prescribed GNO configuration
near Γ. The GNO configuration is based on a specially chosen connection for a
principal G-bundle. Article 49708 explains how to construct the G-bundle and the
connection and explains the reason for the name GNO.
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1 Introduction

Article 22721 gives an overview of Wilson and ’t Hooft operators, distinguishing
two different types based on the nature of the submanifold X of d-dimensional
spacetime on which the operator is nominally localized:1,2

operator notation number of type of this
dimensions of X submanifold article

Wilson, type 1 W ◦ 1 proper and neat
Wilson, type 2 W • 2 proper

’t Hooft, type 1 T ◦ d− 3 proper and neat X
’t Hooft, type 2 T • d− 2 proper

Article 22721 reviews the motivation for considering these operators and explains
the meaning of the last column.

Other articles in this series describe Wilson operators of type 1 (article 89053)
and ’t Hooft operators of type 2 (article 82508). Those operators are natural even
when spacetime is discretized, in the sense that their constructions don’t involve any
arbitrary choices beyond those that were already made when discretizing spacetime.
This article describes the other type of ’t Hooft operator (type 1).3 In this case,
the construction involves additional arbitrariness that goes away only near the
smooth-spacetime limit for d ∈ {3, 4}.4

This article uses the path integral formulation. Spacetime is discretized so the
construction is unambiguous.5 The gauged group G can be any compact connected
Lie group.

1In this article, “nominally localized on X” means “localized in an arbitrarily small neighborhood of X.”
2The names type 1 and type 2 and the superscripts ◦ and • are not standard.
3Disclaimer: I have not found any other accounts of these operators in discrete spacetime.
4The construction requires choosing a tubular neighborhood τ of the submanifold on which the operator is

nominally localized (section 5). In the smooth-spacetime limit, the width of τ goes to zero in physical units.
5Currently, the only known well-defined nonperturbative constructions of nonabelian Yang-Mills models in 4-

dimensional spacetime involve discretizing space or spacetime.

3



cphysics.org article 93302 2025-11-14

2 Notation and conventions

This section summarizes some of the notation and conventions that will be used in
this article.

• G is a compact connected Lie group.

• The speed of light and ~ are both equal to 1. Aside from ~ = 1, the units
convention is the same as in article 26542.

• d is the number of dimensions of spacetime.

Spacetime is discretized as described in article 46333. The smooth spacetime man-
ifold M is partitioned into d-dimensional polyhedra called d-cells, whose boundary
is made of (d − 1)-cells, and so on. The names point, link, and plaquette are
synonyms for 0-cell, 1-cell, and 2-cell, respectively. Each k-cell can be endowed
with either of two orientations.6 The model uses only the discrete structure,
but some things will be described by referring to the underlying smooth manifold
M because this simplifies the descriptions. This article doesn’t try to define the
smooth-spacetime limit precisely, but the idea is to make ε approach zero in
physical units, where ε is a representative distance between neighboring points in
discrete spacetime.

The path integral is an integral over G-valued link variables u(`), one for
each link ` in discrete spacetime, subject to u(`−1) = (u(`))−1 where `−1 is the
orientation-reversed version of `. The collection of link variables constitutes the
gauge field. A plaquette variable with basepoint x is the G-valued quantity
defined by

u(x,2) ≡
∏
`∈2

u(`)

where the factors in the product are ordered sequentially around the perimeter of
the oriented plaquette 2, starting with the given basepoint x (which must be one

6Article 46333 reviews what this means.
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of the plaquette’s corners). This is discrete-spacetime version of a holonomy. The
normalized trace of a plaquette variable is the complex-valued quantity

w(2) ≡
trace

(
u(x,2)

)
trace(1G)

(1)

where 1G is the identity element of G and the trace is defined using a faithful
representation of G. The trace makes w(2) independent of the basepoint x.

This article is about the definition and basic properties of a type of ’t Hooft
operator localized on a closed (d− 3)-dimensional manifold Γ of spacetime.7 Such
an operator will be denoted T ◦(Γ). Article 22721 explains the superscript ◦. The
construction involves quantities û(`) and û(x,2) that will be defined in section 8.
They are prescribed G-valued quantities, and the construction is designed so that
the path integral near the smooth-spacetime limit is dominated by configurations
of the gauge field with u(x,2) ≈ û(x,2).

When an operator (a linear operator on the Hilbert space) is constructed by
modifying the integrand of the path integral, the modification can have important
properties that would be lost if we thought of it as nothing more than a linear
operator on the Hilbert space.8 In the literature about higher-form symmetries,
the word operator is often used for the thing with those additional properties, not
reduced to a mere linear operator on the Hilbert space.9 This article uses the word
operator in that more liberal sense.10

7If the spacetime manifold M has a boundary ∂M , then Γ may have a boundary ∂Γ contained in ∂M , but for
simplicity this article assumes Γ is a closed manifold (compact and boundaryless).

8Article 02242
9Sometimes the word defect is used instead.

10Article 09181 uses a special notation to distinguish between two different versions of = (equality), one that
accounts for the additional properties and one that does not. That distinction is less important in this article
because T ◦(Γ) is not a topological operator.
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3 The path integral

The path integral has the form11

Ψ′[u]t′ ∝
∫
<t′

[du] eiS[u]Ψ[u]t (2)

where

• Ψ and Ψ′ are the initial and final states,

• [u]t denotes the set of link variables whose endpoints are both at time t,

• the integral is over of the link variables that have at least one endpoint in the
range ≥ t and < t′ (with no more than one endpoint at time t′),

• each link variable is integrated over the gauged group G.

Section 4 will list the properties of the action S[u] that are important in this article.

11Article 89053
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4 Important properties of the action

The properties of the action S[u] that will be important in this article include:12

• It depends on link variables u(`) only through traced plaquette variables
w(2).13

• It is a sum of terms that each depends on only one traced plaquette variable:

S[u] =
∑
2

c(2)
(
1− w(2)

)
(3)

where c(2) are fixed complex-valued coefficients. This allows for Wick rota-
tion to a euclidean action.14

• When the overall coefficient of S is large, the path integral is dominated
by configurations of the link variables that come close15 to minimizing the
euclidean action.

12The Wilson action introduced in article 89053 has these properties.
13This implies that S[u] is invariant under gauge transformations.
14Article 89053
15How close is a detail that won’t be addressed here. The goals here are to give precise definitions in discrete

spacetime and to give intuition about the continuum limit, not to give precise results about the continuum limit.
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5 Where the path integral will be modified

The operators introduced in this article are constructed by modifying the action (3)
in a neighborhood τ of a closed (d−3)-dimensional submanifold Γ of d-dimensional
spacetime. This section describes the neighborhood τ . Section 9 will describe how
the path integral is modified within τ .

Choose a closed (d − 3)-dimensional submanifold Γ ⊂ M of the d-dimensional
spacetime manifold M , and let τ denote a tubular neighborhood16 of Γ. The recipe
in section 9 for modifying the path integral inside τ assumes that the action S in
equation (2) is the only thing in the path integral that depends on link variables
in τ , so the neighborhood τ should be treated as a keep-out zone:17 it should
not intersect the initial time, the final time, or the localization regions of any other
operators in the same path integral. The size of τ in directions size transverse
to Γ will be called its thickness. Its thickness should be large compared to the
discretization scale. In the smooth-spacetime limit, its thickness should diverge
compared to the discretization scale but should become infinitesimal in physical
units.

16Article 53600 defines tubular neighborhood.
17Article 02242
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6 Prescribed configuration in smooth spacetime

The ’t Hooft operator T ◦(Γ) will be defined by modifying the action (3). The mod-
ification is such that the smooth-spacetime limit of the path integral is dominated
by configurations of the gauge field the approach a prescribed configuration near
Γ. Article 49708 describes the prescribed configuration in smooth spacetime. This
section gives a brief review.

Define τ as in section 5, and consider a principal U(1)-bundle over τ \Γ for which
the net flux on any 2-sphere linked with Γ (with a given orientation) is 2π.18,19,20

Arbitrarily close to Γ, this condition on the flux implies that the field strength
necessarily becomes arbitrarily large, but we should choose the connection to keep
the field strength elsewhere small in units of 1/ε.21,22 We can do that by choosing a
connection that minimizes the euclidean action in τ , subject to the constraint that
the connection is consistent with the given principal G-bundle.23

Now let G be any compact connected Lie group. Every such group G has at least
one subgroup isomorphic to U(1). Let ρ : U(1) → G be a homomorphism whose
image is such a subgroup.24 Article 49708 shows that ρ converts a connection on
a principal U(1)-bundle to a connection on a principal G-bundle. Applying this to
the connection described in the previous paragraph gives the G-bundle connection
that will be used to construct the ’t Hooft operator T ◦ρ (Γ) in section 9.

18The flux is the integral of the field strength 2-form over the specified surface.
19The existence of such a bundle depends on the topology of τ \ Γ (article 36626).
20In a principal U(1)-bundle, the set of possible values for the net flux on a 2-sphere is discrete (article 36626).

With the units adopted in section 2, the minimum nonzero magnitude for the net flux on an oriented 2-sphere is 2π.
21Section 2 defines ε.
22If the field strength were allowed to violate this condition, then every principal U(1)-bundle on the underlying

smooth spacetime would be consistent with the given configuration of the gauge field in discrete spacetime (article
11617).

23Minimizing the euclidean action gives the (euclidean) classical Yang-Mills equation of motion for the gauge
field (article 49708). Using the euclidean action (instead of lorentzian) for this seems natural because the path
integral near the smooth-spacetime limit is dominated by configurations that minimize the euclidean action. The
concept of a connection does not depend on the spacetime metric, so once a connection has been chosen (even if a
metric-dependent criterion is used), it may be used with any spacetime metric.

24The image of any homomorphism ρ : U(1)→ G is either a subgroup isomorphic to U(1) or the trivial subgroup
consisting of only one element (the identity element).
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7 Example: G = U(1)

This section uses the case G = U(1) to illustrate two of the concepts that were
mentioned in section 6.

First, consider the concept of choosing a connection that minimizes the eu-
clidean action in τ . Take spacetime to be 3-dimensional, so Γ is 0-dimensional
(a finite set of points). If Γ is a single point, then τ is a ball around that point.
The euclidean action in τ has the form ∼

∫
τ F

2. The 2-form F is determined by
a connection on a principal U(1)-bundle, so the action also is a function of that
connection, not a function of an arbitrary 2-form. This enforces

∫
F = 2πk with

k ∈ Z. Suppose the euclidean spacetime metric has spherical symmetry. Then, for
a given k, minimizing the euclidean action subject to the constraint

∫
F = 2πk

would give F 2 =constant on each 2-sphere with constant radius from the point Γ.
This illustrates the general idea that configurations which minimize the euclidean
action have a field strength that is small in units of 1/ε at distances � ε from Γ.

Next, consider the concept of a homomorphism ρ : U(1) → G. When G =
U(1), any integer n gives a homomorphism ρ : U(1)→ G that maps each element
g ∈ U(1) to gn ∈ U(1), and every homomorphism from U(1) to itself has this form.
We could denote the ’t Hooft operator as T ◦n(Γ) in this case, but this article uses
the notation T ◦ρ (Γ) because it works for any compact connected group G.25

25We could use a list of r integers to label the ’t Hooft operator, where r is the rank of the Lie group G. Article
49708 explains how that works. Article 92035 defines the rank of a Lie group. The group U(1) has rank 1, so a single
integer is sufficient when G = U(1).
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8 Prescribed configuration in discrete spacetime

The ’t Hooft operator T ◦(Γ) will be defined by modifying the action (3). The mod-
ification is such that the smooth-spacetime limit of the path integral is dominated
by configurations of the gauge field the approach a prescribed configuration near Γ.
Section 6 described the prescribed configuration in smooth spacetime. This section
transfers it to discrete spacetime.

Let G denote the gauged group, which may be any compact connected Lie
group. Discretize spacetime as reviewed in section 2. The gauge field consists of
G-valued link variables, one for each oriented link in the lattice. Write 2 ∈ τ to
indicate that the corners of the plaquette 2 are all inside τ , and write 2 /∈ τ to
indicate that at least one of 2’s corners is not inside τ .

For each oriented link ` whose endpoints are both in τ , let û(`) denote the
element of G given by parallel transport along the link ` using the connection in
section 6. These quantities û(`) constitute the prescribed configuration of the gauge
field inside τ . It depends on a homomorphism ρ : U(1)→ G as explained in section
6, even though the notation does not explicitly indicate this dependence. For all
links with one or two endpoints outside τ , define û(`) ≡ 1G. This will enforce the
condition in section 5 about where the path integral is modified.

For each oriented plaquette 2 whose corners are all inside τ , define

û(x,2) = û(`1)û(`2) · · ·

where `1, `2, ... is the sequence of oriented links around the perimeter of 2, starting
at the corner x. For plaquettes inside τ , û(x,2) is a G-valued holonomy defined
by the prescribed configuration.

Section 9 will use the quantities û(x,2) for all plaquettes, not just those inside τ ,
to construct the ’t Hooft operators T ◦(Γ). Remember that û(x,2) = 1G whenever
the corners of 2 are all outside τ .

11
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9 ’t Hooft operators in path integrals

Let |2| denote the number of points in the plaquette 2.26 Let û(x,2) denote the
quantities defined in section 8, and define27

ŵ(x,2) ≡
trace

(
u(x,2)

(
û(x,2)

)−1
)

trace(1G)
(4)

and

ŵ(2) ≡ 1

|2|
∑
x∈2

ŵ(x,2). (5)

The ’t Hooft operator T ◦
ρ (Γ) is defined by replacing the action (3) with

Ŝ[u] =
∑
2

c(2)
(
1− ŵ(2)

)
. (6)

Sections 10-11 will show that the operator defined by this modification of the path
integral is gauge invariant even though the modified action (6) is not.28

Section 12 will show that near the smooth-spacetime limit, the path integral is
dominated by configurations with u(x,2) ≈ û(x,2).29 Section 15 will relate this
to a common way of describing these operators when the model is imagined to be
defined directly in smooth spacetime.30

26When spacetime is discretized as described in article 46333, each plaquette is a polygon with at least three
corners, so |2| ≥ 3. In a conventional (hyper)cubic lattice, each plaquette is a square, so |2| = 4.

27If all corners of the plaquette 2 are outside τ , then û(x,2) ≡ 1G, which implies ŵ(x,2) = ŵ(2) = w(2). This
is consistent with section 5.

28The gauge invariance properties derived in sections 10-11 would hold even without the sum over basepoints. The
sum over basepoints (equation (5)) is included only to make the path integral manifestly basepoint-independent.

29We might consider an alternative definition in which the link variables u(`) for links ` inside τ are simply set equal
to û(`) (which would enforce u(x,2) = û(x,2) exactly) instead of being treated as integration variables. Section 18
will explain why that alternative definition doesn’t quite work as desired.

30The word imagined is used here because such a definition is never actually given, at least not when dim = 4 and G
is nonabelian, but that imagined model is believed to emerge in the smooth-spacetime limit of the discrete-spacetime
model used here. Article 07611 reviews one of the reasons for this belief.
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10 Gauge invariance, part 1

This section shows that, despite appearances, the operator defined in section 9 is
invariant under gauge transformations of the prescribed quantities û, even though
the modified action (6) is not. Notation:

• Let t1 be the initial time and t2 the final time. The difference t2 − t1 may be
large compared to the lattice time-step.

• Let û be the prescribed quantities û(`) defined in section 8 for links in τ .
Thanks to the conditions on τ in section 5, none of these links have any
endpoints at times t1 or t2.

• Let uk denote the set of spacelike link variables whose endpoints are both at
time tk.

• Let u denote the set of all link variables over which the path integral inte-
grates. This includes u1 but not u2.

• Let Ψ be a gauge invariant initial state.

• Let µ denote the factor eiŜ that replaces the eiS in equation (2).

The path integral produces the final state

Ψ′[u2, û] ∝
∫

[du] µ[u2, û, u]Ψ[u1]. (7)

The notation for the final state allows for the possibility that it depends on the
prescribed values û, but we will show that it is actually independent of those values.
The modified action Ŝ (and therefore the function µ) is invariant if the same gauge
transformation is applied to the link variables (u and u2) and to the prescribed
quantities û:

µ[u
(h)
2 , û(h), u(h)] = µ[u2, û, u]. (8)

Choose a G-valued gauge transformation function h(x) that is trivial at the initial
and final times, so h(x) = 1 whenever x is at time t1 or t2. This does not restrict

13
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the effect of the gauge transformation on û because τ does not intersect the initial
time.31 Use a superscript (h) to denote the result of applying a gauge transforma-
tion to a link variable u(`) or to a prescribed quantity û(`). With that notation,
the calculation is easy:

Ψ′[u2, û
(h)] ∝

∫
[du] µ[u2, û

(h), u]Ψ[u1] (equation (7))

∝
∫

[du] µ[u
(h−1)
2 , û, u(h−1)]Ψ[u1] (equation (8))

∝
∫

[du] µ[u
(h−1)
2 , û, u]Ψ[u

(h)
1 ] (shift invariance of Haar measure)

∝
∫

[du] µ[u2, û, u]Ψ[u1] (h(x) = 1 if x is at time t1 or t2)

= Ψ′[u2, û] (equation (7)).

This shows that the operator defined in section 9 is actually invariant under gauge
transformations of the prescribed quantities û, even though the modified action (6)
not.

31Section 5
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11 Gauge invariance, part 2

This section shows that an operator defined by shifting the values of some plaque-
tte variables (section 9) really is a linear operator on the Hilbert space of gauge
invariant states: it maps each gauge invariant initial state to a gauge invariant
final state. This is probably not surprising given the result that was derived in
section 10, and the steps used in that derivation could be adapted to derive the
result asserted here. This section uses a different approach, starting with a general
lemma that is not tied to the specific construction in section 9. Notation:

• Let t1 be the initial time and t2 the final time, and suppose that the difference
t2 − t1 is a single step in the spacetime lattice.

• Let uk denote the set of spacelike link variables whose endpoints are both at
time tk.

• Let u0 denote the set of timelike link variables that each have endpoints at
both times t1 and t2.

• Let µ be a gauge invariant function of the link variables.

• Let Φ be any function of the link variables u1. It might not be gauge invariant.

The path integral produces the final state

Ψ′[u2] ∝
∫

[du0][du1] µ[u0, u1, u2]Φ[u1]. (9)

Let u(h) denote the result of applying a gauge transformation to each link variable:
u(x, y) → h(x)u(x, y)h−1(y). Choose the G-valued gauge transformation function
h(x) to have support only at time t2, so h(x) = 1 whenever x is not at time t2. The

15
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fact that µ is gauge invariant implies that the final state is also gauge invariant:

Ψ′
[
u

(h)
2

]
∝
∫

[du0][du1] µ
[
u0, u1, u

(h)
2

]
Φ[u1] (equation (9))

=

∫
[du0][du1] µ

[
u

(h−1)
0 , u

(h−1)
1 , u2

]
Φ[u1] (µ is gauge invariant)

=

∫
[du0][du1] µ[u0, u1, u2]Φ

[
u

(h)
1

]
(shift invariance of Haar measure)

=

∫
[du0][du1] µ[u0, u1, u2]Φ[u1] (h(x) = 1 if x is at time t1)

= Ψ′[u2] (equation (9)).

This result says that time evolution automatically produces a gauge invariant state
after a single time-step, even if the initial state was not gauge invariant.

That lemma clearly implies that the operator defined in section 9 maps gauge
invariant initial states to gauge invariant final states, because we can take the
function Φ to be the result of starting with a gauge invariant initial state Ψ at
some earlier time t < t1 and evolving it forward to time t1 using a path integral
in which some of the plaquette variables at times t < t1 are shifted. The lemma
derived above says that the final state Ψ′ is gauge invariant, so the operator defined
in section 9 really is an operator on the Hilbert space of gauge invariant states even
though the modified action is not gauge invariant.32

32Article 07611 uses essentially the same lemma to show that the expectation value of an untraced product of link
variables is proportional to the expectation value of the product’s trace.
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12 Configurations near the smooth-spacetime limit

The path integral integrates over all values of every link variable. In other words,
it integrates over all configurations of the gauge field, where configuration means
an assignment of specific values to the link variables. This section shows that near
the smooth-spacetime limit, the path integral is dominated by configurations that
approach the prescribed configuration û near Γ.

To take the smooth-spacetime limit of the path integral, some amount of Wick
rotation must be used.33 Then magnitude of the quantity eiS[u] in equation (2) is
e−f [u] where f [u] is proportional to the euclidean action.34 If the integrand of the
path integral includes an ’t Hooft operator as described in section 9, then33

f [u] ∝
∑
2

∑
x∈2

(
1− ŵ(x,2) + ŵ∗(x,2)

2

)
(10)

with a positive proportionality factor, where ŵ is defined by (5). Near the smooth-
spacetime limit, the factor e−f [u] implies that the path integral is dominated by
configurations of the gauge field that are close to minimizing (10).35,36 The max-
imum possible magnitude of ŵ(x,2) is 1, and this maximum occurs only when
u(x,2) = û(x,2),37 so the path integral is dominated by configurations with

u(x,2) ≈ û(x,2) for all x,2, (11)

as long as such configurations are not too suppressed by the initial state, and section
14 will show that they are not.

Recall that û(x,2) = 1G outside τ . The neighborhood τ should be thick enough
to ensure û(x,2) ≈ 1G when approaching ∂τ from the inside. That way, the
condition (11) does not require any sudden jumps in the value of the plaquette
variables u(x,2) when crossing from one side of ∂τ to the other.

33Article 89053
34Footnote 14 in section 4
35Article 40191 reviews the reason and conditions for this.
36This statement also assumes that no operators are inserted in the integrand.
37Equation (5) and article 89053

17
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13 A possible ambiguity

The construction of T ◦(Γ) is well-defined (unambiguous), but the intepretation of
the resulting operator is potentially ambiguous.38 This interpretational ambiguity
occurs only under special circumstances in discrete spacetime – so special that
contriving such a circumstance would take some effort. This section acknowledges
the possible (though unlikely) ambiguity and explains how the smooth-spacetime
limit eliminates the ambiguity.

If all the quantities û(x,2) happen to be integer powers of some element g ∈ G
and the identity element of G is also an integer power of g, then an integer N exists
for which the Nth power of each of those plaquette-variable shifts is the identity
element. In that case, replacing ρ with ρN+1 gives the same quantities û(x,2),
even though it changes the underlying principal G-bundle in smooth spacetime.

Even though this scenario is possible, a slight perturbation of the connection39 or
of the discrete spacetime points would eliminate the ambiguity. Even without such
perturbations, we can eliminate the ambiguity in the smooth-spacetime limit by
growing the thickness of the tubular neighborhood τ of Γ without bound compared
to the discretization scale while taking the smooth-spacetime limit.40 Even if the
scenario described above happens to be realized at each value of the thickness for
some thickness-dependent value of N , this growth causes the value of N to increase
without bound,41 eliminating the ambiguity in the continuum limit. This shows
that the smooth-spacetime limit produces the desired operator T ◦ρ (Γ), not T ◦ρN+1(Γ)

for any N 6= 1, despite a possible (though exceedingly unlikely) ambiguity when
the thickness of τ is finite compared to the discretization scale.

38The potential ambiguity is in the value of it’s GNO charge, using the vocabulary reviewed in article 49708.
39Section 6
40Section 5
41This growth in N occurs because the construction in section 6 implies that the quantities û(x,2) asymptotically

approach 1G as the transverse distance of 2 from Γ increases compared to the discretization scale.

18
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14 Initial states in the smooth-spacetime limit

Section 12 assumed that the initial state does not suppress configurations that sat-
isfy (11). To show that this assumption is correct, recall42 that τ doesn’t intersect
the time of the initial state, so equation (4) and the definition of û(x,2) in section
8 say that terms in the action involving link variables at the initial time are not
modified. Physically meaningful states have close to the minimum possible energy,
where close is compared to 1/ε,43 so the relationship between the hamiltonian (en-
ergy operator) and the euclidean action44 implies that any physically meaningful
initial state is mostly supported on configurations satisfying (11). This shows that
physically meaningful initial states do not suppress those configurations.

42Section 5
43Section 2 defines ε.
44Article 89053
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15 The singularity as a characteristic feature

The smooth-spacetime limit of T ◦(Γ) would not be well-defined (as an ordinary
operator on the Hilbert space) without the help of some kind of smearing to alleviate
the singular behavior of the field strength near Γ.45 The region over which the
singularity is smeared can be arbitrarily small in physical units, though, so the
behavior of the field arbitrarily close to Γ can still be used as a way of characterizing
T ◦(Γ). This characterization is commonly used when spacetime is not discretized:
it is “defined” by requiring the gauge field variables in the path integral to approach
a prescribed singularity on Γ.46

Operators defined by inserting a function of the field variables into the inte-
grand of the path integral are sometimes called order operators, and operators
defined by requiring the field variables in the path integral to approach a prescribed
singularity are sometimes called disorder operators.47,48 An ’t Hooft operator of
the type constructed in this article is an example of a disorder operator.

45Article 10690 shows that the smooth-spacetime limit of a Wilson operator W ◦(C) would be ill-defined without
smearing.

46Kapustin (2006), section 3.2; Kapustin and Witten (2007), section 6.2; Gomis et al (2009), section 2
47Kapustin and Witten (2007), section 6.2
48This distinction between order and disorder operators might be ambiguous, because section 1 in Kapustin (2006)

suggests that the idea of using prescribed singularities to characterized operators nominally localized on lower-
dimensional submanifolds of spacetime is not limited to operators like T ◦ whose “singularity can be detected from
afar for topological reasons.” (Article 40191 explains how T ◦ can be detected that way.)
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16 Avoiding singularities elsewhere

The construction in section 9 modifies the path integral by prescribing the config-
uration of the gauge field inside the tubular neighborhood τ of Γ. In the smooth-
spacetime limit, the prescribed configuration becomes singular on Γ. Singularities
elsewhere can be avoided if the principal U(1)-bundle in τ \Γ can be extended to a
principal U(1)-bundle everywhere in M \Γ, where M is the spacetime manifold. To
demonstrate that this condition can be satisfied, article 36626 constructs examples
of nontrivial principal U(1)-bundles over M \ Γ for various pairs (M,Γ).
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17 Principal G-bundles and the path integral

Section 15 mentioned one of the ways T ◦ is often described, namely by making
the gauge field approach a prescribed singularity on Γ. It is also often described
another way, namely excising the interior of the neighborhood τ from spacetime and
imposing GNO monopole boundary conditions on its boundary ∂τ .49,50,51,52 Either
way, the smooth-spacetime limit of the path integral notionally includes53 a sum
over connections and bundles compatible with the specified conditions, whether on
the boundary of an excised region or asymptotically close to the singularity.54,55

49Article 02242 describes a way of thinking about quantum field theory that naturally accommodates this way of
describing an operator.

50Examples: Argyres and Ünsal (2012), text before equation (2.26); Harlow and Ooguri (2021), text around
equations (2.89)-(2.91); Witten (1997a), text below equation (2.21)

51Figure 6.2 in Atanasov (2018) depicts this (for 3-dimensional spacetime).
52Section 3.1 in Kapustin (2006) describes an example of an operator localized on a line in a scalar CFT and

explains that it can also be described either as a prescribed singularity in the fields along the line or using prescribed
boundary conditions on a neighborhood of the excised line.

53Article 11617
54The text after equation (2.30) in Argyres and Ünsal (2012) says, “Inserting this magnetic probe operator in the

path integral means that we should integrate over all gauge fields with the boundary condition (2.26)...”
55Witten (1997a) hints at this in the text below equation (2.21).
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18 Why not freeze the link variables in τ?

As an alternative to the construction in section 9, we might consider constructing
the ’t Hooft operator T ◦(Γ) by setting the link variables u(`) equal to û(`) for links
` inside τ instead of integrating over them. For reference in this section, this will be
called the freezing construction, because it freezes the values of the link variables
in τ . The freezing construction clearly isn’t equivalent to the original construction
in section 9 when spacetime is discrete, but equation (11) suggests that it can
achieve a similar effect in the smooth-spacetime limit. The freezing construction
also seems consistent with the idea mentioned in section 17 where T ◦(Γ) is defined
by excising a neighborhood of Γ from spacetime and constraining the behavior of
the field on the boundary of the excised region.

When the homomorphism ρ : G → U(1) described in section 6 is nontrivial,
the freezing construction seems to work as desired. The derivation in section 10 of
invariance under gauge transformations of û still holds if the quantity denoted û
in that section is reinterpreted as the fixed values of the link variables in τ . The
derivation in section 11 still holds just as it is.

When ρ is the trivial homomorphism ρ : U(1) → 1G, though, the freezing ap-
proach doesn’t quite work as desired. The operator T ◦ρ (Γ) should reduce to the iden-
tity operator when ρ is trivial. The construction in section 9 clearly has this prop-
erty,56 but the freezing construction does not, not even in the smooth-spacetime
limit. To confirm that it doesn’t have that property in the smooth-spacetime limit,
consider 4-dimensional spacetime, and consider a slightly deformed version Γ′ of Γ
such that Γ′ is still inside τ but doesn’t intersect Γ. The identity operator doesn’t
modify the integrand of the path integral in τ , so it allows the holonomy around
Γ′ to differ from 1G. This is true even in the smooth-spacetime limit because small
differences between u(x,2) and û(x,2) = 1G that are allowed by equation (11)
can accumulate around the loop Γ′.57 In contrast, the freezing construction forces

56This is clear because û(x,2) = 1G when ρ is trivial (section 8).
57In the smooth-spacetime limit, the size of the loop Γ (and therefore of Γ′) becomes arbitrarily large compared to

the discretization scale, so this accumulation can still occur even though the approximation (11) becomes arbitrarily
good.
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the holonomy around Γ′ to be equal to 1G, and taking the smooth-spacetime limit
cannot change this. This shows that if T ◦ρ (Γ) were constructed using freezing, then
it would not reduce to the identity operator when ρ is trivial.

Compared to the freezing construction, the construction in section 9 also has
another advantage: it still works as desired when charged matter fields are added to
the model. The freezing construction doesn’t, at least not without making it more
complicated. In the freezing construction, the kinetic terms for the matter fields
wouldn’t be gauge invariant if the link variables in them were fixed, and if they
weren’t fixed then the euclidean action would not enforce (11) when approaching the
smooth-spacetime limit. We could try to compensate for this by fixing the values
of the matter fields inside τ , too, but that would complicate the construction.
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