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The Topology of Lie Groups:
a Collection of Results

Randy S

Abstract This article summarizes some results about
the global structure (topology) of Lie groups, including
their homotopy groups and homology groups.
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1 Some prerequisites

This article assumes that these concepts are familiar:1

• a group,

• a homomorphism from one group to another,

• an isomorphism of two groups,

• a subgroup of a group.

This article also assumes that these concepts are familiar:2

• a topological space,

• a continuous map from one topological space to another,

• a homeomorphism of two topological spaces,

• a topological manifold,

• a smooth manifold,

• a smooth map from one smooth manifold to another,

• a diffeomorphism of two smooth manifolds.

1These are reviewed in article 29682.
2These are reviewed in article 93875.
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2 Some notation

Some notation:

• R, Q, and Z are the real numbers, rational numbers, and integers.

• Zn is the integers modulo n. (Another common way to write Zn is Z/nZ.)

• R is the field of real numbers.

• Rn is n-dimensional euclidean space.

• Sn is the n-dimensional sphere, the boundary of an (n+ 1)-dimensional ball.

• RPn is n-dimensional real projective space.

• If G and H are algebraic structures (like groups), then the notation G ' H
means that G and H are isomorphic to each other.

• If X and Y are topological spaces, then X×Y is their cartesian product with
the product topology.

• Article 28539 defined ×, ⊕, and ⊗ for abelian groups.

• πk(X) is the kth homotopy group3 of a topological space X.

• Hk(X) is the kth homology group4 of a topological space X.

• Hk(X) is the kth cohomology group4 of a topological space X.

• T (G) is the torsion4 of an abelian group G.

3Article 61813
4Article 28539
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3 Some general definitions

A topological group is a group that is also a topological space and whose group
operations (multiplication and inverse) are continuous with respect to its given
topology.5 A Lie group is a topological group that is also a smooth manifold and
whose group operations (multiplication and inverse) are smooth with respect to its
given smooth structure.6

If G and H are Lie groups, then a Lie group homomorphism G→ H is both
a homomorphism (when G and H are regarded as groups) and a smooth map (when
G and H are regarded as smooth manifolds).7,8 If G → H is an ordinary group
homomorphism that is also continuous, then it is automatically smooth.9 Two Lie
groups G and H are called isomorphic to each other if they are isomorphic to
each other as groups and diffeomorphic to each other as smooth manifolds.10

A Lie subgroup of a Lie group is a subgroup that is also a Lie group and
also satisfies another condition that won’t be reviewed here.11 If a subgroup of a
Lie group is a closed subset in the topological sense, then it is automatically a Lie
subgroup and an embedded submanifold.12,13 This is called the closed subgroup
theorem. All of the subgroups used in this article will be closed.

A Lie group is called connected if it is connected in the topological sense. A
set of totally disconnected points is a boring but legitimate example of a smooth
manifold, so a discrete group is an example of a (non-connected) Lie group.14 This
article is mostly about connected Lie groups.

5Lee (2011), chapter 3, page 77; Mimura and Toda (1991), section 1.1, page 5
6Lee (2013), chapter 7, page 151; Mimura and Toda (1991), section 1.5, page 39; Fulton and Harris (1991), §7.1
7Lee (2013), chapter 7, page 153; Mimura and Toda (1991), section 1.5, page 39; Fulton and Harris (1991), §7.1
8If the category (Lie groups in this case) is understood from the context, then it may simply be called a morphism.
9Mimura and Toda (1991), chapter 1, theorem 5.16

10Lee (2013), chapter 7, page 153
11Lee (2013), chapter 7, page 156
12Lee (2013), theorem 20.12, previewed on page 161
13Even better: If G is a Lie group and H is any subgroup, then H is closed in G if and only if H is an embedded

Lie subgroup of G (Lee (2013), corollary 20.13).
14Harlow and Ooguri (2021), end of section 1.1
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4 Some generalities about compact Lie groups

Recall15 that a topological space X is called compact if any collection of open sets
that covers X includes a finite number of open sets that already cover X. A Lie
group is called compact if it is compact in the topological sense.

Every closed subgroup of a compact Lie group is compact,16 and every compact
subgroup of a Lie group is closed.17 In both cases, the subgroup is a Lie group and
an embedded submanifold.18

Group theory plays a key role in the study of symmetry, and we could also say
that symmetry plays a role in the study of group theory. Examples: every finite
group is the automorphism group of some convex polytope,19 and every compact
connected Lie group is the automorphism group (geometry-preserving group) of
some compact connected riemannian manifold.20

15Article 44113
16More generally, every closed subset of a compact space is compact (Lee (2011), proposition 4.36).
17More generally, every compact subset of a Hausdorff space is closed (Lee (2011), proposition 4.36). Every Lie

group is a smooth manifold, so every Lie group is a Hausdorff space (article 93875).
18This follows from the closed subgroup theorem (section 3).
19Chirvasitu (2008), abstract
20Chirvasitu (2008), section 1
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5 Some families of compact Lie groups

This section reviews the definitions of three families of compact Lie groups: or-
thogonal groups, unitary groups, and symplectic groups.

Let F denote any of these associative division algebras: the real numbers R, the
complex numbers C, or the quaternions H. If x ∈ F, then x∗ denotes the conjugate
obtained by reversing the signs of the non-real parts. The product xx∗ = x∗x is
always a nonnegative real number.

Let M(n,F) denote the matrix algebra in which each matrix A has components
Ajk ∈ F with j, k ∈ {1, ..., n}. Let A∗ denote the matrix obtained from A by taking
the transpose of the matrix and replacing each component by its conjugate, so the
components of A∗ are (A∗)jk ≡ (Akj)

∗. Let In denote the unit matrix in M(n,F).
The orthogonal, unitary, and symplectic groups are defined by21,22

O(n) ≡
{
A ∈M(n,R)

∣∣AA∗ = In
}
,

U(n) ≡
{
A ∈M(n,C)

∣∣AA∗ = In
}
,

Sp(n) ≡
{
A ∈M(n,H)

∣∣AA∗ = In
}
,

respectively. The integer n is called the order of the group.22 The subgroups

SO(n) ⊂ O(n) SU(n) ⊂ U(n)

are obtained by keeping only the matrices whose determinant is equal to 1. They’re
called the special orthogonal and special unitary groups, respectively. All of
the groups O(n), SO(n), U(n), SU(n), and Sp(n) are compact Lie groups.21,23

The symplectic group Sp(n) was defined here as a subgroup of M(n,H), but it
is also isomorphic (equivalent as an abstract Lie group) to a subgroup of M(2n,C).
That subgroup will be described in section 6.

21Adams (1996), chapter 1, pages 1-3
22Mimura and Toda (1991), section 1.2, pages 19 (for O,U) and 22 (for Sp)
23Mimura and Toda (1991), chapter 1, theorems 2.8 (for O,SO,U, SU) and 2.18 (for Sp)
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6 Complex Lie groups

A Lie group is a smooth manifold whose group operations are smooth. Similarly,
complex Lie group is a complex manifold whose group operations are holomorphic
functions.24 This section introduces two families of complex Lie groups, namely
O(n,C) and Sp(n,C).

Every complex Lie group is also a Lie group, but not conversely. Using complex
numbers in a matrix representation of a Lie group doesn’t make it a complex Lie
group. The groups U(n) that were defined in section 5 are not complex Lie groups:
the defining condition for a matrix to belong to U(n) involves complex conjugation,
which is not allowed for a complex Lie group.

The complex orthogonal group O(n,C) is defined by

O(n,C) ≡
{
A ∈M(n,C)

∣∣AAT = In
}
,

where AT is the transpose of A. For F = R or C, define

Sp(n,F) ≡ {A ∈M(2n,F) | ATJnA = Jn} Jn ≡
[

0 −In
In 0

]
.

The group Sp(n,R) is called the real symplectic group, and Sp(n,C) is called
the complex symplectic group.25 The groups O(n,C) and Sp(n,C) are complex
Lie groups:26 the conditions for membership in these groups do not involve complex
conjugation.27

To distinguish it from the variants defined above, the group Sp(n) that was
defined in section 5 may be called the compact symplectic group.28 That group
is isomorphic to a subgroup of Sp(n,C):25

Sp(n) ' Sp(n,C) ∩ U(2n).

24Fulton and Harris (1991), section 7.1, page 95; https://ncatlab.org/nlab/show/complex+Lie+group
25Mimura and Toda (1991), section 1.2, page 23
26Fulton and Harris (1991), section 7.2, page 97
27A matrix to belongs to O(n,C), if its inverse is equal to its transpose, so O(n,C) is a complex Lie group. A

matrix belongs to U(n) if its inverse is the complex conjugate of its transpose, so U(n) is not a complex Lie group.
28Fulton and Harris (1991), section 7.2, page 99
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7 The general structure of noncompact Lie groups

A topological space that is not compact is called noncompact. A Lie group is
called noncompact if it is noncompact in the topological sense.

Most of this article is about compact Lie groups. That focus is partly motivated
by this result: every noncompact connected Lie group G is homeomorphic to H×Rn

for some n, where H is the maximal compact subgroup of G.29,30 This implies that
G is homotopy equivalent to its maximal compact subgroup H.31 Intuitively, this
means that H holds essentially all of the topologically interesting information about
G, even though H has fewer dimensions than G.

A group is called abelian if all of its elements commute with each other. When
G is abelian, then the topology is especially simple: any connected abelian Lie
group is homeomorphic to H × Rn, where H is a torus (a cartesian product of
circles).32

Section 8 will list some examples for nonabelian Lie groups.

29Mimura and Toda (1991), section 1.4, page 36
30This is related to the Iwasawa decomposition of G.
31Article 61813 reviews the definition of homotopy equivalence.
32Mimura and Toda (1991), section 5.3, theorem 3.5; Hilgert and Neeb (2012), section 9.5, pages 337-338
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8 Examples

The groups that were defined in section 6 are not compact. These relationships
illustrate the general result that was highlighted in section 7:33,34,35

O(n,C) is homeomorphic to O(n)× Rn(n−1)/2

Sp(n,R) is homeomorphic to U(n)× Rn(n+1)

Sp(n,C) is homeomorphic to Sp(n)× Rn(2n+1).

When p and q are both ≥ 1, the indefinite orthogonal groups O(p, q) are
noncompact subgroups of O(n,C).36 Topologically,37

O(p, q) is homeomorphic to
(
O(p)×O(q)

)
× Rpq

When F is R or C, the general linear group and the special linear group are

GL(n,F) ≡
{
A ∈M(n,F)

∣∣A is invertible
}
,

SL(n,F) ≡
{
A ∈ GL(n,F)

∣∣ detA = 1
}
.

These groups are not compact. Topologically,38

GL(n,R) is homeomorphic to O(n)× Rn(n+1)/2

GL(n,C) is homeomorphic to U(n)× R(n2)

SL(n,R) is homeomorphic to SO(n)× Rn(n+1)/2

SL(n,C) is homeomorphic to SU(n)× R(n2).

33Mimura and Toda (1991), chapter 1, corollary 4.12
34The groups O(n) and O(n,C) that were defined in sections (5) and 6 are not connected, but the homeomorphism

listed here still holds when restricted to their respective connected subgroups. A similar comment applies to other
examples in this section that involve the groups O(·).

35Each of the groups SO(n), U(n), and Sp(n) is connected (Mimura and Toda (1991), chapter 1, corollary 3.12).
36These groups are defined in article 08264 and in Hilgert and Neeb (2012), section 4.3, page 74.
37Hilgert and Neeb (2012), proposition 17.2.5
38Mimura and Toda (1991), chapter 1, theorem 4.11 and corollary 4.12
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9 Normal subgroups

A normal subgroup H of a group G in one for which gHg−1 = H for all g ∈ G.
Every group G with more than one element has at least two normal subgroups,
namely the trivial group (the one-element group consisting of only the identity
element) and G itself. The concept of a normal subgroup is important because of
these results:

• H is a normal subgroup of G if and only if H is the kernel of a homomorphism
from another group into G.39

• If H is a normal subgroup of G, then a group G/H called the quotient
group may be defined.

The concept of a quotient group will be used extensively in the rest of this article.
Article 29682 reviews the definition. Intuitively, G/H is G modulo H.

If a topological group is not connected, then the connected component that
contains the identity element is a normal subgroup.40

39Article 29682 states the if part explicitly, and the only if part is implied by the quotient-group construction.
40Mimura and Toda (1991), chapter 1, theorem 1.12
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10 Simple Lie groups

When applied to a group G, the word simple can mean either of two different
things:

1. Usually, it means that G doesn’t have any normal subgroups other than the
trivial group and G itself.41

2. When G is a Lie group, it often means that G doesn’t have any connected
normal subgroups of G other than the trivial group and G itself.42,43 With
that meaning, a simple Lie group G is allowed have other normal subgroups,
but they must be discrete.

In this article, when the word simple is applied to a Lie group, it will always have
the second meaning.44 Beware that a Lie group may be simple in the second sense
even if it’s not simple in the first sense.

41Scott (1987), section 2.5
42Bredon (1972), pages 29-30
43This usage of the word simple comes from the fact that such a Lie group’s Lie algebra is simple in the sense that

it doesn’t have any nontrivial ideals (Salamon (2022), text above theorem 11.1; Hilgert and Neeb (2012), definition
12.1.15).

44This is done for the sake of consistency with the sources that will be cited.
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11 The center of a Lie group

If G is any group, the center of G is the subgroup Z(G) ⊂ G defined by this
property: h ∈ Z(G) if and only if hg = gh for every g ∈ G. Section 17 will list
the centers of some compact simply-connected Lie groups. If G is a Lie group and
Γ is any discrete subgroup of the center of G, then G/Γ is another Lie group.45

Sections 18-19 will show some examples. If G is a connected Lie group, then:

• Every discrete normal subgroup of G is contained in Z(G).46

• The center of G/Z(G) is the trivial group.47 In other words, G/Z(G) is a
centerless Lie group.48

• If Z(G) is discrete, then G/Z(G) is isomorphic to G̃/Z(G̃), where G̃ is the
universal covering group of G.49,50

If G is a compact connected Lie group, then:

• Z(G) is the kernel of the adjoint representation (not reviewed here).51

• Z(G) is finite if and only if G is semisimple.52,53

45Fulton and Harris (1991), proposition 7.10
46Fulton and Harris (1991), exercise 7.11a
47Fulton and Harris (1991), exercise 7.11b
48Examples of sources that use the name centerless include Wolf and Gray (1968a) and Wolf and Gray (1968b).
49Fulton and Harris (1991), exercise 7.12
50Article 61813 reviews the definition of universal covering space. The universal covering space G̃ of a connected

Lie group G is has a natural Lie group structure (Hilgert and Neeb (2012), corollary 9.4.7; and Mimura and Toda
(1991), chapter 2, lemma 4.5). This Lie group G̃ is called the the universal covering group or the simply-
connected covering group.

51Mimura and Toda (1991), chapter 5, theorem 4.18
52Mimura and Toda (1991), chapter 5, theorem 5.29; Borel (1955), section 18, page 426
53If G is compact and connected, then this may be used as the definition of semisimple. Section 12 will mention

another (equivalent) definition.
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12 The general structure of compact Lie groups

If G is a compact Lie group, then G is isomorphic to a closed subgroup of O(n) if n
is sufficiently large.54,55 That statement remains true if O(n) is replaced by U(n),
because O(n) is a subgroup of U(n).56

A compact connected abelian Lie group G is always a torus,57,58 which means
that it is isomorphic to a cartesian product of copies of U(1):

G ' U(1)× U(1)× · · · × U(1).

Every compact connected not-necessarily-abelian Lie group G has the form59

G =
S1 × S2 × · · · × Sm × T

Z
(1)

where the groups Sk, T , and Z satisfy these conditions:

• Each Sk is a compact, connected, simply-connected, and simple60 Lie group.

• T is a torus.

• Z is a discrete subgroup of the center of S1 × S2 × · · · × Sm × T .

If the factor T is absent, then G is called semisimple.61,62

54Mimura and Toda (1991), chapter 5, lemma 2.13 and theorem 2.14
55Example: article 86175 shows that the group Spin(n) that will be mentioned in section 15 is a subgroup of

O(2(n/2)+1) or O(2(n+1)/2) if n is even or odd, respectively.
56This should be clear from the definitions in section 5.
57Mimura and Toda (1991), chapter 5, corollary 3.6; Bröcker and tom Dieck (1985), chapter 2, section 8, page 107
58A connected abelian Lie group, whether compact or not, is isomorphic to T ×Rn for some n, where T is a torus

(Mimura and Toda (1991), chapter 5, theorem 3.5).
59Mendes (2004), text above theorem B; Bredon (1972), theorems 6.9 and 6.10; Mimura and Toda (1991), chapter

5, corollary 5.31; Fulton and Harris (1991), section 26.1, page 439
60Here, simple has the second meaning in section 10.
61Bredon (1972), text below theorem 6.9
62A not-necessarily-compact Lie group is called semisimple if its Lie algebra is semisimple (Hilgert and Neeb

(2012), definition 12.1.15).
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13 Examples

These examples illustrate equation (1):

• For n ≥ 2, SU(n) is simply-connected and simple: it has the form (1) with
T = 1 and Z = 1 and only one factor Sk, namely SU(n) itself.63

• The group U(n) is compact and connected but not semisimple:64

U(n) ' SU(n)× U(1)

Zn
.

The denominator Zn is the subgroup of SU(n) × U(1) consisting of the n
elements of the form (zI, z∗), where I is the identity matrix in SU(n) and z
is a complex number satisfying zn = 1.

• SO(n) is semisimple for all n, and it’s simple for n 6= 4 but not for n = 4.63

For n = 4, it has the form

SO(4) ' SU(2)× SU(2)

Z2
. (2)

The denominator Z2 is the subgroup of SU(2) × SU(2) consisting of (I, I)
and (−I,−I), where I is the identity element of SU(2).65

63Section 15
64Boya (1989), equation II.8
65The isomorphism (2) may be deduced using quaternions (Gallier (2023)).
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14 The rank of a Lie group

Even if a compact Lie group is semisimple, so that the torus factor in (1) is absent,
it still has a subgroup isomorphic to a torus. If G is any connected Lie group,
a subgroup that is isomorphic to a torus is called a maximal torus if it is not
contained in any larger subgroup isomorphic to a torus. The number of dimensions
(number of U(1) factors) of any maximal torus in a compact connected Lie group
G is called the rank of G.66 Examples:67

• U(n) has rank n, and the subgroup consisting of all diagonal matrices in U(n)
is a maximal torus.

• SU(n) has rank n − 1, and the subgroup consisting of all diagonal matrices
with unit determinant is a maximal torus.

• SO(2k) and SO(2k+1) both have rank k, and a maximal torus for an SO(2k)
subgroup of SO(2k+ 1) is also a maximal torus for SO(2k+ 1). An example
of a maximal torus for SO(2k) is the subgroup generated by rotations about
the origin in a fixed collection of k mutually orthogonal planes.68

If G is a compact connected Lie group, then:69

• Every element of G is contained in a maximal torus.

• All maximal tori are conjugate to each other. This means that if T and T ′

are two maximal tori in G, then T ′ = g−1Tg for some G.

66Bröcker and tom Dieck (1985), section 2.1, page 165; Mimura and Toda (1991), section 5.3, page 261 (their
assumption that G is compact and connected is established on page 257); https://ncatlab.org/nlab/show/rank+
of+a+Lie+group

67The maximal tori in these examples are given in Mimura and Toda (1991), chapter 1, equations (3.8)-(3.9).
68Bröcker and tom Dieck (1985), chapter 4, theorem 3.4
69Bröcker and tom Dieck (1985), chapter 4, theorem 1.6; Mimura and Toda (1991), chapter 5, theorem 3.15 and

corollary 3.16
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15 Compact simply-connected simple Lie groups

Every compact, connected, simply-connected, simple70 Lie group is isomorphic to
one of these:71,72,73

An ≡ SU(n+ 1) n ≥ 1

Bn ≡ Spin(2n+ 1) n ≥ 2

Cn ≡ Sp(n) n ≥ 3

Dn ≡ Spin(2n) n ≥ 4

En n ∈ {6, 7, 8}
F4

G2

The cases An, Bn, Cn, Dn are called classical Lie groups, and the others are called
exceptional Lie groups.74 The subscript in each case is the rank of the Lie group.75

For the classical Lie groups, the values n in the list are restricted because:76

• Spin(2) is isomorphic to U(1), so it’s not simple.

• Spin(3) and Sp(1) are both isomorphic to SU(2), which is already included.

• Spin(4) is isomorphic to SU(2)× SU(2), so it’s not simple.

• Sp(2) is isomorphic to Spin(5), which is already included.

• Spin(6) is isomorphic to SU(4), which is already included.77

70Here, simple has the second meaning in section 10.
71Salamon (2022), theorem 11.1; Adams (1996), chapter 1, page 10
72The fact that the groups SU(·) and Sp(·) that were defined in section 5 are simply-connected is stated in Mimura

and Toda (1991), chapter 2, theorem 4.12.
73Article 08264 explains how to construct the groups Spin(·). That construction shows that Spin(n) has a Z2

subgroup for which Spin(n)/Z2 is isomorphic to SO(n). Topologically, Spin(n) is a double cover of SO(n).
74Mendes (2004), section 1, text above theorem B
75Borel (1955), section 5; Koch (2022), near the end of section 9.11
76The first four reasons listed here are given in Salamon (2022), in the text below theorem 11.1.
77Figueroa-O’Farrill (2017), lemma 8.1; Adams (1996), proposition 5.1

18
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16 Dimensions

A Lie group is, among other things, a smooth manifold. This table lists the number
of dimensions of the smooth manifold for each of the Lie groups that was listed in
section 15:78,79

group number of
dimensions

SU(n) n2 − 1
Spin(n) n(n− 1)/2
Sp(n) (2n+ 1)n

group number of
dimensions

G2 14
F4 52
E6 78
E7 133
E8 248

The results on the left may be derived from the definitions in section 5 by working
in a neighborhood of the identity matrix I. Details:

• For A = I +B ∈ O(n),80 to first order in B, the defining condition AA∗ = I
implies that B is real and antisymmetric, so dimO(n) = n(n− 1)/2.

• For A = I + B ∈ U(n),81 to first order in B, the defining condition AA∗ = I
implies B = B0 + iB1 where B0 is a real antisymmetric matrix and B1 is a
real symmetric matrix, so dimU(n) = n(n− 1)/2 + n(n+ 1)/2 = n2.

• For A = I + B ∈ Sp(n), to first order in B, the defining condition AA∗ = I
implies B = B0 +iB1 +jB2 +kB3 where i, j, k are linearly independent square
roots of −1, B0 is a real antisymmetric matrix, and each of B1, B2, B3 is a
real symmetric matrix, so dim Sp(n) = n(n−1)/2 + 3n(n+ 1)/2 = (2n+ 1)n.

78Salamon (2022), end of section 11
79The dimensions of the exceptional Lie groups are also shown in Adams (1996), theorems 5.5 and 6.1.
80The groups Spin(n), O(n), and SO(n) all have the same number of dimensions, because Spin(n) and SO(n) are

both covering spaces of SO(n).
81The number of dimensions of U(n) is one more than the number of dimensions of SU(n).
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17 Centers

For each of the Lie groups that was listed in section 15, the next table lists a finite
abelian group that is isomorphic to (') the center of that Lie group:82,83,84

group other name center
An (n ≥ 1) SU(n+ 1) ' Zn+1

Bn (n ≥ 2) Spin(2n+ 1) ' Z2

Cn (n ≥ 3) Sp(n) ' Z2

D2k (k ≥ 2) Spin(4k) ' Z2 × Z2

D2k+1 (k ≥ 2) Spin(4k + 2) ' Z4

E6 ' Z3

E7 ' Z2

E8 trivial
F4 trivial
G2 trivial

In this table, the symbols E•, F•, and G• refer to the unique simply-connected com-
pact group with the corresponding Lie algebra. The non-simply-connected groups
E6/Z3 and E7/Z2 have the same Lie algebras as the simply-connected versions E6

and E7, respectively,85 and may sometimes be denoted by the same symbols.

82Goto and Kabayashi (1969), section 3, page 255; Bredon (1972), chapter 0, end of section 6
83The results for the Spin groups are also shown in Mimura and Toda (1991), chapter 2, theorem 4.4.
84Zk denotes the cyclic group of order k, and “trivial” means the trivial group with only one element.
85Mimura and Toda (1991), chapter 6, text above lemma 7.17
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18 Some non-simply-connected Lie groups

Let G be any of the simply-connected Lie groups listed in section 15, and let Γ
be any subgroup of the center of G. The table in section 17 shows that for two
families of classical Lie groups, Bn = Spin(2n + 1) and Cn = Sp(n), we have only
one nontrivial choice for Γ. The resulting non-simply-connected Lie groups are:

• PSp(n) ≡ Sp(n)/Z2,

• Spin(2n+ 1)/Z2 ' SO(2n+ 1).

For the groups An and Dn, we have more than one nontrivial choice for Γ. For
An and D2k+1, all of the distinct subgroups of the center have different numbers of
elements, so they must all give different quotient groups. In particular, the center
of D2k+1 = Spin(4k + 2) has one subgroup with two elements and one with four
elements (the whole center). The corresponding quotients are86

• Spin(4k + 2)/Z2 ' SO(4k + 2),

• Spin(4k + 2)/Z4 ' SO(4k + 2)/Z2.

Section 19 will address the case D2k = Spin(4k), whose center has distinct sub-
groups with the same number of elements.

86If n ≥ 3, then the center of the group SO(n) is trivial when n is odd and is isomorphic to Z2 when n is even
(Mimura and Toda (1991), chapter 2, theorem 4.10).
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19 The case Spin(4k)

The center of the Lie group Spin(4k) is Z2×Z2. The quotient by the whole center
is SO(4k)/Z2.

The center Z2×Z2 has three distinct two-element subgroups. In that situation,
this result is important:87 if X and Y are two subgroups of the center of a connected
simply-connected Lie group G, then G/X and G/Y are isomorphic to each other
if and only if X = σY for some automorphism σ of G.88 The (non-obvious) results
are:89

• If k 6= 2, then the quotient of Spin(4k) by a two-element subgroup of the
center may be either SO(4k) or something called the semispinor group,
depending on which two-element subgroup of the center is used. These two
possible outcomes are not isomorphic to each other.

• If k = 2, so that the simply-connected group is Spin(8), then each quotient
by a two-element subgroup of the center is isomorphic to SO(8).

87Goto and Kabayashi (1969), section 0
88Such an automorphism must be what is called an outer automorphism: it can’t have the form σx = gxg−1

for any g ∈ G, because gxg−1 = x for all x ∈ Z (by the definition of the center).
89Mimura and Toda (1991), chapter 2, theorem 4.15
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20 The fundamental group of a Lie group

The fundamental group π1(X) of a topological space X is the first in a series of
topological invariants called homotopy groups πk(X).90 If G is a connected Lie
group, then its fundamental group π1(G) is a finitely generated abelian group.91

Example:92

π1

(
U(1)× · · · × U(1)

)
' Z× · · · × Z
' Z⊕ · · · ⊕ Z

with equal numbers of U(1) factors and Z factors. The number of generators is the
number of factors. If G is a compact connected Lie group, then π1(G) is finite if and
only if G is semisimple,93 which essentially means that U(1) factors are absent.94

Each of the groups listed in section 17 is simply-connected, which means that
its fundamental group is trivial. By taking quotients of those groups by discrete
subgroups of their centers, we can generate Lie groups whose fundamental groups
are not trivial. If G is a simply-connected topological group and Γ is a discrete
subgroup of its center, then the fundamental group of G/Γ is isomorphic to Γ:95,96

π1(G/Γ) ' Γ if π1(G) = 0.

Examples:97,98

π1

(
SO(n)

)
= π1

(
Spin(n)/Z2

)
' Z2 if n ≥ 3

π1

(
SU(n)/Zn

)
' Zn.

90Article 61813
91Hilgert and Neeb (2012), corollary 14.2.10
92Article 61813
93Mimura and Toda (1991), chapter 5, theorem 5.29
94Section 12 defined semisimple.
95Mimura and Toda (1991), chapter 2, theorem 4.8
96Duivenvoorden and Quella (2013) describe a similar relationship to the cohomology group H2(G/Γ, U(1)).
97Mimura and Toda (1991), chapter 2, theorem 4.12 (for SO(n))
98The SU(n)/Zn example is used in Nash (1983), section 3.
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21 Higher homotopy groups

For k ≥ 2, the homotopy groups πk(·) of SU(n), SO(n), and Spin(n) are determined
by those of U(n) and O(n) through these isomorphisms:99,100

πk(U(n)) ' πk(SU(n)) for k ≥ 2

πk(O(n)) ' πk(SO(n)) for k ≥ 1 (3)

πk(Spin(n)) ' πk(SO(n)) for k ≥ 2.

The homotopy groups πk(·) with k = 2 and k = 3 are easy to summarize:101

• If G is a compact connected Lie group, then π2(G) = 0.

• If G is a compact connected simple Lie group, then π3(G) ' Z.

The rest of this section lists some results for k ≥ 4.
This table lists the first few homotopy groups of some classical Lie groups,

excluding some cases covered by the isomorphisms listed in section 15:102

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8

πk(Sp(1)) Z Z2 Z2 Z12 Z2 Z2

πk(Sp(n)), n ≥ 2 Z Z2 Z2 0 Z 0
πk(U(3)) Z 0 Z Z6 0 Z12

πk(U(4)) Z 0 Z 0 Z Z24

πk(U(n)), n ≥ 5 Z 0 Z 0 Z 0
πk(O(7)) Z 0 0 0 Z Z2 ⊕ Z2

πk(O(8)) Z 0 0 0 Z⊕ Z Z2 ⊕ Z2 ⊕ Z2

πk(O(9)) Z 0 0 0 Z Z2 ⊕ Z2

πk(O(n)), n ≥ 10 Z 0 0 0 Z Z2

99Mimura and Toda (1991), section 4.6, pages 216, 218, and 219
100If G is a Lie group and Z is a discrete subgroup of its center, then πk(G/Z) ' πk(G) for all k ≥ 2 (article 61813).
101Mimura and Toda (1991), chapter 6, theorem 4.17; Friedman et al (1997), introduction to section 7
102Mimura and Toda (1991), section 4.6, table 4.2, after correcting a presumed typographical error (in the second

row, the book says “πk(Sp(2)), n ≥ 2” instead of “πk(Sp(n)), n ≥ 2”)
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Here are some results for the exceptional Lie groups:103

πk(G2) = 0 for 3 < k < 6 π6(G2) ' Z3

πk(F4) = 0 for 3 < k < 8 π8(F4) ' Z2

πk(E6) = 0 for 3 < k < 9 π9(E6) ' Z
πk(E7) = 0 for 3 < k < 11 π11(E7) ' Z
πk(E8) = 0 for 3 < k < 15 π15(E8) ' Z.

The homotopy groups πk(X) consist of homotopy classes of maps from Sk into X,
and the rotation group O(n) may be viewed as a group of symmetries of the unit
sphere Sn−1 in n-dimensional euclidean space, so these results may be of interest:104

πn−1(O(n)) ' Z⊕ Z n mod 8 ∈ {0, 4}
πn−1(O(n)) ' Z⊕ Z2 n mod 8 = 2 but n 6= 2

πn−1(O(n)) ' Z n mod 8 = 6

πn−1(O(n)) ' Z2 ⊕ Z2 n mod 8 = 1 but n 6= 1

πn−1(O(n)) ' Z2 n mod 8 ∈ {3, 5, 7} but n /∈ {3, 7}
π2(O(3)) = π6(O(7)) = 0.

103Mimura and Toda (1991), chapter 6, theorem 7.12 and remark 7.12′ (for G2 and F4), theorem 7.19 (for E6 and
E7), and theorem 7.15 (for E8).
104Mimura and Toda (1991), section 4.6, corollary 6.14, using equation (3)
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22 Stable homotopy groups

The homotopy groups πk(O(n)), πk(U(n)), and πk(Sp(n)) become independent of
n when n is large enough compared to k, specifically when

k < d(n+ 1)− 2

with d = 1, 2, 4 for O(n), U(n), and Sp(n), respectively.105 The same statement is
expressed in symbols like this:106

πk
(
O(n)

)
' πk

(
O(n+ 1)

)
for k < n− 1

πk
(
U(n)

)
' πk

(
U(n+ 1)

)
for k < 2n

πk
(
Sp(n)

)
' πk

(
Sp(n+ 1)

)
for k < 4n+ 2.

These are called stable homotopy groups. Explicitly:107

k mod 8 πk
(
O(n)

)
πk
(
U(n)

)
πk
(
Sp(n)

)
1 ≤ k < n− 1 1 ≤ k < 2n 1 ≤ k < 4n+ 2

0 Z2 0 0
1 Z2 Z 0
2 0 0 0
3 Z Z Z
4 0 0 Z2

5 0 Z Z2

6 0 0 0
7 Z Z Z

The fact that the pattern repeats as a function of k is called Bott periodicity.108

105Mimura and Toda (1991), section 4.6, page 216
106Mimura and Toda (1991), section 2.3, corollary 3.17
107Mimura and Toda (1991), section 4.6, table 4.1 and theorem 6.2
108Hatcher (2001), example 4.55
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23 Real homology groups

The real homology groups109 of a compact connected Lie group G are same as those
of a product of odd-dimensional spheres:110

Hj(G;R) ' Hj(S
n1 × · · · × Snr ;R) for all j, (4)

where r is the rank of the Lie group. The sphere-dimensions n1, ..., nr for the Lie
groups listed in section 15 are summarized in these tables:111,112,113

n1, ..., nr
SU(n) 3, 5, 7, ..., 2n− 1
Sp(n) 3, 7, 11, ..., 4n− 1
SO(2k + 1) 3, 7, 11, ..., 4k − 1
SO(2k) 3, 7, 11, ..., 4k − 5, 2k − 1

n1, ..., nr
G2 3, 11
F4 3, 11, 15, 23
E6 3, 9, 11, 15, 17, 23
E7 3, 11, 15, 19, 23, 27, 35
E8 3, 15, 23, 27, 35, 39, 47, 59

In each case, the number of integers in the list is the rank of the group, and the
sum of the integers in the list is the number of dimensions of the group. In the
case SO(2k), the last integer in the list, namely 2k − 1, doesn’t follow the pattern
of the preceding integers. Examples (for all j):114

Hj

(
SO(4);R

)
' Hj

(
S3 × S3;R

)
Hj

(
SO(6);R

)
' Hj

(
S3 × S7 × S5;R

)
.

109Article 28539 reviews the concept of a homology group.
110Boya (2002), section 2
111Boya (1989), equations I.1, I.2, I.3, I.4, IV.1; Coleman (1958), page 354. The SO(·) cases are also in Hatcher

(2001), §3.D, p 300
112These results also apply when the compact simply connected Lie group G is replaced by G/Γ, where Γ is any

discrete subgroup of the center of G (theorem 6 in Pontrjagin (1939), using the definition of Betti number reviewed
in article 28539).
113The cases F4 and E6,7,8 each have a symmetry in the differences between consecutive nks: the first difference is

the same as the last difference, the second difference is the same as the second-to-last difference, and so on. This is
sometimes called a capicua symmetry (Boya (2002), section 3.1).
114Boya (1989), equation III.11
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24 Limitations of real homology groups

Section 23 listed some results for homology groups with coefficients in the field R
of real numbers. Most compact connected Lie groups G are not homeomorphic
to a cartesian product of spheres, even though they have the same real homology
groups. Examples:

• if n ≥ 3, then SU(n) is not homeomorphic to a cartesian product of spheres.115

• SO(3) and SO(4) are homeomorphic to RP3 and S3 × RP3, respectively,116

and RP3 is not homeomorphic to a sphere.

• SO(5) is not homeomorphic to the cartesian product of any two compact
manifolds with dimensions ≥ 1.117

Homology with coefficients in the group Z of integers carries additional information
about the Lie group’s topology, called torsion.118 Sections 25-26 will review some
results about torsion for compact connected Lie groups. Article 28539 shows that
if M is a cartesian product of spheres, then Hk(M ;Z) does not have torsion, so
Lie groups whose homology groups have torsion cannot be homeomorphic to a
cartesian product of spheres. In particular, each of the SO(n) examples listed
above has torsion. The homology groups of SU(n) don’t have torsion, though,
so in that case even the homology groups with coefficients in Z fail to detect the
difference between the topology of SU(n) and the topology of S3×S5×· · ·×S2n−1

when n ≥ 3.

115Borel (1955), section 18, page 426
116Hatcher (2001), section 3.D, page 294
117Hatcher (2001), section 3.E, page 309
118Article 28539
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25 Torsion

Here are some results about torsion for compact Lie groups:119,120

• SU(n) does not have p-torsion for any p ≥ 2.

• Sp(n) does not have p-torsion for any p ≥ 2.

• If n ≥ 3, then SO(n) has p-torsion if p = 2 but not for any p ≥ 3.121

• If n ≤ 6, then Spin(n) does not have p-torsion for any p ≥ 2.122

• If n ≥ 7, then Spin(n) has p-torsion if p = 2 but not for any p ≥ 3.

• G2 has p-torsion for p = 2 but not for any p ≥ 3.

• F4, E6, and E7 each have p-torsion for p = 2 and p = 3 but not for any p ≥ 5.

• E8 has p-torsion for p = 2, p = 3, and p = 5, but not for any p ≥ 7.

119Kumpel (1965), page 1351 (for the exceptional groups only); Borel (1955), section 11 (except for a discrepancy
in the case F4)
120Most of the cases in the list are covered by Mimura and Toda (1991), chapter 7, theorems 5.11 and 5.12 and

the intervening text, and the other cases have their own footnotes. The results in Mimura and Toda (1991) actually
refer to p-torsion in the cohomology groups, but they also apply to the homology groups because of a relationship
that will be highlighted in section 29 (equation (17)).
121The lack of p-torsion for any p ≥ 3 is proposition 3D.3 in Hatcher (2001). Sections 26-28 will cover p = 2.
122This follows from the isomorphisms listed at the end of section 15 together with the fat that SU(n) and Sp(n)

don’t have 2-torsion for any n.
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26 Torsion in SO(n): inputs

Section 25 mentioned that SO(n) has 2-torsion for all n ≥ 3. This section gathers
inputs that may be used to determine which specific homology groups of SO(n)
have 2-torsion. Sections 27-28 will work through two examples.

One input is the complete result123 for Hk(M ;Z) whenever M is a cartesian
product of spheres. In particular, that result shows that Hk(M ;Z) does not have
torsion for any k. Another input is a relationship between Hk(M ;Z) and Hk(M ;Z2)
that holds whenever Hk(M ;Z) does not have 2-torsion for any k, namely123

Hk(M ;Z2) ' Hk(M ;Z)⊗ Z2. (5)

Another input is the identities123

Z⊗ Z2 ' Z2 Z2 ⊗ Z2 ' Z2. (6)

Another input is this result for the homology groups with coefficients in Z2:
124

Hk

(
SO(n);Z2

)
' Hk(M(n);Z2) (7)

with M(n) ≡ S1 × S2 × · · · × Sn−1. The universal coefficient theorem123 implies
that Hk(SO(n);R) becomes the non-torsion part of Hk(SO(n);Z) after replacing
each R with Z. The homology groups of a cartesian product of spheres don’t have
torsion,123 so the results in section 23 give

Hk

(
SO(n);Z

)
' Hk

(
M ′(n);Z

)
⊕ T

(
Hk

(
SO(n);Z

))
, (8)

where M ′(n) is the product of spheres specified in section 23 and T (G) is the torsion
part of G. Another special case of the universal coefficient theorem says123

Hk

(
SO(n);Z2

)
'
(
Hk

(
SO(n);Z

)
⊗ Z2

)
⊕
(
T
(
Hk−1

(
SO(n);Z

))
⊗ T (Z2)

)
. (9)

Sections 27-28 will use these inputs to determine H2(SO(n)) and H3(SO(n)).
123Article 28539
124Hatcher (2001), text above theorem 3D.2
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27 Example: from H1(SO(n);Z) to H2(SO(n);Z)
This section starts with a result for H1(SO(n);Z) and then uses it to derive a result
for H2(SO(n);Z).

For n ≥ 3, section 20 says π1(SO(n)) ' Z2. Use this in the Hurwicz isomor-
phism theorem125 to get the result for H1(SO(n);Z):

H1

(
SO(n);Z

)
' Z2 for n ≥ 3. (10)

With M(n) defined as in section 26, a result from article 28539 gives

H2

(
M(n);Z

)
' Z for n ≥ 3.

Use this in equation (5) together with the first identity in (6) to get

H2

(
M(n);Z2

)
' Z2 for n ≥ 3.

Use this in (7) to get

H2

(
SO(n);Z2

)
' Z2 for n ≥ 3.

Use this and equations (6) and (10) in (9) to get

Z2 '
(
H2

(
SO(n);Z

)
⊗ Z2

)
⊕ Z2 for n ≥ 3,

which implies
H2

(
SO(n);Z

)
⊗ Z2 = 0 for n ≥ 3. (11)

We already know that SO(n) doesn’t have p-torsion for any prime p 6= 2 (section
25), so (6) and (11) give the final result126

H2

(
SO(n);Z

)
= 0 for n ≥ 3. (12)

125Article 28539
126This is consistent with (8).
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28 Example: from H2(SO(n);Z) to H3(SO(n);Z)
This section uses the result for H2(SO(n);Z) from section 27 to derive a result for
H3(SO(n);Z).

With M(n) and M ′(n) defined as in section 26, a result from article 28539 gives

H3

(
M(n);Z

)
'

{
Z if n = 3,

Z⊕ Z if n ≥ 4
H3

(
M ′(n);Z

)
'

{
Z⊕ Z if n = 4,

Z if n 6= 4.
(13)

Use the first of these in equation (5) together with the first identity in (6) to get

H3

(
M(n);Z2

)
'

{
Z2 if n = 3,

Z2 ⊕ Z2 if n ≥ 4.

Use this in (7) to get

H3

(
SO(n);Z2

)
'

{
Z2 if n = 3,

Z2 ⊕ Z2 if n ≥ 4.

Use this and equations (6) and (12) in (9) to get

Z2 ' H3

(
SO(n);Z

)
⊗ Z2 if n = 3,

Z2 ⊕ Z2 ' H3

(
SO(n);Z

)
⊗ Z2 if n ≥ 4, (14)

which implies that H3(SO(n);Z) must be isomorphic to one of these:

Z or Z2 if n = 3,

Z⊕ Z or Z⊕ Z2 or Z2 ⊕ Z2 if n ≥ 4.

To determine which one it is, we can use the second of equations (13) in (8) to get

H3

(
SO(n);Z

)
'

{
Z⊕ Z⊕ (torsion, if any) if n = 4,

Z⊕ (torsion, if any) if n 6= 4.
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Combine this with (14) to get the final result127

H3

(
SO(n);Z

)
'


Z if n = 3,

Z⊕ Z if n = 4,

Z⊕ Z2 if n ≥ 5.

(15)

This shows that H1(SO(3);Z) is not the only one of SO(n)’s homology groups that
has torsion, at least when n ≥ 5.128

127The cases n = 3 and n = 4 may be checked using the homeomorphisms SO(3) ' RP3 and SO(4) ' S3 × RP3

(section 24), the homology groups of Sn and RPn (article 28539), and the Künneth formula (article 28539).
128I haven’t found an independent check of the result for n ≥ 5, so beware of possible mistakes.

33



cphysics.org article 92035 2025-01-26

29 Cohomology rings

The information that homology groups Hk(M ;Z) convey about the topology of a
manifold M can be repackaged into cohomology groups,129 denoted Hk(M ;Z).
These can be combined and promoted to a cohomology ring,129 denotedH∗(M ;Z),
or more generally H∗(M ;R) where R is the ring of coefficients. Cohomology rings
can convey more information than cohomology groups, but here the cohomology
rings will be regarded only as a way of packaging the collection of cohomology
groups. This section lists some cohomology rings of classical compact Lie groups
and then reviews how to extract the corresponding cohomology groups.

Using some new notation that will be deciphered below,130 here are a few ex-
amples of cohomology rings:131,132,133

H∗(U(n);Z) = Λ(e1, e3, ..., e2n−1)

H∗(SU(n);Z) = Λ(e3, e5, ..., e2n−1) (16)

H∗(SO(n);R) =

{
Λ(e3, e7, ..., e2n−3) for n odd,

Λ(e3, e7, ..., e2n−5, en−1) for n even

Each ej denotes an element with grade j. Each cohomology ring is generated
by a list of elements with the specified grades. This means that every element
of H∗(M ;R) is a linear combination (with coefficients in R) of products of the
specified elements ej. The symbol Λ says something about which products are
nonzero (more about this below). The grade of a product is the sum of the grades
of the factors. The kth cohomology group Hk(M ;R) consists of the elements with

129Article 28539
130I’ll give just enough information about the notation to explain how (16) encodes the collection of cohomology

groups, without trying to be thorough.
131Mimura and Toda (1991), chapter 3, corollary 3.11 (for U , SU , and Sp) and corollary 3.15 (for SO)
132The corresponding results for the exceptional groups with coefficients in R are given by Mimura and Toda (1991),

chapter 6, theorem 5.10 with the help of equation 5.1.
133The analog of footnote 112 in section 23 holds for cohomology rings, too: if two compact connected Lie groups

are locally isomorphic, then they have isomorphic cohomology rings with coefficients in R (Chevalley and Eilenberg
(1948), theorem 15.3; Mimura and Toda (1991), chapter 6, lemma 5.2).
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grade k. If no nonzero products of the ejs have grade k, then Hk(M ;R) = 0. If one
of the products of the ejs is such that all elements with grade k are proportional to
it, then Hk(M ;R) ' R. If two products of the ejs are such that all elements with
grade k are linear combinations of them, then Hk(M ;R) ' R⊕R, and so on.

Λ(a, b, c, ...) is standard notation for the exterior algebra generated by a, b, c, ...,
with coefficients in whatever ring R is specified on the left-hand side of equations
(16).134 Here, the important things to know about Λ(a, b, c, ...) are that the only
nonzero products of the generators a, b, c, ... are those with no repeated factors,
like a and ab and abc, and that changing the order of the factors only changes the
product’s overall sign (or doesn’t change anything at all).

Using that information, the cohomology groups Hk(M ;R) may be extracted
from the cohomology rings listed above.

The sequences of subscripts in equations (16) match the sequences of sphere-
dimensions in section 23. That can be explained by this relationship between
homology groups and cohomology groups, which holds whenever the homology
groups are finitely generated, as they are for any compact manifold M :135

Hk(M ;Z) ' (non-torsion part of Hk(M ;Z))

⊕ (torsion part of Hk−1(M ;Z)). (17)

When R is used for the coefficients instead of Z, this reduces to136

Hk(M ;R) ' Hk(M ;R).

Article 28539 reviews a general result that gives the homology groups Hk(M ;Z)
when M is any cartesian product of spheres. Those homology groups don’t have
torsion, so equation (17) says that they’re isomorphic to the cohomology groups
Hk(M ;Z). This can be confirmed by comparing the cohomology groups extracted
from equations (16) to the homology groups that were described in section 23,
using the result reviewed in article 28539 for the homology groups of a product of
spheres.
134Hatcher (2001), example 3.13
135Article 28539
136Mimura and Toda (1991), chapter 3, equation 1.8
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30 A brief note about Lie algebras

Every Lie group has an associated Lie algebra. Conversely, every finite-dimensional
Lie algebra is isomorphic to the Lie algebra of exactly one simply-connected Lie
group G, and every other Lie group whose Lie algebra is isomorphic to this one is
a quotient of G by a discrete subgroup of its center.137

If G is a Lie group, then its Lie algebra L(G) is the space of vectors tangent to
G at the identity element of G, equipped with an algebraic structure related to the
group structure of G. Knowing the tangent space at one point of a smooth manifold
doesn’t tell us anything about the manifold’s topology except for the number of
dimensions, but a Lie algebra tells us much more than this, thanks to its algebraic
structure. The result quoted in the first paragraph above shows that as an abstract
Lie algebra, L(G) doesn’t (quite) know everything about G’s topology138 but that
it does know much more than just the number of dimensions. This is possible
because every connected topological group is generated by a neighborhood of the
identity element.139 In particular, every Lie group – whether simply-connected or
not – is generated by a neighborhood of the identity element.140

Representations of a connected simply-connected Lie group G are in one-to-
one correspondence with representations of its Lie algebra.141 Other Lie groups
whose Lie algebras are isomorphic to L(G) lack some of those representations.142

This difference in the set of representations can sometimes be used to distinguish
between different Lie groups with isomorphic Lie algebras in contexts where the
global structure of the Lie group is not directly visible.143,144

137Fulton and Harris (1991), section 8.3, page 119; Lee (2013), theorems 20.21 and 21.32
138Examples: the Lie groups U(1) and R have isomorphic Lie algebras but are topologically distinct, and the Lie

groups SO(3) and Spin(3) have isomorphic Lie algebras but are topologically distinct.
139Mimura and Toda (1991), chapter 1, theorem 1.12
140Fulton and Harris (1991), exercise 8.1
141Fulton and Harris (1991), section 8.1, page 109
142One famous example of this is the fact that Spin(3) has a “spin 1/2” representation and SO(3) does not.
143Tong (2017)
144A compact topological group can be reconstructed from its category of representations. This is called Tannaka-

Krein duality (Bröcker and tom Dieck (1985), chapter 3, section 7).
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