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A Quick Review of Differential Forms
and Stokes’s Theorem

Randy S

Abstract This article very briefly reviews some basic definitions and facts about
differential forms that are used by other articles in this series, including Stokes’s
theorem and the definition of the Hodge dual (also called the Hodge star).
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1 Introduction

To motivate the subject of this article, I’ll quote the first page of Tao (2020), slightly
reformatted:

The concept of integration is of course fundamental in single-variable
calculus. Actually, there are three concepts of integration which appear
in the subject:

• the indefinite integral...

• the unsigned definite integral...

• the signed definite integral...

These three integration concepts are of course closely related to each
other in single-variable calculus... When one moves from single-variable
calculus to several-variable calculus, though, these three concepts begin
to diverge significantly from each other. ...the signed definite integral
generalises to the integration of forms...

The last sentence in the quote is referring to differential forms, the subject of
this article. This article briefly reviews some basic definitions and facts about
differential forms that are used by other articles in this series.1

Section 9 is an exception: it reviews a concept that generalizes the unsigned
definite integral instead.

1Chapters 14-16 in Lee (2013) introduce the subject more completely.
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2 Differential forms

Differential forms live on smooth manifolds2 that may have boundaries.3 For any
integer m ≥ 1, an m-form is a map that takes m vector fields as input, returns a
single scalar field as output,4 is linear in each of its inputs, and is antisymmetric
with respect to permutations of its inputs.5 Special cases:

• A zero-form is just a scalar field (an ordinary function whose domain is the
manifold).

• A one-form is a linear map whose input is a vector field and whose output
is a scalar field.

• A two-form ω is an antisymmetric linear map whose input is a pair of vector
fields v1, v2 whose output ω(v1, v2) is a scalar field. Antisymmetric means
ω(v1, v2) = −ω(v2, v1).

When m doesn’t need to be specified, an m-form is also called a differential form.
The integer m is called the degree of the differential form.

A linear combination of m-forms is still an m-form, even if the coefficients are
functions: if ω1, ω2, ... are all m-forms (with the same degree m) and f1, f2, ... are
ordinary real- or complex-valued functions on the manifold, then

∑
k fkωk is also

an m-form.

2Article 93875 reviews the concept of a smooth mnanifold without boundary.
3Article 44113 extends the definition of smooth manifold to include manifolds with boundaries.
4In this article, a scalar field is a map from the manifold to either R (real numbers) or C (complex numbers).

This leads to ordinary differential forms. Differential forms with coefficients in other structures can also be defined, as
described in the section titled twisted and vector-valued forms in https://ncatlab.org/nlab/show/differential+

form (2025-01-26).
5Article 09894
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3 Exterior product

The exterior product (or wedge product) of an m-form and an m′-form is an
(m + m′)-form. Instead of reviewing the complete definition, here are a few of
its key properties:6 it is associative, linear in each factor, and anticommutative.
Anticommutative means

α ∧ β = (−1)abβ ∧ α

whenever α is an a-form and β is a b-form. Example: if α1, ..., αN are one-forms,
then the N -form

ω ≡ α1 ∧ · · · ∧ αN (1)

is antisymmetric under permutations of the factors αn.
7 This implies

ω(v1, ..., vN) = κ
∑
π

(−1)πα1(vπ(1)) · · ·αN(vπ(N))

for every N -tuple of vector fields v1, ..., vN . The sum is over all permutations, the
factor (−1)π is defined to be 1 for even permutations and −1 for odd permutations,
and κ is a normalization factor. The normalization convention κ = 1 is standard.8

In this article, a differential form will be called decomposible if it can be
written as an exterior product of one-forms,9 like in equation (1).

6Lee (2013), proposition 14.11 combined with the text above equation (14.14)
7Article 81674 uses this product with vectors in place of one-forms. This gives a nice way to define (and to think

about) the determinant of a linear transformation.
8Nakahara (1990), equation (5.62)
9The text above exercise 14.12 in Lee (2013) introduces this word in a more limited context.
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4 Orientation

Some smooth manifolds are orientable, and some are not. Examples of orientable
manifolds include spheres and tori. Examples of non-orientable manifolds include
even-dimensional real projective spaces.10,11

One way to define this is by using top-degree differental forms.12 In the context
of an n-dimensional manifold M, and n-form is also called a top-degree form.
A manifold M is orientable if it admits a top-degree form ω that is not zero
anywhere, also called an orientation form.13

Two orientation forms ω and ω′ on M define the same orientation of M if
ω′ = fω for some function f that is positive everywhere on M. An orientation
form with the opposite sign, −ω, defines the opposite orientation forM, where
opposite means compared to the orientation defined by ω. An orientable manifold
admits exactly two possible orientations. An orientable manifold together with a
choice of one of its two possible orientations is called an oriented manifold.

If ω is an orientation form on an n-dimensional manifoldM and β is an orien-
tation form on its boundary ∂M, then the orientation defined by β is said to be
induced by the orientation defined by ω if they are related to each other by14

ω(w, v1, v2, ..., vn) = β(v1, v2, ..., vn)

for some vector field w on M that is outward-pointing everywhere on ∂M, for all
vector fields v1, ..., vn on M.15 This convention is used to select one of the two
possible orientations of ∂M based on a given orientation of M.

10Article 28539
11Odd-dimensional real projective spaces are orientable (article 28539).
12Lee (2013), proposition 15.5
13It is also called a volume form, but that name is often reserved for a specific orientation form defined with the

help of a designated metric tensor (section 10 and https://ncatlab.org/nlab/show/volume+form), and the same
name is also sometimes used for a volume pseudoform or volume density that does not require the manifold to
be oriented (section 9).

14Lee (2013), text above lemma 14.13, proposition 15.24, and its proof
15Recall that an m-form is a special kind of map whose input is a list of m vector fields and whose output is a

scalar field (section 2).
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5 Exterior derivatives

Each point in a manifold has a neighborhood whose points can be parameterized
using a single coordinate system. This is called a coordinate chart for that
neighborhood. Within one coordinate chart, we can think of each coordinate xk as
a function from that part of the manifold to R. The differential dxk of xk is a
one-form defined on that part of the manifold by

dxk(∂j) =

{
1 if j = k,

0 otherwise
(2)

where ∂j denotes the partial derivative with respect to xj. Each of these partial
derivatives is a vector field,16 and every vector field in that chart may be written
as a linear combination of these with functions as coefficients, so (2) defines the
one-form dxk completely (within that chart).

The exterior derivative is a map from m-forms ω to (m + 1)-forms dω with
these properties (among others):17

• If f(x1, x2, ...) is a zero-form (an ordinary function), then df =
∑

k(∂f/∂xk) dxk.

• If β = dα, then dβ = 0.

• d(α ∧ β) = (dα) ∧ β + (−1)aα ∧ dβ whenever α is an a-form.

A differential form ω is called closed if dω = 0, and it’s called exact if it can
be written ω = dα for some other differential form α. The second property listed
above says that every exact differential form is closed. The converse is not always
true – a closed differential form might not be exact18 – but a weaker statement is
true: each point of a smooth manifold has a neighborhood in which every closed
form is exact.19

16Article 09894
17Lee (2013), theorem 14.24
18This is the foundation for de Rham cohomology, which uses the existence of non-exact closed differential

forms to make statements about the topology of the smooth manifold that hosts them (Lee (2013), chapter 17).
19Lee (2013), corollary 17.15

7



cphysics.org article 91116 2025-01-26

6 Integration on orientable manifolds

An m-form defined on an n-dimensional manifold M can be integrated over an
m-dimensional submanifold S ⊂M (m ≤ n). If the topology of S is trivial so that
it can be covered by a single coordinate chart, and if the m-form is

ω ≡ f(x1, ..., xm) dx1 ∧ · · · ∧ dxm,

then the definition is simply∫
S
ω ≡

∫
f(x1, ..., xm) dx1 · · · dxm. (3)

The integral on the right side is defined as usual. Linearity can be used to extended
this definition to arbitrary m-forms, and chapter 16 in Lee (2013) explains how to
extend it to manifolds that cannot be covered by a single contractible chart.

When an integrand originally expressed in one coordinate system is re-expressed
in another one, the jacobian factor associated with that change of variables comes
automatically from properties (like antisymmetry) of the exterior derivative and
exterior product.20 For that reason, bundling the integrand as an m-form ω, like on
the left side of (3), makes “the integral of ω overM” unambiguous without needing
to specify a coordinate system. This works because ω automatically includes the
jacobian factor.21,22 For the same reason, the integral is invariant under orientation-
preserving diffeomorphisms.23,24

20Taylor (2006), appendix G and appendix H
21Ivanov (2001) uses a relatively easy-to-prove special case of Stokes’s theorem to derive the change-of-variables

formula for ordinary multivariable integrals.
22Here, the jacobian factor is a signed determinant, not its absolute value, in contrast to the definition that

section 9 will review. (This distinction is also mentioned in https://ncatlab.org/nlab/show/pseudoform.)
23Lee (2013), first page in chapter 16
24Whether the condition orientation-preserving is needed depends on what the diffeomorphism is applied to.

Consider the ordinary integral
∫∞
∞ e−x

2

dx. We can write this as
∫
I ω where I is the one-dimensional manifold R

with the appropriate orientation and ω is the one-form e−x
2

dx. If we apply an orientation-reversing diffeomorphism
to ω but not to I, then the integral changes sign. If we apply that orientation-reversing diffeomorphism to both ω
and I, then it doesn’t. The concept of a change of integration variables applies the transformation to both ω and I.
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7 Stokes’s theorem

Let ω be an (n− 1)-form defined on an n-dimensional manifoldM with boundary
∂M. Stokes’s theorem25 relates the integral of dω over M to the integral of ω
over ∂M. The theorem says26,27 that if ω has compact support, then∫

M
dω =

∫
∂M

ω. (4)

Section 8 will demonstrate that the compact support condition is essential.
Sometimes the theorem is stated in the context of a larger n-dimensional man-

ifold that includes M as an oriented n-dimensional submanifold,28 and sometimes
the condition for ω to have compact support is implicitly enforced by assuming
that M itself is compact.29

Equation (4) clearly assumes a relationship between the orientations ofM and
∂M, because reversing the orientation changes the sign of the integral.30 The
assumed orientation of ∂M is the one induced from the orientation ofM, as defined
in section 4. To check that this is consistent with the relative signs in (4), use the
standard coordinate system (x1, ..., xn) for Rn, letM be the n-dimensional manifold
defined by the condition x1 ≤ 0, and let

ω = f(x1, ..., xn) dx2 ∧ dx3 ∧ · · · ∧ dxn.

Then
∫
∂M ω =

∫
f(0, x2, ..., xn) dx2 dx3 ..., dx4 and dω = (∂f/∂x1) dx1 ∧ · · · ∧ dxn.

The one-form dx1 satisfies dx1(v) > 0 for all outward-pointing (pointing in the +x1

direction) vector fields on x1 = 0, so the relative signs in (4) are consistent with
the definition of induced orientation in section 4.

25https://www.englishrules.com/writing/2005/possessive-form-of-singular-nouns-ending-with-s/
26Lee (2013), theorem 16.11
27Theorem 16.25 in Lee (2013) generalizes this to manifolds with corners (article 44113).
28Madsen and Tornehave (1997), theorem 10.8
29Eliashberg (2018), theorem 11.1
30Lee (2013), proposition 16.6(b)
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8 The importance of compact support

Here’s an example demonstrating that the compact support condition is essential in
Stokes’s theorem. Let (x, y) be the standard coordinate system for R2, and let M
be the submanifold of R2 defined by 0 < r ≤ 1 with r ≡

√
x2 + y2. The one-form

ω ≡ x dy − y dx
r2

(5)

is defined everywhere on M. The next two paragraphs will derive the results∫
∂M

ω = 2π (6)

and ∫
M
dω = 0. (7)

This evades Stokes’s theorem because ω does not have compact support. This is
clear from the fact that ω is nonzero everywhere onM combined with the fact that
M is a non-compact manifold.31

To deduce (7), use the identity dω = f dα + df ∧ α with f = r−2 and α =
x dy − y dx to get dω = 0.

To deduce (6), define φ by the conditions x + iy = reiφ and 0 < φ < 2π. The
function φ is defined almost everywhere onM, but not on the line segment defined
by y = 0 and x > 0. The one-form (5) may be written as ω = dφ everywhere on
the circle ∂M except the one point (x, y) = (1, 0), where φ is undefined. This gives
(6) because (5) defines a smooth one-form everywhere on the circle, and omitting
a single point does not change the value of the integral.

This shows that the one-form ω is closed but not exact.32 It can be written
ω = dφ for a (single-valued) function that is defined almost everywhere onM, but
it cannot be written as ω = df for any (single-valued) smooth function f defined
on all of M.

31It would be compact if the point r = 0 were included.
32Section 5
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9 Integration on non-orientable manifolds

As section 6 reviewed, m-forms can be integrated over orientable m-dimensional
manifolds. This works because if ω is an m-form, then33

ω(Lv1, ..., Lvm) = (detL)ω(v1, ..., vm) (8)

for every m-tuple of vector fields v1, ..., vm and every linear transformation L. The
determinant accounts for the (signed) jacobian factor.

The definition of the integral of ω doesn’t work for a non-orientable manifold
M because then the integrals of ω over charts that cover M cannot be stitched
together with mutually consistent signs over all of M. A density is a different
kind of object that can be integrated over a non-orientable manifold M. For any
linear transformation L, a density ω satisfies34

ω(Lv1, ..., Lvm) = | detL|ω(v1, ..., vm)

instead of (8). An m-form is linear in each of its inputs, but a density is not:35

changing the sign of one of its inputs does not change the sign of the density.
Chapter 16 in Lee (2013) explains how to define the integral of a density over a
not-necessarily-orientable manifold.

Every smooth m-dimensional manifold M admits a nowhere-zero density of
degree m.36

33Article 81674
34Lee (2013), equation (16.18)
35For this reason, a density is not a tensor field (Lee (2013), text below equation (16.18)).
36Lee (2013), proposition 16.37
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10 The Hodge dual of a differential form

The concepts reviewed in section 2-9 don’t depend on a metric tensor, which is an
additional piece of structure used to define angles and distances (and time intervals,
if the signature is lorentzian).37,38 A metric tensor g takes two vector fields as
input and gives a scalar field as output, and it’s symmetric: g(v, w) = g(w, v).
Given a metric tensor, we can define the corresponding inverse metric tensor
ḡ that defines an inner product between one-forms.39 This can be extended to
an inner product between m-forms for each integer m. Example: if α1, α2, β1, β2

are one-forms, then the inner product between the two-forms α ≡ α1 ∧ α2 and
β ≡ β1 ∧ β2 is

ḡ(α, β) ≡ ḡ(α1, β1)ḡ(α2, β2)− ḡ(α1, β2)ḡ(α2, β1).

This is consistent with the antisymmetry of the exterior product. The definition
for decomposable m-forms of any degree m follows the same pattern, and it can be
extended to non-decomposable two-forms using linearity.

In the context of an n-dimensional smooth manifold with a designated metric
tensor, the volume form ν is the unique top-degree form whose integral over
a hypercube with edges represented by n infinitesimal orthogonal vectors vk is
|
∏

k g(vk, vk)|1/2.40 Orthogonal is defined using the metric tensor. The Hodge
dual of an m-form β is the (n−m)-form ?β defined by41

α ∧ (?β) = ḡ(α, β)ν (9)

for all m-forms α (with the same degree m as β).

37Article 48968
38Article 09894 calls it a metric field, because it’s a special kind of tensor field.
39In a chart covered by coordinates x1, x2, ..., we can write v = va∂a and w = wa∂a (with implied sums over the

index a), and then g(v, w) = gabv
awb (with implied sums over a, b) where gab are the components of the metric

tensor. Similarly, given two one-forms α = αa dx
a and β = βa dx

b, we have ḡ(α, β) = gabαaβb where gab are the
components of the inverse metric tensor (article 09894).

40Morrison (1999)
41Morrison (1999); Lee (2013), exercise 16-18(c); https://ncatlab.org/nlab/show/Hodge+star+operator
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11 Examples

Suppose that the manifold is Rn with the standard euclidean metric g, and let
x1, ..., xn be a system of coordinates in which g(∂j, ∂k) = δjk. Then the volume
form is

ν = dx1 ∧ · · · ∧ dxn,
and the definition (9) implies42

?1 = ν

?(dx1) = dx2 ∧ · · · ∧ dxn
?(dx2) = (−1)n−1dx3 ∧ · · · ∧ dxn ∧ dx1

?(dx1 ∧ dx2) = dx3 ∧ · · · ∧ dxn
?ν = 1.

Now consider an n-dimensional manifold with a metric of any signature, and
let k be the number of negative components of the diagonalized metric tensor.
Then43,44

?(?ω) = (−1)k(−1)m(n−m)ω

for every m-form ω. In particular, the volume form satisfies

?(?ν) = (−1)kν.

This is consistent with (9) because the inner product of the volume form with itself
is ḡ(ν, ν) = (−1)k.

42Section 4 in Dray (1999) illustrates this for n = 2.
43Morrison (1999)
44Section 4 in Dray (1999) illustrates this for a metric with k = 1.
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