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Introduction to Hilbert Space
Randy S

Abstract The general principles of quantum theory
are expressed in terms of observables (things that can be
measured), which are represented by linear operators on
a Hilbert space. This article gives a brief introduction
to Hilbert space.

Contents

1 Introduction 3

2 Two notations 4

3 Addition 5

4 Scalar multiplication 6

5 Inner product 7

6 Some basic consequences 8

7 Hilbert space 9

8 Different concepts of basis 10

9 Separable Hilbert space 11

© 2018-2024 Randy S
For the latest version and the revision history, visit cphysics.org/article/90771

1



cphysics.org article 90771 2022-10-23

10 Closed subspaces of a Hilbert space 12

11 Relationships between two Hilbert spaces 13

12 Antilinear relationships 14

13 Wigner’s theorem 15

14 A finite-dimensional example 16

15 An infinite-dimensional example 17

16 An infinite-dimensional example using functions 18

17 More infinite-dimensional examples 19

18 References 20

19 References in this series 20

2



cphysics.org article 90771 2022-10-23

1 Introduction

The general principles of quantum theory can be expressed in terms of a mathe-
matical structure called a Hilbert space, specifically a Hilbert space over the field
C of complex numbers. A Hilbert space a special kind of vector space. This article
starts with the general idea of a vector space over C and then walks through a
series of specializations to arrive at the idea of a Hilbert space.1 Quantum theory
uses only separable Hilbert spaces, which satisfy an extra condition that is closely
related to the origin of the name “quantum.” The sequence of specializations is
shown in this Venn diagram:

vector spaces

inner product spaces

Hilbert spaces

separable Hilbert spaces

1For a more thorough introduction, classic texts include Debnath and Mikusiński (2005) and the two-volume set
by Kadison and Ringrose (1997). Online resources include chapter 8 in the beautiful book by Axler (2021).
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2 Two notations

A Hilbert space is a special kind of vector space. The vectors in a Hilbert space
are abstract vectors.2 In addition to being a vector space, a Hilbert space also has
an inner product. The inner product takes any two vectors as input and returns a
single complex number as output.

Two different notations for the inner product are commonly used. Each has its
own advantages. This article uses the notation that is most common in the physics
literature:

• A vector is written as |a〉, or as |b〉, and so on. This notation facilitates using
more elaborate names for the vectors. We can use a whole word as the name
of a vector, as in |dog〉. We can even use a crazy combination of symbols as
the name of a single vector, as in |,÷F〉.

• The inner product of two vectors |a〉 and |b〉 is written as 〈a|b〉.

A different notation is common in the mathematics literature. To switch to the
mathematician’s notation:

• Instead of writing a vector as |a〉, write it as a.

• Instead of writing the inner product of two vectors as 〈a|b〉, write it as 〈a, b〉 or
〈b, a〉.3 Sometimes the inner product is written using round brackets instead
of angled brackets.

This article uses the physicist’s notation, even though the mathematician’s notation
makes some things easier to express.

2These vectors do not represent directions in three-dimensional physical space. The next two sections review the
abstract definition of a vector space.

3When the 〈a|b〉 notation is used, the inner product is linear in the second vector and is conjugate-linear in the
first vector (section 5). The opposite convention is common when the comma-notation is used, as in Axler (2021),
definition 8.1.
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3 Addition

A Hilbert space is, among other things, a vector space. A vector space consists
of these ingredients:4

• A set V of things called vectors.

• An operation called addition: any two vectors |a〉 and |b〉 can be added to
each other, and the result is another vector |a〉 + |b〉. Addition is subject to
these conditions:

◦ It is associative:
(
|a〉+ |b〉

)
+ |c〉 = |a〉+

(
|b〉+ |c〉

)
.

◦ It is commutative: |a〉+ |b〉 = |b〉+ |a〉.
◦ There is a zero vector 0 satisfying |a〉+ 0 = |a〉 for all vectors.5

◦ Each vector |a〉 has a negative −|a〉 satisfying6

|a〉+
(
− |a〉

)
= 0.

The sum of |a〉 and −|b〉 is denoted |a〉−|b〉. This is called subtraction.

• An operation called scalar multiplication: any vector can be multiplied by
a complex number, and the result is another vector in V . Scalar multiplication
is subject to the conditions shown in the next section.

4Axler (2021), definition 6.27
5The zero vector is usually not denoted |0〉, because that symbol is often used for a nonzero vector that represents

the lowest-energy state (also called the ground state in condensed matter physics or the vacuum state in particle
physics).

6The negative of a vector |a〉 is usually not denoted | − a〉.
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4 Scalar multiplication

Let C denote the field of complex numbers. The type of Hilbert space used in
quantum theory is a vector space over C. We could also define a vector space over
a different field, such as the field R of real numbers, but this article only considers
vector spaces over C.

In this section, the letters z and w denote complex numbers. Multiplication of
a vector by a complex number is called scalar multiplication. For any vector
|a〉 and any complex number z, scalar multiplication produces another vector z|a〉,
subject to these conditions:

(w + z)|a〉 = w|a〉+ z|a〉

z
(
|a〉+ |b〉

)
= z|a〉+ z|b〉

(zw)|a〉 = z
(
w|a〉

)
1|a〉 = |a〉.

Together with the conditions shown in the previous section, these imply

(−1)|a〉 = −|a〉 0|a〉 = 0.

In the last equation, the symbol “0” is used for two different things: one is a number
and the other is a vector.

The vectors in a list |1〉, |2〉, ..., |N〉 are called linearly independent if the
condition

z1|1〉+ z2|2〉+ · · ·+ zN |N〉 = 0

cannot be satisfied for any finite N unless all of the coefficients zn are zero. A vector
space is called N-dimensional if it contains a set of N linearly independent vectors
but does not contain any set of N + 1 linearly independent vectors. A vector space
is called infinite-dimensional if it is not N -dimensional for any finite N .7

7Axler (2021), definition 6.54 and Debnath and Mikusiński (2005), section 1.2, page 8
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5 Inner product

An inner product space is a vector space equipped with an inner product. For
any two vectors |a〉 and |b〉, the inner product 〈a|b〉 is a complex number. More
notation:

• The complex conjugate of 〈a|b〉 is denoted 〈a|b〉∗.

• If z is another complex number, the product of z with the complex number
〈a|b〉 is denoted z〈a|b〉.

The inner product is subject to these conditions:8,9

• If |a〉 6= 0, then 〈a|a〉 > 0 (the positive-definite condition).

• 〈a|b〉∗ = 〈b|a〉.

• If |a+ b〉 = |a〉+ |b〉,10 then 〈,|a+ b〉 = 〈,|a〉+ 〈,|b〉 for all vectors |,〉.

• If |zb〉 = z|b〉,11 then 〈,|zb〉 = z〈,|b〉 for all vectors |,〉.

The second and fourth conditions imply:

• If |zb〉 = z|b〉, then 〈zb|,〉 = z∗〈b|,〉 for all vectors |,〉,

where z∗ denotes the complex conjugate of z. Altogether, the inner product is
linear in the second vector (the one on the right-hand side), and it is conjugate
linear in the first vector (the one on the left-hand side).

Two vectors |a〉 and |b〉 are called orthogonal to each other if 〈a|b〉 = 0.

8Axler (2021), definition 8.1; Debnath and Mikusiński (2005), definition 3.2.1
9Sometimes this is called a positive definite inner product so that the shorter name inner product can be used for

one that doesn’t necessarily satisfy the first condition.
10Warning: the sum of |a〉 and |b〉 is not usually denoted |a + b〉, at least not in the physics literature. I’m using

that here only as a temporary abbreviation. That’s why the sentence starts with “If |a+ b〉 = |a〉+ |b〉, then ...”
11Warning: the sum of z and |b〉 is not usually denoted |zb〉, at least not in the physics literature. Again, I’m using

that here only as a temporary abbreviation.
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6 Some basic consequences

The condition in the previous section imply

• The zero vector is orthogonal to itself.

• If 〈,|a〉 = 〈,|b〉 for all vectors |,〉, then |a〉 = |b〉.

◦ To prove this, consider the case |,〉 = |a〉 − |b〉 and use the positive-
definite condition.

• The Cauchy-Schwarz inequality:
∣∣〈b|a〉∣∣2 ≤ 〈a|a〉 〈b|b〉.

◦ To prove this, consider the vector |,〉 = |a〉 − z|b〉 with z = 〈b|a〉/〈b|b〉,
and use the positive-definite condition 〈,|,〉 ≥ 0.
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7 Hilbert space

A Hilbert space is a vector space that has a positive-definite inner product and
that is also complete. This section explains what complete means. A finite-
dimensional vector space with a positive-definite inner product is automatically
complete, so it is automatically a Hilbert space.

Define the norm of a vector |a〉 to be the real number12,13∥∥ |a〉∥∥ ≡√〈a|a〉.
Complete means14 that every sequence of vectors |a1〉, |a2〉, ... satisfying

lim
n,m→∞

∥∥ |an〉 − |am〉∥∥ = 0

has a limit, which is a vector |a〉 satisfying

lim
n→∞

∥∥ |an〉 − |a〉∥∥ = 0.

Loosely speaking, saying that a Hilbert space is complete means that it contains
all of its limits.

12Axler (2021), definition 8.4 and Debnath and Mikusiński (2005), definition 3.2.11
13In some contexts, the word “norm” is used for the result of multiplying two copies of something without taking

the square root (Hogben (2007), section 69.3, example 1).
14Riesz and Sz.-Nagy (1990), section 83
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8 Different concepts of basis

A vector |a〉 is called a unit vector if 〈a|a〉 = 1. A set S ⊂ H of vectors in a
Hilbert space H is called orthonormal if they are all orthogonal to each other and
each one is a unit vector. An orthonormal set of vectors is called maximal if it is
not contained in any larger orthonormal set.

In a finite-dimensional Hilbert space, any basis15 of linearly independent vec-
tors has the same (finite) number of members, whether or not they are orthogonal.
In the infinite-dimensional case, a linear basis (also called a Hamel basis)16 may
have different cardinality than a maximal orthonormal set, which is called an or-
thogonal basis17 or a Conway basis.18 An orthogonal basis may be countable
or uncountable.

A Schauder basis19 is a countable sequence20 of vectors |1〉, |2〉, ..., such that
every vector |a〉 in the Hilbert space can be uniquely written in the form

|a〉 =
∞∑
n=1

zn|n〉.

Every Hilbert space has an orthogonal basis,21 but it’s not necessarily countable.
Many Hilbert spaces don’t have a Schauder basis, which is countable by definition.

Even if a Hilbert space has a countable orthogonal basis, it may still have an
uncountable linear basis.22 Unless specified otherwise, the dimension of a Hilbert
space means the cardinality of an orthogonal basis23 (which is the same as the
cardinarlity of a Schauder basis, if one exists).

15The plural of basis is bases.
16Halmos (1982), page 6; and Heil (2006), definition 4.1
17Halmos (1982), page 6
18Heil (2006), definition 4.4
19Heil (2006), definition 4.9
20Usually the word sequence implies countable, but I’m including the word countable here for emphasis.
21Heil (2006), exercise 4.5
22Halmos (1982), pages 6 and 170-171
23Halmos (1982), page 170
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9 Separable Hilbert space

Let H be a Hilbert space. A countable sequence of orthonormal vectors |1〉, |2〉, ...
in H is called complete if every vector |a〉 ∈ H can be written24

|a〉 =
∞∑
n=1

|n〉 〈n|a〉.

The word sequence is important here, because this equation really means

lim
N→∞

∥∥∥∥∥ |a〉 −
N∑
n=1

|n〉 〈n|a〉

∥∥∥∥∥ = 0.

A Hilbert space is called separable if it has a complete countable sequence of
mutually orthonormal vectors.25,26 In a separable Hilbert space, such a sequence is
a Schauder basis.27 A finite-dimensional Hilbert space is automatically separable.28

Quantum theory uses only separable Hilbert spaces. The name quantum in
quantum theory is related to the fact that in a separable Hilbert space, any set of
mutually orthonormal vectors is countable.

24Debnath and Mikusiński (2005), definition 3.4.12
25Debnath and Mikusiński (2005), definition 3.4.20 and Heil (2006), exercise 4.19
26In the context of Hilbert space, this definition of separable is consistent with the one used in topology, where it

refers to the existence of a countable dense subset (Axler (2021), definition 8.64)
27Heil (2006), exercise 4.11
28According to remark 2.2.14 in Kadison and Ringrose (1997a), separable does not imply infinite-dimensional. In

Debnath and Mikusiński (2005), definition 3.4.20 says, “Finite dimensional Hilbert spaces are considered separable.”
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10 Closed subspaces of a Hilbert space

Let H be a Hilbert space. A closed subspace of H is a subset of H that qualifies
as a Hilbert space all by itself.29 Basic facts:

• For any subset S ⊂ H (not necessarily a subspace), let S⊥ denote the set of
all vectors in H that are orthogonal to all vectors in S. Then S⊥ is a closed
subspace of H.30

• If S is a closed subspace of H, then every vector |a〉 ∈ H can be written
|a〉 = |a‖〉+ |a⊥〉, with |a‖〉 ∈ S and |a⊥〉 ∈ S⊥, in exactly one way.31

• Every closed subspace of a separable Hilbert space is a separable Hilbert
space.32

• Every finite-dimensional subspace is closed.

A one-dimensional subspace is also called a ray.

29Axler (2021), example 8.22
30Axler (2021), theorem 8.40a and Debnath and Mikusiński (2005), theorem 3.6.2
31Axler (2021), theorem 8.43
32Axler (2021), exercise 8C-14
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11 Relationships between two Hilbert spaces

Isomorphism is the appropriate notion of equivalence between Hilbert spaces. If
two Hilbert spaces are isomorphic to each other, then they are the same as far as
their Hilbert-space structure is concerned. Here’s the precise definition:

• A map σ from one Hilbert space H1 to another one H2 is called linear if it
respects linear combinations:

σ
(
|a〉+ |b〉

)
= σ|a〉+ σ|b〉 σ

(
z|a〉

)
= z
(
σ|a〉

)
(1)

for all vectors |a〉 and |b〉 in H1 and all complex numbers z.

• A linear map σ : H1 → H2 is called unitary if it also respects inner products:

If |a′〉 = σ|a〉 and |b′〉 = σ|b〉, then 〈a′|b′〉 = 〈a|b〉. (2)

• A unitary map σ : H1 → H2 is called an isomorphism if it is bijective.33 In
this case, H1 and H2 are said to be isomorphic to each other.

• An isomorphism from a Hilbert space to itself (σ : H → H) is called an
automorphism.

All N -dimensional Hilbert spaces over C are isomorphic to each other, and all
infinite-dimensional separable Hilbert spaces over C are isomorphic to each other.34

In this sense, there is only one infinite-dimensional separable Hilbert space over C,
even though it may be constructed in many different-looking ways. In particular,
the Hilbert spaces in examples 16 and 17 are isomorphic to each other, even though
they look different.35

33A unitary map σ is called bijective if another unitary map σ−1 exists for which the compositions σσ−1 and
σ−1σ are both the identity map.

34Debnath and Mikusiński (2005), theorem 3.4.27
35In quantum physics, completely different models often use isomorphic Hilbert spaces. Different models are

distinguished from each other by their different patterns of observables, not just by their (abstract) Hilbert spaces.
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12 Antilinear relationships

The maps defined above are linear. An antilinear map36 is one for which the
conditions (1) are replaced by

σ
(
|a〉+ |b〉

)
= σ|a〉+ σ|b〉 σ

(
z|a〉

)
= z∗

(
σ|a〉

)
. (3)

An antilinear map is called antiunitary if it also satisfies

If |a′〉 = σ|a〉 and |b′〉 = σ|b〉, then 〈a′|b′〉 = 〈b|a〉.

This is like (2), but the right-hand side is complex-conjugated, as it must be for
consistency with (3).

For an example of an antiunitary map, let |a1〉, |a2〉, ... be an orthonormal basis
for the Hilbert space. Define the effect of the map σ on these basis vectors to be

σ
(
|ak〉

)
= |ak〉,

and use (3) to define effect of σ on all other vectors. Then σ is antiunitary.

36Uhlmann (2015) reviews antilinear maps in more detail.
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13 Wigner’s theorem

If an invertible map σ from one Hilbert space to another preserves the values of all
quantities of the form

〈a|b〉 〈b|a〉
〈a|a〉 〈b|b〉

, (4)

then either σ is a unitary transformation (which means it is linear and preserves
inner products), or else σ is antilinear and antiunitary.37 This is called Wigner’s
theorem.

The quantity (4) is not affected if |a〉 and |b〉 are multiplied by arbitrary nonzero
complex numbers, so it depends only on the corresponding rays (section 10). Like
any closed subspace, a ray can be represented by a projection operator (article
74088). For projection operators, this relative of Wigner’s theorem holds:38 if H is
a Hilbert space with at least 3 dimensions, then any automorphism of its projection
lattice39 has the form P → U ∗PU , where U is either a unitary (and therefore linear)
or antiunitary (and antilinear) operator on H.

37Weinberg (1995), section 2.2 and appendix A in chapter 2
38Hamhalter (2003), theorem 8.1.3
39This is defined in Hamhalter (2003).
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14 A finite-dimensional example

Here’s an example of an N -dimensional Hilbert space. Regard each sequence of N
complex numbers (a1, a2, ..., aN) as a vector:

|a〉 = (a1, a2, ..., aN).

Define addition and scalar multiplication by

|a〉+ |b〉 = (a1 + b1, a2 + b2, ..., aN + bN)

z |a〉 = (za1, za2, ..., zaN),

and define the inner product by

〈b|a〉 = b∗1a1 + b∗2a2 + · · ·+ b∗NaN .

This is a Hilbert space, because any finite-dimensional inner product space is au-
tomatically a Hilbert space.

Every N -dimensional Hilbert space is isomorphic to this one.

16
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15 An infinite-dimensional example

For an example of an infinite-dimensional Hilbert space, take each vector in to be
an endless list of complex numbers,

|a〉 = (z1, z2, z3, ...), (5)

subject to the condition that40

|z1|2 + |z2|2 + |z3|2 + · · · <∞.

Multiplication by a complex number w is defined componentwise, like this:

w |a〉 = (wz1, wz2, wz3, ...).

Given two vectors

|a〉 = (z1, z2, z3, ...) |b〉 = (w1, w2, w3, ...),

their sum and inner product are also defined componentwise, like this:

|a〉+ |b〉 = (z1 + w1, z2 + w2, z3 + w3, ...).

〈a|b〉 = z∗1w1 + z∗2w2 + z∗3w3 + · · ·

This is a separable Hilbert space, because any vector can be arbitrarily well-
approximated using linear combinations of the vectors in this countable list of
orthogonal vectors:41

|1〉 = (1, 0, 0, 0, ...)

|2〉 = (0, 1, 0, 0, ...)

|3〉 = (0, 0, 1, 0, ...)
...

40The inequality “r <∞” means “r is finite.”
41By definition, a linear combination involves only a finite number of terms, but the number can be arbitrarily

large (https://math.stackexchange.com/questions/672791).
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16 An infinite-dimensional example using functions

Consider the set of all complex-valued functions a(x) of a single real variable x
such that the norm ‖a‖ defined by

‖a‖2 ≡
∫ ∞
−∞

dx |a(x)|2

is finite. To each such function a(x), associate a vector |a〉, with the understanding
that two functions correspond to the same vector if the norm of their difference is
zero.42 Define the inner product by43

〈b|a〉 ≡
∫ ∞
−∞

dx b∗(x)a(x) (6)

where b∗(x) denotes the complex conjugate of b(x). This vector space, when
equipped with this inner product, is an example of an infinite-dimensional Hilbert
space.

The Hilbert space in this example is separable. To prove this, start by observing
that the set of functions

xne−x
2

n ≥ 0

is countable, and that the set D of all linear combinations of such functions with
rational coefficients is still countable.44 This set D is a dense subset of the Hilbert
space. To illustrate the fact that this set of functions is dense, consider the function
e−(x−a)2, which clearly belongs to the Hilbert space. Although it cannot be written
as a linear combination of any finite number of the functions xne−x

2

, it can be
written as a limit, namely

e−(x−a)2 ∝ e2axe−x
2

= lim
N→∞

fN(x) with fN(x) =
N∑
n=0

(2ax)n

n!
e−x

2

.

42Debnath and Mikusiński (2005), sections 2.6, 2.7, and 2.13. Example: if a(x) = b(x) except at a finite list of
values of x, then the norm of their difference is zero, so they both represent the same vector in the Hilbert space.

43The integral here is a Lebesgue integral. Debnath and Mikusiński (2005) comments on the significance of this.
44Recall that any given linear combination has only a finite number of terms, by definition.
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17 More infinite-dimensional examples

The preceding example can be generalized to complex-valued functions a(x, y) of
two real variables x, y with inner product

〈b|a〉 ≡
∫
dx dy b∗(x, y)a(x, y).

The generalization to functions of more than two variables should be obvious. This
Hilbert space is separable, because the set of functions

xnyme−x
2−y2 n,m ≥ 0

is countable and spans a dense subset of the Hilbert space.
The generalization to functions of N > 2 variables should be clear. The con-

struction looks different for different values of N , and all of these look different
than the example in section 15, but remember: all infinite-dimensional separable
Hilbert spaces over C are isomorphic to each other (section 11), even though they
may look different.
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