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Quantum Gauge Fields
on a Spacetime Lattice

Randy S

Abstract This article constructs some of the simplest quantum models that are
believed to have nontrivial continuum limits with Lorentz symmetry, even though
they are initially defined by treating spacetime as a lattice. The only field used in
the construction is a gauge field. When the gauged group is nonabelian, these are
called Yang-Mills theories. The models are constructed using the path integral
formulation, paying special attention to how Wick rotation is used to ensure that
time evolution is unitary without compromising the intuitive reason to expect that
the continuum limit has Lorentz symmetry. The relationship between the path
integral and hamiltonian formulations is reviewed, including an explanation of how
they handle observables that are extended in time.
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1 Introduction

This article introduces a family of quantum models whose observables are expressed
exclusively in terms of gauge fields. Each model is based on a compact Lie group G,
which I’ll call the gauged group.1 Different choices of G give models with different
properties. The case G = Z2 is sometimes called the Ising gauge model.2 The
case G = U(1) is quantum electrodynamics without matter.3 The case G = SU(Nc)
is quantum chromodynamics without quarks, also called Yang-Mills theory.4

The only known ways to construct most of these models involve treating space
or spacetime as discrete. This is called lattice gauge theory. Even though its
construction treats spacetime as discrete, the SU(Nc) Yang-Mills theory is believed
to have a nontrivial Lorentz-symmetric continuum limit5 with a rich spectrum
of interacting particles called glueballs, at least when the number of spacetime
dimensions is 3 or 4.

Calculations in models like these tend to be difficult because the equations of
motion are not linear. This article focuses on the easy part – constructing the
models without any mathematical ambiguity, so that calculations and intuition
both have a solid place to start.

1In the physics literature, the group G is often called the gauge group, but in the math literature, that name
is used for the group of gauge transformations, which is much larger than G (article 76708). G is often called the
structure group in the math literature, but that can also be ambiguous (article 70621). The name gauged group
is not standard, but it avoids those ambiguities and is consistent with the important idea of gauging a symmetry
(using the word gauge as a verb).

2In the ordinary Ising model (article 51033), the Z2-valued variables in the path integral formulation are asso-
ciated with points in the lattice. In the Ising gauge model included here, the Z2-valued variables in the path integral
formulation will be associated with links instead, and the action is invariant under gauge transformations.

3Article 51376 formulates the U(1) model using the hamiltonian formulation, which has some advantages but
obscures Lorentz symmetry (section 2).

4Sometimes it’s called pure QCD, where pure means that the SU(Nc) gauge field is the only field (no quarks).
The integer Nc is the number of colors that each quark species would have, which is 3 in the Standard Model.

5Article 07611 reviews part of the evidence for a nontrivial continuum limit.
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2 Lorentz symmetry, lattice models, and unitarity

The models mentioned in section 1 can be constructed in either of two ways. One
is the hamiltonian formulation. The hamiltonian formulation makes the model’s
consistency with the general principles of quantum theory6 clear by inspection,
including the unitarity of time evolution. Time remains continuous even though
space is treated as a lattice, and time translations are implemented by unitary
operators e−iHt, where H is the hamiltonian.7 In the Schrödinger picture, this
means that time evolution preserves the inner product between time-dependent
state vectors, as required by Wigner’s theorem.8

One disadvantage of the hamiltonian formulation is that it obscures Lorentz
symmetry. Treating space as a lattice is not the issue here, because we can reason-
ably expect deviations from continuous space to be negligible at resolutions much
coarser than the lattice scale. The issue is that the hamiltonian formulation ob-
scures boost symmetry, regardless of resolution. In the hamiltonian formulation,
intuitively anticipating the presence of boost symmetry – even only at coarse res-
olution – is difficult without checking the commutation relations of the operators
that allegedly generate those symmetries. Those calculations are routine, but the
outcomes are usually not easy to anticipate by inspection.

This article starts with the path integral formulation instead, because it makes
Lorentz symmetry easier to anticipate intuitively. To keep the number of in-
tegration variables finite, this formulation treats spacetime as a lattice. This
shouldn’t cause any perceptible deviations from Lorentz symmetry at resolutions
much coarser than the lattice scale. We need to be careful, though: in a näıve path
integral formulation, time evolution may fail to be unitary, even in the continuous-
time limit. Deviations from unitary time evolution would be in conflict with the
general principles of quantum theory. The formulation used in this article ensures
that time evolution is unitary.9

6Article 03431
7Article 22871
8Article 90771
9Section 18
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3 Notation and conventions

• The system of units is such that Planck’s constant ~ and the speed of light
are both equal to 1.

• d is the number of dimensions of spacetime.

• D is the number of dimensions of space.

• x and y denote points in the lattice.

• ` is a link in the lattice.

• 2 is a plaquette in the lattice.

• u(x, y) or u(`) is the field variable associated with a link ` whose endpoints
are x and y. The letter u is a reminder that a unitary representation is being
used.

• A state is represented by an element of the Hilbert space, and each element
of the Hilbert space is represented by a complex-valued function Ψ[u] of the
link variables.

• G is the gauged group.

• r(g) is the matrix representing an element g in a matrix representation r of
the gauged group G.

• Zn is the subgroup of U(1) consisting of complex numbers e2πik/n with k ∈
{0, 1, 2, ..., n− 1}.

• ε is the lattice spacing.

• The lattice spacing in the time direction will be denoted dt when it needs to
be distinguished the lattice spacing in the space directions.

• Section 15 will define a quantity ν ∈ {1, 1/2} that will be used to account for
two different standard normalization conventions, one for abelian G and one
for nonabelian G.
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4 Matrix representations

A matrix representation r of a group G represents each element u ∈ G as a
square matrix r(u) and represents the group operation as the usual matrix product,
subject to the condiction

r(u)r(u′) = r(uu′).

A matrix representation is called faithful if no two elements G are represented by
the same matrix.10 A representation is called unitary if every matrix r(u) satisfies

r−1(u) = r†(u),

where the superscript † denotes the adjoint (transpose and complex conjugate) of
the matrix. Every compact Lie group has a faithful unitary representation.11 In
this article, such a representation will always be given, and for that representation,
r(u) will be denoted simply as u.12 This is the only representation that will be used
to construct the action, but other representations are still useful for constructing a
variety of observables.13

Since a faithful unitary representation will always be given anyway, we can use
that representation as the definition of the group G itself. This is valid because the
representation is faithful. In particular, each element of SU(Nc) may be represented
as a unitary matrix with size Nc×Nc and with determinant equal to 1, using matrix
multiplication as the group operation. Similarly, the groups U(1) and Zn may be
defined and represented using unitary “matrices” of size 1× 1.

10Every group has a trivial representation in which every element of G is represented by the identity matrix.
Most representations are somewhere between these two extremes, neither trivial nor faithful.

11Taylor (2021), proposition 2.8.8
12Elements of G in this faithful representation will always appear inside a matrix trace. The trace could also be

defined by using a quadratic form on the Lie algebra instead (Witten (1991), beginning of section 2), and then we
wouldn’t need to specify any particular faithful matrix representation.

13Section 27
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5 Outline

Here is an outline of the rest of the article:

• Sections 6 through 8 will introduce the spacetime lattice, the field variables
(link variables), and gauge transformations.

• Sections 9-11 will introduce the Hilbert space.

• Sections 12-19 will introduce the path integral, giving special attention to
some technical issues related to unitary time evolution.

• Sections 20 and 21 will show that the action becomes Lorentz invariant after
taking the continuum limit and applying Wick rotation.

• Sections 22-24 will use the small-dt approximation to derive an expression
for the hamiltonian H (the generator of unitary time evolution), referring to
article 51033 for some details that are already covered there.

• Sections 25-26 will provide some perspectives related to gauge invariance.

• Sections 27-32 will characterize the model’s observables, giving special atten-
tion to some issues related to observables that are extended in time.

Article 07611 reviews some insights about the continuum limit of the quantum
model.14

14This is more challenging than merely taking the continuum limit of the action, which is done in sections 20-21.
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6 The lattice

Treat d-dimensional flat spacetime as a lattice generated by d mutually orthogonal
basis vectors, all with the same magnitude15 ε. In this basis, the coordinates of a
point in the lattice (also called a site) are integers.

Two points x and y in the lattice are called nearest neighbors if they have
the same coordinates except for one coordinate in which they differ by ±1. An
ordered pair (x, y) of nearest neighbors will be called a directed link, and an
unordered pair {x, y} of nearest neighbors will be called an undirected link. The
two directed links (x, y) and (y, x) will be called oppositely directed compared
to each other. The points x and y are the link’s endpoints.

The set of points that all have a given value of the time coordinate will be called
a spatial lattice. The spacetime lattice is a sequence of identical spatial lattices,
one for each integer value of the time coordinate. The number of field variables
will be kept finite in either of two ways:16

• To define the truncated version of the spatial lattice, think of the lattice as
a special set of points in smooth space, and choose a very large spatial region
O (the same region at every time) with no points of the lattice exactly on
its boundary. Each point inside O will be called an interior point, and any
other point connected to an interior point by a single link will be called a
boundary point. Only links with at least one interior endpoint (at least
one endpoint inside O) will have associated link variables.

• To define the wrapped version of the spatial lattice, choose a very large
integer K, and declare two points in the spatial lattice to be equivalent if
their spatial coordinates are equal modulo K. In this version, every point is
an interior point.

15We’re using units where the speed of light is equal to 1, so the magnitudes of spacelike and timelike intervals
are comparable. Later, to facilitate taking a continuous-time limit, we’ll allow the timelike basis vector to have a
different magnitude that the spacelike basis vectors.

16Article 51376 describes these two long-distance cutoffs in more detail. More generally, we could allow the
lattice to be truncated in some dimensions and wrapped in others.
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7 The gauged group and the link variables

When spacetime is treated as a lattice, a quantum field is represented by a large
number of variables called field variables, each associated with a particular point,
link, or other element of the lattice. In this article, each field variable takes values
in a group17 G that will be called the gauged group.18 A group G is called
abelian if all its elements commute with each other: uu′ = u′u for all u, u′ ∈ G.
Otherwise, it’s called nonabelian. A group G is called finite if it has only a finite
number of elements. In this article, the gauged group G will be a compact Lie
group.19 It may be connected, or finite, or neither, but it will always be compact.20

The model’s properties may depend on which group G we choose, but the model’s
construction works the same way for any G.21 Special attention will be given to
the cases G = SU(Nc), G = U(1), and G = Zn.

The field consists of one link variable u(x, y) for each directed link (x, y) with
at least one interior endpoint. A value of the link variable u(x, y) is an element of
the gauged group G. All of these variables are independent of each other except
for this constraint:

u(x, y)u(y, x) = 1. (1)

Again, only links with at least one interior endpoint have associated link variables.
If a link (x, y) doesn’t have an associated link variable, then u(x, y) ≡ 1.

The field consisting of these link variables will be called the gauge field, and
any assignment of specific values to all the link variables (one value per link variable)
will be called a configuration of the gauge field.

17Article 29682 reviews the definition of group.
18Footnote 1 in section 1
19Article 92035
20Any finite group qualifies as a compact Lie group (Harlow and Ooguri (2021), end of section 1.1), one whose

elements are all disconnected from each other.
21If the group is not simple (as defined in article 92035), then using an action with different coefficients for different

parts of the group may be allowed. This article ignores that option.
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8 Gauge transformations

Let h be a map that assigns an element h(x) of the gauged group G to each point
x. In this article, any transformation of the link variables that replaces the value
of each link variable u(x, y) with the new value

u(h)(x, y) ≡ h(x)u(x, y)h−1(y) (2)

will be called a gauge transformation.22 Let I denote the identity element of the
gauged group G. A gauge transformation for which h(x) = I whenever x is not an
interior point will be called an interior gauge transformation.23,24 The group
of all interior gauge transformations will be denoted G, and a function of the link
variables will be called G-invariant if it is invariant under all such transformations.

Let Ḡ denote the group of all gauge transformations. Then G is a subgroup of
Ḡ, but its complement (the set of transformations in Ḡ but not in G) is not a group.
The appropriate complementary concept is the quotient group Ḡ/G, which consists
of transformations in Ḡ modulo transformations in G.25,26

22The same name is sometimes used for any transformation that leaves all observables invariant (Avery and Schwab
(2016), section 2.1). In this article, observables will be invariant under some of the transformations (2) (the ones
that act trivially on boundary points) but not necessarily under all them.

23If the spatial lattice doesn’t have any boundary points, then every gauge transformation is an interior gauge
transformation.

24This name is not standard. In continuous spacetime, interior gauge transformations have been called small
gauge transformations, and gauge transformations that have h(x) 6= I for one or more boundary points have been
called large gauge transformations (example: Miller (2021), text around equation (1.1)). This article doesn’t use
those names because they are often used differently, namely for gauge transformations that are/aren’t continuously
connected to the identity element of the gauge group (example: Fradkin (2022), section 22.2). The difference amounts
to using the words small and large to describe either the transformation’s support in space or the transformation’s
support in the gauge group. The last two sentences deliberately say gauge group, not gauged group (footnote 1 in
section 1).

25Article 29682
26This quotient group is a lattice version of the group of asymptotic symmetries in continuous spacetime

(Strominger (2017), equation (2.10.1)).
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9 Haar measure: definition

The Haar measure generalizes the Lebesgue measure to locally compact groups.
We’ll only need it for compact groups, a special case of locally compact groups.
This section reviews the definition, specialized to compact groups.27

Let G be a compact Lie group, and let C(G) be the space of continuous real-
valued functions from G to R. As usual, write f(g) for the real number that a
function f ∈ C(G) assigns to g ∈ G. The Haar measure defines an integral with
these properties:

• The integral
∫
dg f(g) is a real number.

• The integral is linear, which means∫
dg
(
r1f1(g) + r2f2(g)

)
= r1

∫
dg f1(g) + r2

∫
dg f2(g)

for all real numbers r1, r2 and all f1, f2 ∈ C(G).

• For any given h ∈ G,∫
dg f(g) =

∫
dg f(hg) =

∫
dg f(gh) =

∫
dg f(g−1).

•
∫
dg 1 = 1.

The Haar measure is uniquely determined by (a subset of) these properties. The
definition extends to complex-valued functions in the obvious way:∫

dg
(
fR(g) + ifI(g)

)
≡
∫
dg fR(g) + i

∫
dg fI(g),

where fR and fI are the real and imaginary parts of a complex-valued function f .

27This is based on theorem 4.1 in Salamon (2022).
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10 Haar measure: examples

When G is a finite group with n elements, the Haar measure is given by∫
dg f(g) ≡ 1

n

∑
g∈G

f(g).

When G = U(1), the Haar measure is given by∫
dg f(g) ≡ 1

2π

∫ 2π

0

dθ f(eiθ).

13
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11 The Hilbert space

This section introduces the Hilbert space that will be used for both the path integral
and hamiltonian formulations of models with gauge fields. States are represented by
elements of the Hilbert space, and observables are represented by linear operators
on the Hilbert space.28,29

Let [u] be the set of link variables associated with a given time t. A state30 is
represented by a G-invariant31,32 complex-valued function Ψ[u]. Given two states
Ψ1[u] and Ψ2[u], their inner product is

〈Ψ1|Ψ2〉 ≡
∫

[du] Ψ∗1[u]Ψ2[u] (3)

≡
∫ (∏

`

du(`)

)
Ψ∗1[u]Ψ2[u].

For each link variable u(`), du(`) is the Haar measure for the gauged group G.

28Article 03431
29Section 28 will specify which operators represent observables in these models.
30Most of this article uses the word state to mean a state-vector in the Hilbert space.
31Section 8
32The Hilbert space would be well-defined even without requiring the functions Ψ[u] to be G-invariant, but this

family of models only uses G-invariant functions to represent states. Section 25 will explain why.
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12 Preview of the path integral

In the Schrödinger picture, time evolution is a linear transformation Ψ→ Ψ′ from
a state Ψ at time t to a state Ψ′ at a later time t′ > t. In the path integral
formulation, this linear transformation has the form

Ψ′[u]t′ ∝
∫
<t′

[du] e−Sω[u]Ψ[u]t, (4)

where:

• [u]t denotes the set of link variables whose endpoints are both at time t,

• the action Sω[u] is a G-invariant function of all the link variables whose
endpoints are in the range ≥ t and ≤ t′,

• the integral is over of the link variables that have at least one endpoint in the
range ≥ t and < t′ (with no more than one endpoint at time t′).

The action also depends on a parameter 0 ≤ ω ≤ π/2 whose significance will be
explained in section 18, but here’s a preview. Time evolution should be unitary,
and we want the model defined by (4) to have a continuum limit with Lorentz
symmetry. When ω = 0, the action has a Lorentz-invariant continuum limit, but
then the path integral (4) is not unitary (not even in the continuum limit). To
achieve both unitarity and Lorentz symmetry, we must keep ω > 0 until after the
integrals are evaluated, and then we can extend the result to ω = 0 to get Lorentz
symmetry. Changing the value of ω is called Wick rotation. Section 18 will
explain this in more detail.

15
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13 Plaquette variables

Section 17 will express the action Sω[u] in terms of plaquette variables. This section
defines the plaquette variables.

A sequence of four directed links that traces around the perimeter of a square
is called a plaquette. Let x1, x2, x3, x4 be the points at the corners of a plaquette,
oriented sequentially around the perimeter. The quantity

W (x1, x2, x3, x4) ≡ trace
(
u(x1, x2)u(x2, x3)u(x3, x4)u(x4, x1)

)
(5)

is called a plaquette variable. The trace is defined using the defining unitary
representation of the gauged group G. The fact that the representation is unitary
implies

W (x4, x3, x2, x1) = W ∗(x1, x2, x3, x4). (6)

In words: reversing the plaquette’s orientation has the same effect on the plaquette
variable as complex conjugation does. When the corners of the plaquette don’t
need to be specified, the abbreviation

W (2) ≡ W (x1, x2, x3, x4) (7)

will also be used.
If the four corners of a plaquette are not all interior points,33 then the four

links in a plaquette variable might not all have associated link variables. Example:
suppose that x2 is an interior point, x1 and x3 are boundary points, and x4 is
neither. Then the links (x1, x2) and (x2, x3) have associated link variables, but the
links (x3, x4) and (x4, x1) do not. In this case, u(x3, x4) ≡ 1 and u(x4, x1) ≡ 1,34 so
the plaquette variable reduces to W (x1, x2, x3, x4) = trace

(
u(x1, x2)u(x2, x3)

)
.

33Section 6
34Section 7
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14 Properties of plaquette variables

Plaquette variables are G-invariant (invariant under interior gauge transforma-
tions).35 They are the smallest examples of Wilson loops,36 which are all are
G-invariant.

Let N denote the trace of the identity matrix in the defining unitary represen-
tation of the gauged group G (section 4). The value of N is determined by the
representation, not just by the abstract group G. Example: the groups U(1) and
SO(2) are isomorphic to each other, but their defining representations use N = 1
and N = 2, respectively.

If U is a unitary matrix of size N ×N , then37∣∣∣∣trace(U)

N

∣∣∣∣ ≤ 1 for all U

∣∣∣∣trace(U)

N

∣∣∣∣ = 1 only if U ∝ I (8)

This implies ∣∣∣∣W (2)

N

∣∣∣∣ ≤ 1. (9)

35Section 8
36Section 27
37More generally, if U and V are unitary, then f(UV ) ≤ f(U) + f(V ) with f(· · · ) ≡

√
1− |trace(· · · )/N |2, and

equality holds only if U or V is proportional to I (Wang and Zhang (1994)). Set V = U† to get (8).

17
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15 Two normalization conventions

When G is connected, a matrix U representing an element of the Lie group G
may be written as the exponential of a matrix representing an element of the Lie
algebra. The matrix U is unitary, so we can write

U = exp

(∑
k

θkTk

)
(10)

using a set of real variables θk, where T1, T2, ... is a set of linearly independent
antihermitian generators of the Lie algebra. The normalization of the generators Tk
is a matter of convention. Two different conventions are prevalent in the literature.
Both have the form38,39,40

trace(TjTk) = −νδjk, (11)

with typical values41

ν =

{
1 if G is abelian,

1/2 if G is nonabelian.

To accommodate both conventions, this article leaves the value of ν unspecified.

38Mnemonic: the Greek letter ν is transliterated to the letter “n” in english, and “n” stands for “normalization.”
39Article 90757 explains why we can choose a basis for the Lie algebra in which trace(TjTk) = 0 for all j 6= k.
40Many sources use hermitian generators instead, which introduces a factor of i in the exponent of (10) and

eliminates the negative sign in (11).
41Sources that use the ν = 1/2 convention include Peskin and Schroeder (1995), equation (15.96); Montvay and

Münster (1997), equation (3.25); Creutz (1983), equation (6.7)

18
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16 Notation for the coefficients in the action

Every plaquette is one of two types: it is either a time-space plaquette, which is
made from both timelike links and spacelike links, or it’s a space-space plaquette,
which is made from only spacelike links. To accommodate Wick rotation and a
small-dt approximation, we need to use two different coefficients in the action:
one coefficient βt-s that multiplies terms involving time-space plaquettes, and one
coefficient βs-s for terms involving space-space plaquettes. The notation

β(2) ≡
{
βt-s if 2 is a time-space plaquette,

βs-s if 2 is a space-space plaquette

will also be used. The values of the coefficients are

βt-s =
2N

g2ν
× εd−3

dt
× 1

ie−iω
βs-s =

2N

g2ν
× εd−5dt× ie−iω (12)

where

• dt and ε are the lattice spacings in the time and space directions, respectively,

• d is the number of dimensions of spacetime,

• N is the trace of the identity matrix (section 14),

• ν ∈ {1, 1/2} is defined in section 15,

• ω is the Wick rotation parameter that was previewed in section 12,

• g is a positive real number that would be called the coupling constant in
the context of quantum chromodynamics.

The coefficients β(2) must be dimensionless for every d, so the units of g2 must be
[g2] = [εd−4].

19
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17 The action

The path integral will be expressed in terms of an action, which is a function of
all the link variables. The action is42

Sω[u] =
∑
2

β(2)

2

(
1− W (2)

N

)
(13)

where the sum is over all oriented plaquettes, so that each of the two possible
orientations contributes its own term to the sum. The sum includes plaquettes
involving fewer than four link variables,43 which ensures that the action depends
on all the link variables, including those with only one interior endpoint.44 Square
brackets are used to indicate that the action is a function of a number of variables
that diverges in the continuum limit, namely all the link variables. The quantities
β(2) and N were defined in section 16.

The action is G-invariant because the plaquette variables W (2) are G-invariant.
This property is not affected by Wick rotation, which only affects the values of the
coefficients β(2).

When the Wick rotation parameter ω is π/2, the coefficients β(2) are real and
positive, so the euclidean action Sπ/2[u] is real-valued and non-negative. The fact
that it is real-valued follows from equation (6). The fact that it is non-negative
follows from the inequality (9).

42This particular choice is the Wilson action. Many other choices give the same continuum limit, and some of
them make numerical calculations more efficient, but the Wilson action is simpler.

43Section 13
44Harlow and Ooguri (2021), text below equation (3.26)

20
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18 Path integrals, unitarity, and Lorentz symmetry

When ω = 0, the path integral (4) becomes the lorentzian path integral

Ψ′[u]t′ ∝
∫
<t′

[du] eiSL[u]Ψ[u]t, (14)

where the real-valued function SL[u] is defined by

iSL[u] = −Sω[u]
∣∣
ω=0

.

The subscript L stands for lorentzian. The function SL has a Lorentz-invariant
continuum limit, which gives us an intuitive reason to anticipate that the model
defined by (14) has Lorentz symmetry at resolutions much coarser than the lattice
scale, if (14) defines a quantum model at all. According to the general principles
of quantum theory, time evolution should be unitary. The linear transformation
defined by equation (14) is unitary for some models, but for most models it isn’t.
It is unitary for the models constructed in article 63548, but it’s not unitary for the
models constructed in this article, not even in the continuous-time limit.45,46 The
rest of this section explains how to restore unitarity without losing the intuitive
reason to expect that the model has a Lorentz-symmetric continuum limit.

Figure 1 summarizes the idea. Start by setting ω = π/2 in equation (4), which
gives the euclidean path integral.47 The transformation Ψ→ Ψ′ defined by the
euclidean path integral has the form Ψ′ = MΨ for some positive definite operator
M .48 The fact that M is positive definite implies that is can be written as M =
e−X for some hermitian operator X. Replacing e−X with e−iX dt would make time
evolution unitary.49 That replacement is not equivalent to Wick rotation, but it

45Matsumoto (2022)
46Article 51033 uses a simple example to explain why it’s not unitary.
47Instead of starting with the euclidean path integral, we could start with ω close to zero (still positive), but

starting with ω = π/2 makes the reasoning easier to articulate.
48When the interval t′− t is a single time step dt, this operator is called the transfer matrix. Article 43634 shows

that the transfer matrix is positive definite.
49Kanwar and Wagman (2021), page 2
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euclidean
action on a

spacetime lattice

Lorentz
invariant
action

positive-definite
path integral on a 
spacetime lattice

dt, dx → 0
Wick rotation

QFT on a
spatial lattice

dt → 0
Wick rotation

Figure 1 – Graphic depiction of how Wick rotation is used to construct a quantum model with
unitary time evolution and a Lorentz-symmetric continuum limit. QFT stands for quantum
field theory. Along the bottom row, the limit dt → 0 is taken before Wick rotation to ensure
that time evolution ends up being unitary. The fact that the top and bottom rows both use
essentially the same combination of ideas (dt→ 0 and Wick rotation) gives us an intuitive reason
to expect that the resulting quantum model should have a Lorentz-symmetric continuum limit.

becomes equivalent in the limit dt → 0. This is important because the intuition
about the resulting model’s Lorentz symmetry comes from using the essentially the
same ideas in the top and bottom rows of figure (1).

In the small-dt approximation, the evolution equation (4) for a single time step
becomes

Ψ′[u]t+dt = exp
(
−iH e−iωdt

)
Ψ[u]t (15)

for an operator H that can be determined explicitly.50 The operator H is hermitian
and is independent of the parameters ω and dt, so taking ω → 0 in equation
(15) makes the transformation Ψ → Ψ′ unitary, as desired, and we end up in the
hamiltonian formulation with an explicit expression for the hamiltonian H.

If unitarity were the only thing we cared about, then we would not need to go
through all this. We could start with the hamiltonian formulation instead, which

50Sections 23-24
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is manifestly unitary. Starting with the path-integral formuluation has advantages,
though, including these:

• It gives us an intuitive reason to expect that the resulting quantum model
has Lorentz symmetry.

• It gives us a geometric understanding of why quantum field models with
Lorentz symmetry also have CPT symmetry.51

• The path integral with ω > 0 leads to a concise expression for correlation
functions in the vacuum state that doesn’t require having any explicit ex-
pression for the vacuum state itself.52

The first reason is the one emphasized in this article.

51Goodhew et al (2024), section 2.2
52Article 63548
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19 Wick rotation and terminology

The lorentzian and euclidean versions of the path integral are sometimes called
real-time and imaginary-time path integrals, respectively. Those names come
from equation (15), in which all dependence on ω and dt occurs in the combination
e−iωdt. When ω is rotated from ω = 0 to ω = π/2, that combination changes from
dt to i dt, as though we were merely replacing all occurrences of dt with i dt in the
path integral.

Those names can be misleading, though, because Wick rotation from ω = 0 to
ω = π/2 does not always replace all occurrences of dt with i dt in the path integral.
It does in models whose field variables are all associated with individual points of
the lattice,53 but models involving gauge fields have field variables associated with
links of the lattice. In that case, recovering the correct Lorentz-invariant continuum
limit of the action SL[u] uses dt in the relationship u(`) = edtA(`), where u(`) is
the link variable associated with a timelike link ` and A(`) becomes the timelike
component of a local potential in the limit dt → 0.54 The link variable u(`) is
an element of the gauged group G, and A(`) is an element of the corresponding
Lie algebra. When G is represented as a subgroup of a unitary group,55 u(`) is a
unitary matrix and A(`) is an antihermitian matrix, so we can’t replace dt → i dt
(or conversely) without ruining that essential relationship.56 For that reason, this
article doesn’t use the names real-time or imaginary-time when referring to the
path integral.

The names lorentzian and euclidean may be slightly better, but they’re still not
perfect. They’re not perfect because they emphasize a side-effect of Wick rotation
instead of emphasizing the reason for using Wick rotation. For the models consid-
ered in this article and in articles 63548 and 51033, a side-effect of Wick rotation

53This includes the models constructed in articles 63548 and 51033.
54Section 20
55Section 4
56We could avoid that issue by working in the temporal gauge (in which all timelike components of the local

potential are zero), which sections 23-24 will do anyway when deriving the hamiltonian, but that doesn’t change this
paragraph’s message.
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is to change the signature of the spacetime metric from lorentzian to euclidean (or
conversely), but that way of thinking about Wick rotation becomes tricky in mod-
els with spinor fields. Various signature-based definitions of Wick rotation have
been proposed, and they’re not all equivalent to each other when spinor fields are
involved.57 We should remember, though, that changing the signature of the space-
time metric is not the purpose of Wick rotation. The purpose of Wick rotation is
to ensure that time evolution is unitary when a model is constructed using a path-
integral formulation. The fact that it often amounts to changing the signature of
spacetime is interesting and maybe even important,58 but it’s not the effect that
matters in this article.

57Examples include Kontsevich and Segal (2021) and Nieuwenhuizen and Waldron (1997). A brief review of
different approaches is given in section 1 of Mountain (2000)

58Witten (2021) reviews and elaborates on the role of euclidean path integrals in the context of quantum gravity
research.
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20 Continuum limit of the action

Suppose that the gauged groupG is connected. This section shows that in that case,
the euclidean action (13) has a continuum limit that respects the symmetries of d-
dimensional euclidean spacetime, which becomes lorentzian after changing the Wick
rotation parameter from ω = π/2 to ω = 0. This gives us a reason to anticipate
that the quantum model might also have a Lorentz-symmetric continuum limit.59

The action Sω[u] is a function of all the link variables u. We’re assuming that
G is connected, so we can write a link variable u(x, y) as60

u(x, y) = eθ(x,y), (16)

where θ(x, y) belongs to the Lie algebra of the gauged group G. For a given oriented
plaquette 2, write its four corners as

x x+ δ1x x+ δ1x+ δ2x x+ δ2x

in cyclic order around the plaquette. The displacements δ1x and δ2x are orthogonal
to each other. Denote their magnitudes by ε1 and ε2, which may be either dt or ε
according to whether the displacement is timelike or spacelike. Define quantities
A1 and A2 by writing

θ(x, x+ δ1x) = ε1A1(x) θ(x+ δ2x, x+ δ2x+ δ1x) = ε1A1(x+ δ2x)

θ(x, x+ δ2x) = ε2A2(x) θ(x+ δ1x, x+ δ1x+ δ2x) = ε2A2(x+ δ1x).

59More importantly, the model is believed to have a nontrivial continuum limit when d ∈ {3, 4}. The case d = 1
is empty, because a one-dimensional lattice doesn’t have any plaquettes, and Lorentz symmetry is trivial in one-
dimensional spacetime anyway. The case d = 2 has a trivial continuum limit with Lorentz symmetry (article 07611).
The interesting cases are d ∈ {3, 4}, and some of the evidence that these cases have a nontrivial Lorentz-symmetric
continuum limit when G = SU(Nc) are reviewed in article 07611.

60This follows from the fact that every element of a compact connected Lie group is contained in a torus (Hall
(2015), theorem 11.9). It is not necessarily true for other connected Lie groups (Hall (2015), example 3.41 and the
text below corollary 3.47).
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The setup is depicted here:61

article

Plaquette pair

x x + δ1x

x + δ1x + δ2xx + δ2x

A1(x)

A2(x + δ1x)

−A1(x + δ2x)

−A2(x)

© 2018-2024 Randy S
For the latest version and the revision history, visit cphysics.org/article/

1

In the continuum limit, the quantities Ak will become the components of a local
potential.62 Use equations (5)-(7) to get

W (2) = trace
(
u(2)

)
(17)

with63

u(2) ≡ e−ε2A2(x)eε1A1(x)eε2A2(x+δ1x)e−ε1A1(x+δ2x). (18)

To determine the continuum limit of the action 13, we should consider what happens
to (18) in the limit where the quantities Ak(x) change arbitrarily little from one
point to the next, which we can describe formally as a limit of arbitrarily small εk.
The factors of εk that are implicit in the displacements δkx can be made explicit
by defining

∂jAk(x) ≡ Ak(x+ δjx)− Ak(x)

εj
, (19)

which implies
Ak(x+ δj) = Ak(x) + εj∂jAk(x).

Use this in (18) to get

u(2) = e−ε2A2(x)eε1A1(x)eε2A2(x)+ε1ε2∂1A2(x)e−ε1A1(x)−ε1ε2∂2A1(x). (20)

61The signs come from equation (1).
62Article 11617
63The identity trace(XY ) = trace(Y X) was used to order the factors in a way that will be convenient later.
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As εk → 0, the right-hand side of (19) becomes a derivative, as suggested by the
notation on the left-hand side. The small-εk limit of W (2) should be defined so
that these derivatives remain finite, because the small-εk limit is really meant to
be the limit where the quantities Ak(x) change arbitrarily little from one point to
the next. By taking the limit with the derivatives held fixed, section 21 will derive
the identity

u(2) + u−1(2) = 2 + (ε1ε2F12)
2 +O(ε5) (21)

with
Fab ≡ ∂aAb − ∂bAa + [Aa, Ab]. (22)

Use this in equations (17) and (13) to get

Sω[u] =
−ε2aε2b
2N

∑
a<b

βab trace(F 2
ab) +O(ε5), (23)

using βab as another way to write β(2) when 2 is in the a-b plane. The quantity
−trace(F 2

ab) is positive because equation (16) does not have an i in the exponent,
so Fab is antihermitian (instead of hermitian) in a unitary representation of the Lie
group. Using the values of β that were given in section 16, we can use equation
(23) to get the continuum limit64

Sπ/2[u] =
−1

2νg2

∫
ddx

∑
a<b

trace(F 2
ab) =

−1

4νg2

∫
ddx

∑
a,b

trace(F 2
ab) (24)

when the Wick rotation parameter ω is π/2. When ω = 0 in equation (23), the
corresponding integral is Lorentz invariant, as promised in section 18.

64Many calculations (like the ones cited in article 07611) use a small-A expansion, which can be recast as a small-g
expansion by rescaling A 7→ gA. To apply that computational method to the model defined on a lattice, we may
want to expand the action in powers of A without taking ε→ 0. The details of that expansion won’t be worked out
here, but one feature is worth mentioning: in equation (23), the terms of order ε5 (and higher) are also of order A3

(and higher), so the quadratic-in-A part of the result is the same in both the small-A and small-ε expansions.

28



cphysics.org article 89053 2024-12-14

21 Derivation of (21)

This section derives (21) from (13) and (20) by using the identity65

esAesB = esA+sB+s2[A,B]/2+O(s3), (25)

where A,B belong to the Lie algebra of G, and s is a real number. This identity is
easy to verify by expanding both sides in powers of s up to order s2.

Use (25) to combine the first two factors in (20) and also to combine the last
two factors in (20). This gives

u(2) = e(ε1A1−ε2A2)−ε1ε2[A2,A1]/2+O(ε3)

× e(ε2A2−ε1A1)−ε1ε2[A2,A1]/2+ε1ε2(∂1A2−∂2A1)+O(ε3). (26)

Now use (25) again to combine the two factors in (26), which gives

u(2) = er r ≡ ε1ε2F12 +O(ε3) (27)

with F12 defined by (22). The sum in (13) includes both orientations of each
plaquette, and reversing the orientation replaces u(2) with its inverse, so the action
depends only on the combinations u(2) + u−1(2). Use (27) in u(2) + u−1(2) =
er + e−r to get the desired result (21).

Article 76708 considers the holonomy around an infinitesimal closed loop in
smooth spacetime. That leads to a smooth-spacetime version of the same result,
where the quantities Fab are the components of the field strength associated with
a local potential A.

65A formula for all the terms in the exponent on the right-hand side and conditions under which it converges
are reviewed in (Casas and Murua (2009), section 1 and theorem 3.2). Each term has the form [X1, [X2, [X3, · · · ]]]
with each Xk ∈ {A,B}, which says that it belongs to the Lie algebra generated by A and B. This is the Baker-
Campbell-Hausdorff (BCH) theorem (Hofstätter (2021); Hall (2015), section 5.3).
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22 Time evolution for a single time step

Choose two consecutive times, t and t′ ≡ t + dt. Write u and u′ to denote link
variables associated with times t and t′, respectively. Write u0 to denote link
variables that have one endpoint at time t and the other at time t′,66 and write P0

to denote the set of oriented plaquettes that use such timelike links. We can take
the action for a single time step to be67,68

s[u′, u0, u] =
βt-s

2

∑
2∈P0

(
1− W (2)

N

)
+
βs-s

2

∑
2∈t

(
1− W (2)

N

)
, (28)

where the sum over “2 ∈ t” is over oriented plaquettes that lie entirely within
the spatial lattice at time t. The action (13) for multiple time steps is a sum of
single-time-step actions (28). In terms of (28), the path integral for a single time
step is

Ψ′[u′] ∝
∫

[du0][du] e−s[u
′,u0,u] Ψ[u]. (29)

Iterating this gives the path integral for an arbitrary number of time steps, which
is written in equation (4) using slightly different notation.

Everything on the right-hand side of (29) – the Haar measure, the action, and
the initial state – is invariant under interior gauge transformations, so the final
state Ψ′[u′] is also invariant under interior gauge transformations, as it must be to
represent an element of the Hilbert space.

66Mnemonic: 0 is the standard index-value for the timelike component of a vector, and here it’s used to indicate
a link in a timelike direction.

67Section 16 defined βt-s and βs-s.
68Equation (28) is not symmetric with respect to the times t and t′: it includes purely-spacelike plaquettes at time

t but not at time t′. To prove that the transfer matrix is positive definite, article 43634 uses a symmetric version
instead, and that’s important for the argument in section 18. To simplify the notation, sections 23-24 will use the
asymmetric version (28) to derive the hamiltonian. That derivation can easily be adapted to use the symmetric
version, but that would complicate the notation without adding any further clarity to the derivation.
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23 Temporal gauge

This section derives the identity∫
[du0][du] e−s[u

′,u0,u] Ψ[u] =

∫
[du] e−s[u

′,1,u] Ψ[u]. (30)

Using (30) in (29) gives the path integral in the temporal gauge. Section 24
will explain how to derive the hamiltonian, starting with the path integral in the
temporal gauge.

Start with the integral ∫
[du] e−s[u

′,u0,u] Ψ[u]. (31)

Integrating this over [u0] gives the left-hand side of (30). The definition of the
lattice that was given in section 6 ensures that both endpoints of each timelike
link are interior points, not boundary points, so every link in the set [u0] has an
endpoint at the initial time t that is not a boundary point. Let h denote a gauge
transformation function as in equation (2). For every interior point x at the initial
time t, we can choose h(x) so that uh(`) = 1 for the timelike link ` that has x
as one of its endpoints. This gauge transformation makes all the link variables in
[u0] equal to 1. The Haar measure is invariant under gauge transformations,69 the
initial state Ψ[u] is invariant under interior gauge transformations,70 and the gauge
transformation that we just constructed doesn’t affect any of the links in the set
[u′]. This shows that the quantity (31) is independent of u0, and the Haar measure
is defined so that

∫
[u0] = 1, so this establishes the identity (30).

Section 22 already established that the function of [u′] defined by the left-hand
side of (30) is invariant under interior gauge transformations, so the function of [u′]
defined by the right-hand side of (30) is, too.

69Section 9
70Section 11
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24 The hamiltonian

Use equations (29) and (30) to write the path integral for a single time step as

Ψ′[u′] ∝
∫

[du] e−s[u
′,1,u] Ψ[u]. (32)

Equation (28) gives

s[u′, 1, u] = βt-s

∑
`

1−
trace

(
u′(`)u−1(`)

)
+ c.c.

2N

+
βs-s

2

∑
2∈t

(
1− W (2)

N

)
,

where the sum over ` is over undirected links (more precisely, over only one of the
two possible directions of each undirected link) in the spatial lattice.

The derivation of the hamiltonian works just like the derivation shown in article
51033 for principal chiral models,71 so it won’t be repeated here.72 The coefficients
are different, though,73 so this section shows the result in an easy representative
case, namely when G is a connected abelian group, such as a direct product of
copies of U(1) or SO(2).

A matrix U representing an element of a connected Lie group G (abelian or
not) may be written as the exponential of a matrix representing an element of the
Lie algebra. The matrix U is unitary, so we can write

U = exp

(∑
k

θkTk

)
71The field variables here are associated with links instead of with points, and the “potential” term (with no time

derivatives) has a different structure, but the derivation of the hamiltonian still works the same way.
72Derivations are shown in Harlow and Ooguri (2021), appendix F (for discrete G, and a partial derivation for

connected G); in Creutz (1983), chapter 15 (for connected G); in Fradkin and Susskind (1978) (for G = Z2); and in
Kogut (1983), section V.A (for G = SU(2))

73In this article, the continuum limit of the action has the form ∼ 1
g2

∫
ddx trace(F 2), where the field strength

F has the same units as 1/|x|2. For the principal chiral models considered in article 51033, the continuum limit
of the action has the form ∼ 1

g2

∫
ddx (∂U)2, where U is dimensionless. (U is an element of G, whereas F is an

element of the Lie algebra of G.) The action must be dimensionless, so g2 has dimensions |x|d−4 in this article but
has dimensions |x|d−2 in article 51033.
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using a set of real variables θk, where T1, T2, ... is a set of linearly independent
antihermitian generators of the Lie algebra, normalized as in equation (11). Now
suppose that G is abelian, so that all the generators Tj commute with each other.
Then the hamiltonian may be derived using an easy generalization of the process
that article 51033 uses for the O(2) nonlinear sigma model. The result is74,75

H =
−ct-s

2

∑
`

∑
k

(
∂

∂θk(`)

)2

+ V (33)

where θk(`) is defined by

u(`) = exp

(∑
k

θk(`)Tk

)
,

the operator V is defined by76

VΨ[u] =
cs-s

2

∑
2

(
1− W (2)

N

)
Ψ[u],

and the coefficients ct-s and cs-s are defined by

i dt ct-s =
N

νβt-s
i dt cs-s = βs-s.

Time evolution is unitary (the hamiltonian is hermitian) when the Wick rotation
parameter ω is zero, and then the coefficients are

ct-s =
g2

εd−3
cs-s =

N εd−5

νg2
.

The generalization of (33) to not-necessarily-abelian gauged groups G is called the
Kogut-Susskind Hamiltonian. The hamiltonian used for U(1) electrodynamics
in article 51376 is a special case of (33) with only one term in the sum over k.

74The sum over ` is over undirected links in the spatial lattice.
75For general G, the second-derivative term is the laplacian on the group manifold.
76The sum over 2 is over oriented plaquettes in the spatial lattice.

33



cphysics.org article 89053 2024-12-14

25 Gauge invariance and reversibility

This section shows that if time evolution is reversible (which is a prerequisite for
being unitary), then states must be G-invariant, as required in section 11.

Let let Ψ(h)[u] ≡ Ψ[u(h)] be the state obtained from Ψ[u] by an interior gauge
transformation (2). After a single time step, the state Ψ(h)[u] gives this final state:77∫

[du0][du] e−s[u
′,u0,u] Ψ[u(h)].

The action s is G-invariant, so this is the same as∫
[du0][du] e−s[u

′,u
(h)
0 ,u(h)] Ψ[u(h)]. (34)

The variables u′ are not affected because we can choose the function h in equation
(2) to satisfy h(x) = I for all points x at the final time t′, independently of its
values at the initial time t.78 The Haar measure is both left- and right-invariant,
so this is the same as ∫

[du
(h)
0 ][du(h)] e−s[u

′,u
(h)
0 ,u(h)] Ψ[u(h)], (35)

which can be written as ∫
[du0][du] e−s[u

′,u0,u] Ψ[u] (36)

just by changing the way the integration variables are labelled. This shows that
the final state produced by Ψ(h)[u] is the same as the one produced by Ψ[u], so
time evolution would not be reversible if states were not G-invariant.79

77Equation (29)
78The action is still invariant even if h were time-independent (the same at times t and t′), but then u′ would be

affected, which would change the final state. Requiring reversibility doesn’t preclude global symmetries.
79This argument wouldn’t apply if the action were only invariant under time-independent transformations in G,

but then the action wouldn’t have a Lorentz symmetric continuum limit.
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26 Gauge invariance and the boundary

Let G ′ be the group of gauge transformations that leave every plaquette variable
invariant.80 The group G of interior gauge transformations is a subgroup of G ′,
but if the lattice has boundary points, then G ′ might be larger than G, so some
transformations in G ′ might have a nontrivial effect on states in the Hilbert space,
which are only required to be G-invariant.81 This section shows that gauge trans-
formations in G ′ commute with time evolution: if the initial state is G-invariant,
then applying a gauge transformation h ∈ G ′ first and then applying time evolution
gives the same final state as applying time evolution first and then applying h.

Every plaquette that contributes to the action involves at least one link vari-
able, which implies that it involves at least two adjacent interior points. Every
nearest neighbor to an interior point is either another interior point or a boundary
point, so every plaquette that contributes to the action involves at least two link
variables. Plaquette variables that involve four link variables are invariant under
arbitrary gauge transformations, so G ′ is determined by plaquettes whose corner-
lists (x1, x2, x3, x4) involve either two or three link variables. The corresponding
plaquette variables have one of these two forms:

• x2 and x3 are interior points, and x1 and x4 are boundary points,

• x2 is an interior point, x1 and x3 are boundary points, and x4 is neither.

In both cases, if we write the plaquette variable as trace(g) where g is the product
of the link variables, then the effect of an arbitrary gauge transformation is

trace(g)→ trace
(
gh−1(xk)h(x1)

)
with k = 4 in the first case and k = 3 in the second case.82 To be invariant

80Transformations in G′ leave the action invariant. Proving that these are the only gauge transformations that
leave the action invariant would require ruling out the possibility of cancellations between different terms in the sum
over plaquettes.

81Section 11
82The point x4 is not involved in the second case because in that case the links (x3, x4) and (x4, x1) don’t have

associated link variables, and gauge transformations only affect link variables.
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for all g, this must at least be invariant when g = I, which gives the condition
trace(h−1(xk)h(x1)) = trace(I), and then the relationships (8) imply

h(xk) = h(x1). (37)

Such a pair of boundary points {x1, xk} will be called a constrained pair. The
spatial lattice is the same at every time,83 so if x and y are two points on the
boundary that differ only in the time coordinate, then they are connected to each
other by a sequence of constrained pairs, which gives h(x) = h(y). This shows that
gauge transformations in G ′ are independent of time on the boundary. From here,
the claim at the beginning of this section may be established by using an argument
similar to the one in section 25, but with (u′)(h) instead of u′ in equations (34)-(36).

The reasoning in the preceding paragraph may also be used to determine the
effect of transformations in G ′ at points on the spatial boundary at a single time,
which determines its effect on states in the Hilbert space. The group G ′ includes
transformations for which h(x) is the same at all boundary points, but it may
also include transformations with h(x) 6= h(y) for some pairs of boundary points
x and y. This occurs if x and y are not connected to each other by any sequence
of constrained pairs, a possibility that is not excluded by the rules established in
section 6. The analog of this phenomenon in smooth space would be having a
spatial boundary with two or more components that cannot be connected to each
other by paths in the boundary. In that case, G ′ includes gauge transformations
for which h(x) is constant on each connected component of the boundary but may
differ from one connected component to another.

The group G ′ includes gauge transformations for which the function h in (2)
is constant in space and time. These are called global gauge transformations.
Global gauge transformations are examples of internal symmetries.84,85

83Section 6 imposed this condition on the spacetime lattice.
84A symmetry is called internal if it doesn’t change where/when any observables are localized in spacetime.
85Some observables (like observables corresponding to Wilson lines, defined in sections 27-31) may be sensitive to

global gauge transformations for which h is not in the center of the gauged group G (Harlow and Ooguri (2021), last
sentence in the paragraph with equation (8.8)).
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27 Wilson loops and Wilson lines

If r is any matrix representation of G, not necessarily faithful, then the function

trace
(
r
(
u(x1, x2)

)
r
(
u(x2, x3)

)
· · · r

(
u(xn−1, xn)

))
with xn = x1 (38)

is G-invariant. This function will be called a Wilson loop. The traces ensures
that the factor of h−1(xn) = h−1(x1) cancels the factor of h(x1) when a gauge
transformation is applied.86 The representation r is used to define the trace. Even
if G is already defined as a matrix group, we can use a different representation r
in (38). Different choices of r define different G-invariant functions. A plaquette
variable is a special case in which the loop is the perimeter of a plaquette and the
representation r is the one used to define the gauged group G.

Another example of a G-invariant function is the Wilson line

r
(
u(x1, x2)

)
r
(
u(x2, x3)

)
· · · r

(
u(xn−1, xn)

)
if x1 and xn are boundary points. (39)

No trace is needed in this case,87 because transformations in G have h(x) = I at
all boundary points x.

Wilson loops and Wilson lines will both be denoted W (C), where C (for curve)
is the sequence of directed links defined by the sequence of points x1, x2, ..., xn.
These functions correspond to a linear operators on the Hilbert space, using a
correspondence that sections 28-30 will describe. Such an operator will be called
a Wilson (loop or line) operator and denoted Ŵ (C). The operators are often
just called Wilson loops and Wilson lines, without the word operator,88,89 but
distinguishing between the functions (38)-(39) and the corresponding operators
will be important in sections 28-32.

86If G is abelian, then this cancellation occurs without the trace, but the trace is essential when G is nonabelian.
87Harlow and Ooguri (2021), text around equations (3.1) and (3.2)
88Peskin and Schroeder (1995), section 15.3
89Some authors use these names for the result of evaluating a path integral with this function in the integrand

(Montvay and Münster (1997), section 3.2.4).
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28 Observables

In quantum theory, observables are represented by linear operators on a Hilbert
space. The Hilbert space defined in section 11 uses only G-invariant functions, so
observables in this model must preserve that condition: the result of applying an
observable to a G-invariant function must be another G-invariant function. In the
present model, every normal operator that satisfies this condition will be included
in the set of observables.90

One example is the operator f̂ defined by91

(f̂Ψ)[u] ≡ f [u]Ψ[u] (40)

for all Ψ[u] in the Hilbert space, where f [u] is any complex-valued G–invariant
function of the link variables in the spatial lattice.92 If Ψ[u] is G-invariant, then so
is f [u]Ψ[u], so the operator that replaces Ψ with fΨ qualifies as an observable.

Quantum field theory is a refinement of quantum theory in which observables
are associated with regions of spacetime. If the function f [u] in (40) is made only
of link variables in the spatial lattice at time t and that are all contained within a
spatial region R, then f̂ defines an observable localized in R at time t. One example
is a Wilson operator Ŵ (C) that only involves points at time t. This observable
is extended in space (along C) but not in time. Observables that are extended in
time can also be described in the path integral formulation. Sections 29-31 will
explain how that works.93

90A normal operator is an linear operator that commutes with its adjoint. At its core, an observable is represented
by a collection of projection operators satisfying certain properties (article 03431). Article 74088 shows that every
normal operator defines such a set of projection operators in a natural way, so observables can be represented as
normal operators. Using a self-adjoint operator (a special type of normal operator) to represent an observable amounts
to using real numbers to label the possible measurement outcomes. Using normal operators amounts to allowing
complex numbers as labels. Using the raw set of projection operators amounts to leaving the labels unspecified.

91Most normal operators cannot be written this way.
92All such operators commute with each other because all complex-valued functions commute with each other. In

particular, such an operator commutes with its adjoint (defined by replacing ω[u] with its complex conjugate), so it
is a normal operator.

93Typical introductions don’t mention some of the issues that sections 29-31 will emphasize. This article emphasizes
them to clarify the connection to the general principles of quantum theory in article 03431.
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29 Path integrals and the Heisenberg picture

From now on, the single-time-step version of equation (4) and the ω = 0 version of
equation (15) will be treated interchangeably. This is valid when approaching the
limits dt → 0 and ω → 0, in that order. The abbreviation U(t) ≡ exp(−iHt) will
be used, and X† will denote the adjoint of an operator X.

Consider the path integral

Ψf [u]t′ ∝
∫
<t′

[du] e−Sω[u]f [u]Ψ[u]t. (41)

This is like (4) but with a factor of f [u] inserted into the integrand, and the notation
is slightly different: the final state is denoted Ψf (instead of Ψ′) to indicate its
dependence on the function f in the integrand. If the function f [u] depends only
on link variables at a single time tf with t ≤ tf < t′, then equation (41) becomes

|Ψf〉 = U(t′ − tf)f̂U(tf − t)|Ψ〉 (42)

in the limits dt → 0 and ω → 0, where f̂ is defined as in section 28. In the
Schrödinger picture,94 we can describe (42) as the result of letting an initial state

|Ψ〉 evolve forward in time from t to tf , applying an operator f̂ , and then letting
the resulting state continue evolving in time from tf to t′.

Now let Φ be some other initial state, not necessarily the same as Ψ, and
consider the inner product 〈Φ1|Ψf〉. The subscript 1 indicates that the function
Φ1[u] is defined using the trivial function f [u] = 1 in the integrand of the path
integral. Equation (42) implies

〈Φ1|Ψf〉 = 〈Φ|U †(tf − t)f̂U(tf − t)|Ψ〉. (43)

The combination U †(tf − t)f̂U(tf − t) on the right-hand side is the time-dependent

version of f̂ in the Heisenberg picture.94 We could write left-hand side of (43)

94Article 22871
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as a path integral by using equations (3) and (42), but a slight modification is
appropriate when the Wick rotation parameter ω is nonzero.95 To motivate the
modification, define the operator M as in section 18, so that the time evolution
equation for a single time-step is Ψ→MΨ. The operator M is defined for arbitrary
ω, but the relationship M † = M−1 holds only for ω = 0. That matters because the
the inner product defined in equation (3) gives 〈MΦ|MΨ〉 = 〈Φ|M †MΨ〉, which is
not necessarily equal to 〈Φ|Ψ〉 unless M † = M−1. If we want the inner product of
MΨ with MΦ to be equal to the inner product of Ψ with Φ for arbitrary ω, then
we need to generalize the inner product defined in equation (3) to account for time
evolution. In the limit dt → 0, equation (15) shows that replacing M → M−1 is
the same as replacing dt→ −dt. In the same limit, replacing dt→ −dt is also the
same as replacing Sω[u]→ −Sω[u], so the goal can be achieved by defining

〈Φ1|Ψf〉 ≡
∫

[du]
(
Φ+

1 [u]
)∗

Ψ−f [u] (44)

with

Ψ±f [u]t′ ∝
∫
<t′

[du] e±Sω[u]f [u]Ψ[u]t. (45)

Equation (45) is just like (41) but with the factor exp(−Sω[u]) generalized to
exp(±Sω[u]). The identity

exp
(
Sω[u]

)
=
(
exp

(
− Sω[u]

))∗
when ω = 0

ensures that (44) reduces to (3) when ω = 0.
Altogether, the relationship (43) illustrates how path integrals may be used to

represent operators in the Heisenberg picture.

95Usually, instead taking ω = π/2 as in this section, an infinitesimal value 0 < ω � 1 is used so that the
path integral is almost lorentzian (the “±iε” prescription). This is essentially the “timefolding” formalism illus-
trated in section 1.2 in Grabovsky (2023), usually called the closed time path formalism (Cooper (1995)) or the
Schwinger–Keldysh or in-in formalism (Nastase (2019), chapter 72; Mou et al (2019), section 1).
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30 Operators extended in time

Now suppose that the function f [u] in (41) is a Wilson loop or line W (C) extended
in the time direction. The range of times over which C extends must be contained
between the initial and final times (t and t′) in the path integral (41). This is
implicit in the notation on the left-hand side, which says that link variables that lie
in the spatial lattice at time t′ are the only the only non-integrated link variables
on the right-hand side.96 If this condition is satisfied, then equation (41) defines
a linear operator on the Hilbert space, but that operator is not localized in time.
The time evolution of the state and the effect of the operator are intermingled
with each other, so its effect cannot be properly described in the usual Schrödinger
picture of a state evolving incrementally from one time-step to the next. That’s
okay, because we can use the Heisenberg picture instead.

If we use the symbol f̂ to denote the operator defined by

〈Φ1|Ψf〉 = 〈Φ|f̂ |Ψ〉 (46)

for a specific function f [u] in equation (41) covering a specific range of times,
then shifting the function f [u] forward in time by an amount δt gives the operator

U †(δt)f̂U(δt), just like in equation (43). The difference is that now f̂ itself is not
localized at any single time, but only in a finite time interval. That’s not a problem:
in the Heisenberg picture, states are timeless, so the applying an extended-in-time
operator f̂ to a state |Ψ〉 does not cause any conceptual trouble.

96Otherwise, the resulting function would depend on more than just the link variables in a single spatial slice, so
it would not represent an element of the Hilbert space even though it would still be G-invariant.
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31 Observables extended in time

The operators considered in section 30 are relatively easy to describe in the path
integral formulation, but they’re not always observables. An observable is repre-
sented by a normal operator (an operator that commutes with its adjoint), and
the operators considered in section 30 typically don’t satisfy this condition. To see
why, consider a simple special case: suppose that the function f [u] in (41) is the
product of two real-valued G-invariant functions, f [u] = fA[u]fB[u], where fA[u]
depends only on link variables associated with time tA, and fB[u] depends only on
link variables associated with time tB 6= tA. We can define corresponding operators
f̂ , f̂A, and f̂B as in section 30. I don’t know of any reason to expect f̂A and f̂B to
commute with each other in general,97 and if they don’t, then f̂ is not normal.

The combination f̂ + f̂ † is normal, so it does qualify as an observable, but using
a path integral to describe this observable would be awkward. To understand why,
use sections 28-30 to deduce f̂ = f̂Af̂B if tA > tB and f̂ = f̂Bf̂A if tB > tA.
This is called a time-ordered product, because the order in which f̂A and f̂B are
multiplied is determined by their chronological order. The path integral formulation
produces this chronological ordering naturally. In the same sense, its adjoint f̂ †

is reverse-time-ordered, so the combination f̂ + f̂ † is not consistently time-ordered
overall. This isn’t a problem,98 but it does suggest that using a path integral
to describe extended-in-time observables will generally be awkward, even though
many extended-in-time operators are relatively easy to describe.

A function f [u] of the form (38) or (39) (Wilson loop or line) that is extended in
time cannot be written as a product of G-invariant functions that are each localized
at a single time, but the operator f̂ defined by (46) is still time-ordered in a natural

sense, so the conclusion still applies: f̂ + f̂ † is an observable, but f̂ might not be.99

97In relativistic quantum field theory in smooth spacetime, f̂A and f̂B commute with each other if they’re localized
in regions of spacetime that cannot be connected to each other by any timelike worldline (article 21916), but they
typically don’t commute with each other otherwise.

98More carefully: I don’t know any reason to insist that observables extended in time should also be time-ordered.
99I’m using the word observable as defined in article 03431. Some authors might use the word more liberally,

such as referring to all Wilson-loop operators as observables even if they don’t commute with their adjoints.
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32 Temporal Wilson lines

The preceding sections considered functions W (C) for which the time interval
spanned by C fits inside the time interval spanned by the path integral, with-
out touching the times that host the initial and final states. One virtue of the
path integral formulation is that when ω > 0, equation (15) implies that as the
initial and final times approach −∞ and +∞ (without growing the time intervals
spanned by any of the inserted operators), the path integral automatically projects
the initial and final state onto the vacuum state.100,101 Thanks to this property, we
can use the path integral formulation to express vacuum expectation values with-
out explicitly specifying the initial or final states. This is done by allowing time
to wrap back on itself so that the number of integration variables (link variables)
remains finite. Then we can consider a new kind of Wilson loop, one that wraps
around the time dimension. This is called a temporal Wilson line.

Sections 28-30 explained how to define an operator on the Hilbert space from
a function inserted in the path integral, but that correspondence assumes that the
time interval spanned by the function doesn’t intersect the initial or final time. A
temporal Wilson line violates that condition, so a corresponding linear operator
on the Hilbert space does not exist,102 at least not if the states that comprise the
Hilbert space are defined on spacelike slices of the path integral. A temporal Wilson
line may be viewed as a modification of the action (and hamiltonian) instead of as
an operator.103

100Article 63548
101When spontaneous symmetry breaking (SSB) is absent, the vacuum state is the unique state of lowest energy.

In models with SSB, an extra ingredient is needed to select a vacuum state – a lowest-energy state satisfying the
cluster property (article 21916).
102Some authors use the name operator for any insertion into the integrand of the path integral, without worrying

about whether it corresponds to any linear operator on the Hilbert space. (Harlow and Ooguri (2021) acknowledge
this in the text between equations (1.5) and (1.6).) That more liberal language is common when the path integral
formulation of quantum field theory is studied as a purely mathematical subject – a welcome practice that has
improved and will undoubtedly continue to improve our understanding of physics.
103Harlow and Ooguri (2021), text below equation (3.34)
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