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(In)equivalence of Irreducible
Representations of Clifford Algebras

Randy S

Abstract Given an irreducible matrix representation of a Clifford algebra,
we can get another one by replacing every Dirac matrix with its negative, with
its complex conjugate, with its transpose, or any composition of these. These
representations may or may not be equivalent to each other (related to each
other by a linear transformation), depending on the number d of dimensions
of the vector space that generates the Clifford algebra, and depending on the
signature. This article determines which ones are equivalent to each other for
each number of dimensions and each signature. When d is even, the answer is
simple: they are all equivalent to each other. When d is odd, the pattern is
more complicated.
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1 Clifford algebra: notation and conventions

Let V be a d-dimensional vector space over R, the field of real numbers. Let g be
a nondegenerate symmetric bilinear form1 on V . Then V has a basis e1, ..., ed for
which

g(ej, ek) =

{
±1 if j = k,

0 otherwise.
(1)

The signature of g is (p,m), where p and m are the numbers of plus-signs and
minus-signs, respectively,2 among the quantities g(ek, ek). Clearly p+m = d.

The Clifford algebra Cliff(p,m) is the largest3 associative algebra generated
by V that has a unit (an identity element for multiplication) and that satisfies

v2 = g(v,v) (2)

for all vectors v ∈ V . In equation (2), v2 is an abbreviation for the Clifford product
of v with itself. Sometimes the opposite sign convention is used (v2 = −g(v,v)),
which exchanges the roles of p and m in the Clifford algebra. Beware of this when
comparing signature-dependent results from different sources.

1Article 03910
2Sometimes the word signature is used for the difference p−m, but in this article it means the pair (p,m).
3Here, largest is an allusion to a universal property. Roughly, it means that the only relationships in the algebra

are those that can be derived from v2 = g(v,v) together with the general rules of associative algebra.
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2 Representations: notation and conventions

Let W be a finite-dimensional vector space over the field C of complex num-
bers.4 A representation of Cliff(p,m) on W is a homomorphism from the algebra
Cliff(p,m) into the algebra of linear transformations of W .5 In a given basis for
W , every linear transformation of W may be represented as a square matrix with
components in C, so a representation may also be defined as something that as-
signs a matrix γ(A) to each element A ∈ Cliff(p,m) in a way that respects these
conditions:6

γ(AB) = γ(A)γ(B)

γ(A+B) = γ(A) + γ(B)

γ(rA) = rγ(A)

for all A,B ∈ Cliff(p,m) and for all r ∈ R. To emphasize this perspective, a
representation may be called a matrix representation.

A representation is called irreducible if it if W doesn’t have any proper sub-
space that is self-contained under all of the linear transformations that represent
elements of Cliff(p,m). Intuitively: an irreducible representation is one that doesn’t
contain any smaller representation inside of itself. The name irreducible represen-
tation is often abbreviated irrep.

In the context of a given basis e1, ..., ed for the vector space V that generates
Cliff(p,m), the matrix γa ≡ γ(ea) representing a basis vector ea is called a Dirac
matrix. This definition is basis-dependent: each Dirac matrix in one basis is
typically a linear combination of the Dirac matrices in a different basis. Equation
(2) implies

γaγb + γbγa = 2g(ea, eb)I (3)

where I denotes the identity matrix.

4Representations on vector spaces over other fields may also be considered, but this article doesn’t.
5Article 86175
6This is what homomorphism means.
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3 The questions

Two representations γ and γ′ are equivalent to each other if the condition

γ(v)M = Mγ′(v)

is satisfied for all vectors v by some invertible matrix M . The matrix M is said to
intertwine the two representations. This condition may also be written

M−1γ(v)M = γ′(v),

which says that one representation can be obtained from the other by a change of
basis of the vector space W on which the representation acts.7

Given one irrep of the Clifford algebra, we can get another one by replacing every
Dirac matrix with its negative, with its complex conjugate, with its transpose,
or any composition of these. The resulting representation may or may not be
equivalent to the original one. This article focuses on two questions:

• Which of these irreps are equivalent to each other?

• When two of these irreps are equivalent, what specific matrix M intertwines
them?

The first question will be answered generally (section 8). Sections 10-12 will show
that every irrep is equivalent to one in which each Dirac matrix is either real
or imaginary8 and each Dirac matrix is also either symmetric or antisymmetric.
The second question will be answered only for irreps having this special property
(section 14).

7This is a vector space over C. It should not be confused with the vector space to which the spacetime vectors v
belong, which is a vector space over R. These two vector spaces typically have different numbers of dimensions.

8A Dirac matrix is called real or imaginary if its nonzero components are all real numbers or all imaginary
numbers, respectively.
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4 A clarification

Consider these statements:

1. The algebra Cliff(3, 0) is isomorphic to the algebra of 2× 2 matrices over C.

2. For each N , all irreducible representations of MC(N), the algebra of N ×N
matrices over C, are equivalent to each other.9

3. The algebra Cliff(3, 0) has two irreducible representations that are not equiv-
alent to each other.

Each of these statements is true when interpreted properly, but they might appear
to contradict each other. The apparent contradiction is resolved by being more
explicit about which field (R or C) plays which role in which context.

Each of the Clifford algebras Cliff(p,m) is an algebra over R. The matrix algebra
MC(N) is an algebra over C. It can also be interpreted as an algebra over R, which
is why statement 1 above makes sense, but statement 2 above tacitly refers to
representations that are linear over C, which is a more restrictive condition than
merely being linear over R. The algebra Cliff(3, 0) (over R) has two irreps that are
each other’s complex conjugates. These two irreps cannot be equivalent to each
other as defined in section 3, because a matrix M (with components in C) cannot
satisfy AM = MA∗ for every matrix A.10 This confirms statement 3. Each one of
those two irreps of Cliff(3, 0) is isomorphic to MC(2) as an algebra over R, but this
algebra over R may be repackaged as an algebra over C in two different ways, and
those two ways are not related to each other by any C-linear transformation.

9Each full matrix algebra over R, C, or H (the quaternions) is a simple algebra (Martin (2016), page 63, exercise
2.1.17), and all irreps of a simple algebra are equivalent to each other (Benn and Tucker (1989), page 329, statement
(A21)).

10Example: consider A = zI for some complex number z with z∗ 6= z.
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5 Three lemmas

In this article, these lemmas will be used but not proved:

• Lemma 1: When d is even, all irreps are equivalent to each other.11

• Lemma 2: When d is odd, two inequivalent irreps exist, and every other
irrep is equivalent to one of these.12

• Lemma 3: When d is odd, every irrep has the property that each Dirac
matrix is proportional to the product of all of the others.13

Lemma 3 implies part of lemma 2, but not all of it. When d is odd, lemma 3 implies
that the product of all Dirac matrices is proportional to the identity matrix. This
implies the existence of at least two inequivalent irreps, because every matrix M
commutes with the identity matrix, so two irreps whose all-Dirac-matrix products
have different signs cannot be equivalent.

11When d is even, each Clifford algebra over R is isomorphic to a full matrix algebra over the field of real numbers
R or the quaternions H (article 03910). All irreps of such a matrix algebra are equivalent to each other (Figueroa-
O’Farrill (2015), page 8).

12Each odd-dimensional Clifford algebra over R is isomorphic either to a full matrix algebra over the field of complex
numbers C or to the direct sum of two full matrix algebras over R or H (article 03910). In both cases, the algebra
has two inequivalent irreps. For a full matrix algebra over C, this is acknowledged on page 8 in Figueroa-O’Farrill
(2015) and illustrated in section 4. For the other case, this follows from footnote 11.

13Article 86175
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6 The all-Dirac-matrix product

Define
ω ≡ γ1γ2 · · · γd. (4)

When d is even, the matrix ω anticommutes with every Dirac matrix. When d is
odd, ω commutes with every Dirac matrix. In both cases, ω2 = ±I. This sign will
be determined below.

When d is even,

ω2 =


I if d = 4n and p is even,

−I if d = 4n and p is odd,

−I if d = 4n+ 2 and p is even,

I if d = 4n+ 2 and p is odd,

(5)

To derive this, using an indexing convention in which γ2
a = I for a ≤ p and

γ2
a = −I for a > p. Think of the product (4) as a product of pairs γ2k+1γ2k+2 with
k ∈ {0, 1, 2, ...}. All of these pairs commute with each other. This implies:

• If p and m are both even, then the square of every pair γ2k+1γ2k+2 is −I, so
the square of ω is I or −I if the number of pairs is even (d = 4n) or odd
(d = 4n+ 2), respectively.

• If p and m are both odd, then the pair γpγp+1 squares to I, and the other
pairs all square to −I, so the square of ω is I or −I if the number of other
pairs is even (d = 4n+ 2) or odd (d = 4n), respectively.

Altogether, this gives (5).
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When d is odd, lemma 3 implies

ω = εI (6)

for some complex number ε, and then the relationship ω2 = ±I implies

ε ≡

{
±1 if ω2 = I

±i if ω2 = −I.
(7)

The two cases depend on the value of d and on which of p or m is odd:

ω2 =


I if d = 4n+ 1 and p is odd,

−I if d = 4n+ 1 and m is odd,

−I if d = 4n+ 3 and p is odd,

I if d = 4n+ 3 and m is odd,

(8)

This can be derived using reasoning like what was used above for d even, but now
one Dirac matrix in the product (4) is un-paired, so the sign of ω2 is affected by
whether square of the un-paired Dirac matrix is I or −I.

Given a product of Dirac matrices, define its reverse to be the product of the
same Dirac matrices in the opposite order.14 In particular, the reverse of ω is

ωrev = γd · · · γ2γ1. (9)

This is equal to either ω or −ω, depending on the value of d:

ωrev =

{
ω if d ∈ {4n, 4n+ 1}
−ω if d ∈ {4n+ 2, 4n+ 3}.

(10)

14An anti-automorphism is like an automorphism except that it reverses the order of the factors in a product.
Reversion may be defined as the unique anti-automorphism of the Clifford algebra that leaves γ(v) invariant for
every vector v. According to the first page of chapter 2 in Deligne (1999), Bourbaki calls reversion the principal
anti-automorphism of the Clifford algebra.
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7 Relationship to the signature

This section shows how the results in section 6 relate to the quantity

σ ≡ (p−m) modulo 8. (11)

Here’s a summary:

• If d is even and ω2 = I, then σ ∈ {0, 4}.

• If d is even and ω2 = −I, then σ ∈ {2, 6}.

• If d is odd and ω2 = I, then σ ∈ {1, 5}.

• If d is odd and ω2 = −I, then σ ∈ {3, 7}.

To derive these relationships when d is even, let j denote either p or m, whichever
is smaller. By re-ordering the factors in ω (which doesn’t affect the value of ω2),
we can write it so that the first j Dirac-matrix pairs square to I and the remaining
pairs square to −I. The number of pairs that square to −I is |p −m|/2, so ω2 is
I or −I according to whether |p−m|/2 is even or odd.

To derive these relationships when d is odd, use with the results for even d
together with the fact that one Dirac matrix remains un-paired:

• If the un-paired Dirac matrix squares to I, then the results are the same as
when d was even but with the possible values for σ all incremented by 1, so
σ ∈ {0, 4} and σ ∈ {2, 6} become σ ∈ {1, 5} and σ ∈ {3, 7}, respectively.

• If the un-paired Dirac matrix squares to −I, then the results are the same
as when d was even but with the opposite sign for ω2 and with the possible
values for σ all decremented by 1, so σ ∈ {0, 4} and σ ∈ {2, 6} become
σ ∈ {7, 3} and σ ∈ {1, 5}, respectively, both with the opposite sign for ω2.
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8 (In)equivalence relations when d is odd

Given any irrep defined by v → γ(v) for all vectors v, these abbreviations will be
used:

• −γ denotes the representation defined by v→ −γ(v) for all vectors v.

• γ∗ denotes the representation defined by v→ γ∗(v) for all vectors v.

• γT denotes the representation defined by v→ γT (v) for all vectors v.

• γ† denotes the representation defined by v→ γ†(v) for all vectors v.

When d is even, all of these representations are equivalent to each other.15 Section
9 will determine which ones are (in)equivalent to each other when d is odd. Here’s
a summary of the results:

Representations Equivalent when d is odd?
γ and −γ no
γ and γ∗ yes if ω2 = I, no if ω2 = −I
γ and γT yes if ωrev = ω, no if ωrev = −ω
γ and γ† yes if m is even, no if m is odd

The (in)equivalence of γ with −γ∗, −γT , and −γ† may be deduced by combining
these results with lemma 2 in section 5.

15Lemma 1 in section 5
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9 Derivation of relations when d is odd

To deduce the results that were tabulated in section 8, let ω[γ → γ̃] denote the
result of replacing each Dirac matrix γa in the product (4) with γ̃a, where γ̃ may
be any of the other representations listed at the beginning of section 8. If the
representations γ and γ̃ are equivalent, then16 a nonzero matrix M exists for which
ωM = Mω[γ → γ̃]. Lemma 3 says that ω and ω[γ → γ̃] are both proportional to
I, and I commutes with everything, so if ω[γ → γ̃] 6= ω, then the representations
cannot be equivalent. Combine this with lemma 2 to conclude that the representa-
tions are equivalent to each other if and only if ω[γ → γ̃] = ω. Using that insight,
the results tabulated in section 8 can be deduced like this:

• ω[γ → −γ] = −ω when d is odd. This gives the first row in the table.

• ω[γ → γ∗] = ω∗, and equations (6)-(7) imply

ω∗ =

{
ω if ω2 = I,

−ω if ω2 = −I
when d is odd.

This gives the second row in the table.

• ω[γ → γT ] = (ωT )rev, and equations (6)-(7) imply ωT = ω when d is odd.
This gives the third row in the table.

• In a standard representation, each Dirac matrix is either hermitian or an-
tihermitian, so if the signature is (p,m), then the number of antihermitian
factors in ω is even if m is even, and it’s odd if m is odd. This gives

ω[γ → γ†] =

{
ω if m is even,

−ω if m is odd.

This gives the fourth row in the table.

16Section 3
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10 Existence of standard representations

Most (maybe all) of the explicit matrix representations used in the physics literature
have the property that each Dirac matrix is either real or imaginary and each Dirac
matrix is either symmetric or antisymmetric. In this article, an irrep with that
property will be called a standard representation.17 This definition is basis-
dependent, because the definition of Dirac matrix is basis dependent.18 Section 14
will explain how intertwiners19 between the representations listed in section 8 may
be constructed explicitly in a standard representation.

Sections 11-12 will demonstrate that an irrep with this property always exists,
for every d and every signature.

Section 12 will also explore whether the number of real Dirac matrices is even or
odd, and section 13 will explore whether the number of symmetric Dirac matrices is
even or odd. These properties will be important when constructing intertwiners in
section 14. The answers are summarized in tables 1 and 2 on the next page. In cases
where the answer is no, the non-existence of such a standard representation can
be inferred from the results shown in section 8: if such a representation did exist,
then it could be used20 to construct an intertwiner between two representations
that sections 8-9 already determined cannot be equivalent.

17This name is not standard. (This isn’t meant to be a joke, but it was fun to write.)
18Section 2
19Section 3
20Section 14 will explain how this could be done.
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Can the # of Can the # of
real γas be even? real γas be odd?

p−m = 4k yes undetermined
p−m = 4k + 1 no yes
p−m = 4k + 2 undetermined yes
p−m = 4k + 3 yes no

Table 1 – Options for the number of real Dirac matrices in a standard representation of
Cliff(p,m). The integer k is arbitrary (positive or negative). The yes results will be derived in
section 12. The entries marked undetermined will not be determined (or needed) in this article.

Can the # of Can the # of
symmetric γas be even? symmetric γas be odd?

d = 4n yes undetermined
d = 4n+ 1 no yes
d = 4n+ 2 undetermined yes
d = 4n+ 3 yes no

Table 2 – Options for the number of symmetric Dirac matrices in a standard representation of
Cliff(p,m), as a function of d ≡ p + m. The integer n is nonnegative but otherwise arbitrary.
The yes results will be derived in section 13. The entries marked undetermined will not be
determined (or needed) in this article.
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11 Standard representations for split signatures

This section shows how to construct a standard representation when the signature
(p,m) is split, which means p = m. The representation will be assembled using
tensor products of the 2× 2 matrices

X =

[
0 1
1 0

]
Y =

[
0 1
−1 0

]
Z =

[
1 0
0 −1

]
,

as explained in article 86175. When the signature is split, we can use

γ1 = X ⊗ 1⊗ 1⊗ · · ·
γ2 = Y ⊗ 1⊗ 1⊗ · · ·

γ3 = Z ⊗X ⊗ 1⊗ · · ·
γ4 = Z ⊗ Y ⊗ 1⊗ · · ·

γ5 = Z ⊗ Z ⊗X ⊗ · · ·
γ6 = Z ⊗ Z ⊗ Y ⊗ · · · ,

and so on, as the Dirac matrices in a standard representation.

15
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12 Standard representations for other signatures

Starting with a standard representation γ with p = m, a standard representation
γ̃ with any even value of p−m may be constructed by setting

γ̃a =

{
iγa for some a,

γa for other a.

Each factor of i changes the value of p−m by either +2 or −2. If we start with a
p = m irrep γ in which every Dirac matrix is real, then the number of real Dirac
matrices in the resulting representation γ̃ is even if it has p −m = 4k and odd if
it has p−m = 4k + 2, where k denotes an arbitrary integer (positive or negative).
This accounts for the yes results shown in table 1 for even values of p−m.

To construct a standard representation when d is odd, start with the standard
representation for d−1 with split signature that was constructed in section 11, and
set γd ≡ γ1γ2 · · · γd−1. If d = 4n + 1, then γ2

d = I, so this gives a representation
with p−m = 1 in which every Dirac matrix is real. If d = 4n + 3, then γ2

d = −I,
so this gives a representation with p−m = −1 in which every Dirac matrix is real.
We can change the signature by using overall factors of i as before. In the resulting
representation, the number of real Dirac matrices is odd if p−m = 4k+ 1, and the
number is even if p−m = 4k+ 3. This accounts for the yes results shown in table
1 with odd values of p−m.

16
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13 (Anti)symmetry of standard representations

When determining whether the number of symmetric Dirac matrices is even or odd
(table 2), the factors of i don’t matter. We constructed a standard representation
for Cliff(p, p) in which the number of symmetric matrices is even if p is even (d = 4n)
and is odd if p is odd (d = 4n+2). This accounts for two of the yes entries in table
2.

To construct a standard representation when d is odd, start with a standard
representation for d− 1 with split signature in which half of the Dirac matrices are
symmetric, and set γd ≡ γ1γ2 · · · γd−1. The (anti)symmetry of the resulting matrix
depends on two items:21

• whether the number of antisymmetric factors in the product is even or odd,

• whether reversing the order of the factors in the product changes its sign or
not.

This implies that γd is symmetric, both for d = 4n + 1 and for d = 4n + 3. This
accounts for the other two yes entries in table 2.

21The second item matters because the Dirac matrices anticommute with each other, and the transpose reverses
the order of the factors.
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14 Constructing intertwiners

Given one irrep γ of Cliff(p,m), this section explains construct intertwiners M
between γ and each of the related representations listed in section 8 whenever they
are equivalent to the original irrep γ.

The idea is simple. Let X be any set of Dirac matrices in the representation
γ (not necessarily all of them). Let |X| denote the number of Dirac matrices in
X, and let ωX denote the product of all of the Dirac matrices in X. The fact that
every Dirac matrix anticommutes with all of the others but commutes with itself
implies:

• If |X| is even, then ωX anticommutes with every Dirac matrix in X, and ωX
commutes with every Dirac matrix that is not in X.

• If |X| is odd, then ωX commutes with every Dirac matrix in X, and ωX
anticommutes with every Dirac matrix that is not in X.

Examples:22

• Let X be the set of all Dirac matrices in the representation γ. If |X| is even,
then ωX satisfies γaX = −Xγa for every Dirac matrix γa, so ωX intertwines
the representations γ and −γ.

• Let X be the set of all real Dirac matrices in the representation γ. If |X| is
odd, then ωX satisfies γaX = Xγ∗a for every Dirac matrix γa, so ωX intertwines
the representations γ and γ∗. If |X| is even, then ωX satisfies γaX = −Xγ∗a
for every Dirac matrix γa, so ωX intertwines the representations γ and −γ∗.

• Let X be the set of all symmetric Dirac matrices in the representation γ.
If |X| is odd, then ωX satisfies γaX = XγTa for every Dirac matrix γa, so
ωX intertwines the representations γ and γT . If |X| is even, then ωX satisfies
γaX = −XγTa for every Dirac matrix γa, so ωX intertwines the representations
γ and −γT .

22These examples use the notation that was defined in section 8.
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15 Tables of intertwiners

The next page gives explicit examples of intertwiners for irreps of Cliff(p,m) in the
context of the standard representations that were constructed in sections 11-12.
Abbreviations:

• ω is the product of all Dirac matrices.

• ωreal is the product of all real Dirac matrices.

• ωimag is the product of all imaginary Dirac matrices.

• ωsym is the product of all symmetric Dirac matrices.

• ωantisym is the product of all antisymmetric Dirac matrices.

• ωherm is the product of all hermitian Dirac matrices.

• ωantiherm is the product of all antihermitian Dirac matrices.

19
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In these tables, k denotes an arbitrary integer (positive or negative):

Example of matrix M that

satisfies γaM = Mγ∗a for all a

p−m M references

4k ωimag table 1, §14

4k + 1 ωimag table 1, §14

4k + 2 ωreal table 1, §14

4k + 3 none eqn (8), §7-8

Example of matrix M that

satisfies γaM = −Mγ∗a for all a

p−m M references

4k ωreal table 1, §14

4k + 1 none eqn (8), §7-8

4k + 2 ωimag table 1, §14

4k + 3 ωreal table 1, §14

In these tables, n denotes an arbitrary nonnegative integer:

Example of matrix M that

satisfies γaM = MγTa for all a

d M references

4n ωantisym table 2, §14

4n+ 1 ωantisym table 2, §14

4n+ 2 ωsym table 2, §14

4n+ 3 none eqn (5), §8

Example of matrix M that

satisfies γaM = −MγTa for all a

d M references

4n ωsym table 2, §14

4n+ 1 none eqn (5), §8

4n+ 2 ωantisym table 2, §14

4n+ 3 ωsym table 2, §14

In these tables, m denotes the number of Dirac matrices whose square is −I:

Example of matrix M that

satisfies γaM = Mγ†a for all a

d, m M references

even, even ωantiherm §14

even, odd ωherm §14

odd, even ωantiherm §14

odd, odd none §8

Example of matrix M that

satisfies γaM = −Mγ†a for all a

d, m M references

even, even ωherm §14

even, odd ωantiherm §14

odd, even none §8

odd, odd ωherm §14

20
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16 Specialization to lorentzian signature

For every Clifford algebra Cliff(p,m), section 8 summarized when various inter-
twiners exist. This section specializes those results to lorentzian signatures, which
are signatures (p,m) in which p and m are both nonzero and one of them is equal
to 1.

When the signature is lorentzian, the relationships (5) and (8) reduce to these:

mostly-minus convention mostly-plus convention

d = 4n ω2 = −I ω2 = −I
d = 4n+ 1 ω2 = I ω2 = −I
d = 4n+ 2 ω2 = I ω2 = I

d = 4n+ 3 ω2 = −I ω2 = I

Using these relationships, and using the notation that was introduced at the be-
ginning of section 8, the results that were shown in that section reduce to these
when the signature is lorentzian:

signature convention d γ is equivalent to γ is not equivalent to

either odd −γ
mostly minus 4n+ 1 γ∗ −γ∗

mostly minus 4n+ 3 −γ∗ γ∗

mostly plus 4n+ 1 −γ∗ γ∗

mostly plus 4n+ 3 γ∗ −γ∗

either 4n+ 1 γT −γT

either 4n+ 3 −γT γT

mostly minus odd γ† −γ†

mostly plus odd −γ† γ†

Explicit intertwiners may be inferred from the tables in section 15.
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