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Matrix Representations
of Clifford Algebras

Randy S

Abstract Article 03910 introduced Clifford algebra, which can be used
to construct the spin group (article 08264), a special double cover of the
part of the group of Lorentz transformations that is generated by pairs of
reflections. Clifford algebras admit matrix representations in which each
basis vector is represented by a Dirac matrix. This article shows how to
construct matrix representations for Clifford algebras of any signature in any
number of dimensions.
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1 Clifford algebra: review and notation

Let V be a d-dimensional vector space over R, the field of real numbers. Let g be
a symmetric bilinear form1 on V . In this article, g is always nondegenerate, which
means that V has a basis e1, ..., ed for which

g(ej, ek) =

{
±1 if j = k,

0 otherwise.
(1)

Two vectors a and b are called orthogonal if g(a,b) = 0. A nonzero vector that
is orthogonal to itself, g(v,v) = 0, will be called self-orthogonal.

The signature of g is (p,m), where p and m are the numbers of plus-signs and
minus-signs, respectively,2 among the quantities g(ek, ek). Clearly p+m = d. The
signature is called euclidean if p or m is zero. If both are nonzero and either p or
m is equal to 1, then it’s called lorentzian.

The Clifford algebra1 Cliff(V, g) is the largest3 associative algebra generated
by V that has a unit 1 (an identity element for multiplication) and that satisfies4

v2 = g(v,v) (2)

for all v ∈ V . The product in this algebra is called the Clifford product and
will be denoted by juxtaposition, so the Clifford product of two vectors a and b is
denoted ab. In equation (2), v2 is an abbreviation for the Clifford product of v
with itself. The Clifford algebra Cliff(V, g) is also commonly denoted Cliff(p,m),
where (p,m) is the signature of g. Each notation has its own advantages, and this
article uses both of them. The notation Cliff(V, g) will be used when emphasizing
that the algebra is generated by the vector space V , and the notation Cliff(p,m)
will be used when emphasizing that the signature is (p,m).

1Article 03910
2Sometimes the word signature is used for the difference p−m, but in this article it always means the pair (p,m).
3Here, largest is an allusion to a universal property. Roughly, it means that the only relationships in the algebra

are those that can be derived from v2 = g(v,v) together with the general rules of associative algebra.
4Sometimes the opposite sign convention is used (v2 = −g(v,v)). Beware of this when comparing signature-

dependent results from different sources.
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2 The concept of a matrix representation

Let W be a vector space. If Ω is an associative algebra, such as a Clifford algebra,
then a representation of Ω on W is a homomorphism from the algebra Ω into the
algebra of linear transformations of W . In this article, W will always be a finite-
dimensional vector space over either R or C, and the representation will be called
a “representation over R” or “representation over C,” respectively. The dimension
N of the vector space W is called the dimension of the representation.

After choosing a basis for W , every linear transformation of W may be rep-
resented as a square matrix with components in either R or C, respectively, so a
representation may also be defined as something that assigns each element A ∈ Ω
to a matrix γ(A) satisfying these conditions:5

γ(AB) = γ(A)γ(B)

γ(A+B) = γ(A) + γ(B)

γ(rA) = rγ(A)

for all A,B ∈ Ω and for all r ∈ R. To emphasize this perspective, a representation
may be called a matrix representation. Each matrix in the representation has
order N (size N ×N), where N is the dimension of W .

Two matrix representations are equivalent to each other if one of them can be
converted to the other one by choosing a different basis for W .

5This is what homomorphism means.
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3 Representations over R and over C
This article is about matrix representations of Clifford algebras Cliff(V, g), where
V is a vector space over R. If A is an element of the Clifford algebra, then so is rA
whenever r is a real number, but rA is undefined (or at least not in the Clifford
algebra) when r is a non-real complex number.

Two different vector spaces will usually be in play at the same time:

• One of them is V , a vector space over R that generates the Clifford algebra.

• The other is W , a vector space W whose linear transformations host a rep-
resentation of Cliff(V, g). The vector space W may be over R or over C. In
either case, the dimension of W may be different than the dimension of V .

When the vector space W is over C, the matrix γ(A) representing A ∈ Cliff(V, g)
may have complex components, but the matrix rγ(A) does not necessarily represent
any element of the algebra unless r is a real number. If r is a real number, then
rγ(A) = γ(rA).

The vector space W will be over C except where specified otherwise, but sections
18-22 will focus on real representations in which W is a vector space over R, so
that the components of each matrix must be real numbers.6

This article does not consider representations in which the components of a
matrix may be quaternions.7 In this article, W is always a vector space over R
or C, so the components of each matrix are real numbers or complex numbers,
respectively.

6In physics, the name complex representation is often reserved for a representation that is not equivalent
(by a change of basis) to any real representation of the same dimension, so that real representation and complex
representation are mutually exclusive.

7Allowing quaternions as components can be useful because of Wedderburn’s theorem, which says that every
simple algebra is isomorphic to a full matrix algebra over a division algebra (Martin (2016), theorem 2.2.6). An
algebra is simple if it doesn’t have any nontrivial ideals (Martin (2016), page 62). The quaternion algebra is an
example of a division algebra.
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4 Examples

The Clifford algebra Cliff(2, 0) is generated by two vectors e1 and e2 satisfying

e1e2 = −e2e1 e2
1 = e2

2 = 1.

Every element of this algebra has the form

r0 + r1e1 + r2e2 + r3e1e2

with real coefficients r0, r1, r2, r3. This algebra has a matrix representation γ with

γ(e1) =

[
0 1
1 0

]
γ(e2) =

[
1 0
0 −1

]
.

In this representation, each matrix has only real components.
The Clifford algebra Cliff(0, 2) is is generated by two vectors e1 and e2 satisfying

e1e2 = −e2e1 e2
1 = e2

2 = −1.

As before, every element of this algebra has the form

r0 + r1e1 + r2e2 + r3e1e2

with real coefficients r0, r1, r2, r3. This algebra has a matrix representation γ with

γ(e1) =

[
0 1
−1 0

]
γ(e2) =

[
i 0
0 −i

]
.

This representation uses some matrices with complex components, but it doesn’t
use all of them. The matrix

−iγ(e2) =

[
1 0
0 −1

]
does not represent any element of this Clifford algebra.
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5 Dirac matrices

Equation (2) implies8

ab + ba = 2g(a,b), (3)

so if γ is a matrix representation of a Clifford algebra Cliff(V, g), then the matrices
representing vectors a,b ∈ V must satisfy

γ(a)γ(b) + γ(b)γ(a) = 2g(a,b) I, (4)

where I is the identity matrix. Let e1, e2, ..., ed be a set of vectors that are mu-
tually orthogonal and normalized so that g(ek, ek) = ±1. The matrix γ(ek) that
represents ek will be called a Dirac matrix, and the abbreviation

γk ≡ γ(ek)

will be used. Equation (4) implies

γjγk + γkγj = 2g(ej, ek)I. (5)

The Clifford algebra is generated by its vectors, so if we have a set of matrices that
satisfy equation (5), then using them as Dirac matrices gives a representation of
the whole Clifford algebra.

8To deduce this, set v = a + b in (2) and use g(b,a) = g(a,b).
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6 Faithful representations, irreducible representations

Let Ω be an algebra, and let γ be a representation of Ω by linear transformations
of a vector space W .

• The representation is called faithful if distinct elements A 6= B of the algebra
are always represented by distinct matrices, γ(A) 6= γ(B).

• The representation is called reducible if W has a proper subspace9 that is
self-contained under all of the linear transformations that represent elements
of Ω. If W doesn’t have any such subspace, then the representation is called
irreducible. Intuitively: a reducible representation is one that contains a
smaller representation inside of itself, and an irreducible representation is one
that does not.

• The representation is called completely reducible if it is a direct sum of
irreducible representations. This means that we can choose a basis for W
in which every matrix γ(A) is block-diagonal, and each block constitutes an
irreducible representation. According to this definition, an irreducible repre-
sentation is completely reducible (in a trivial way). Every finite-dimensional
representation of Cliff(p,m) is completely reducible.10

This article focuses on representations that have the minimum possible nonzero
dimension, which implies that they are irreducible.

9A proper subspace is any subspace that is not all of W but that includes more than just the zero vector.
10This can be deduced from the fact that Cliff(p,m) is semisimple (Ablamowicz (2016), section 3, with the

understanding that simple is a special case of semisimple), combined with the fact that every finite-dimensional
representation of a semisimple algebra is completely reducible (Etingof et al (2011), proposition 2.16).
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7 The minimum dimension

For any positive integer d, define

NC(d) ≡

{
2d/2 if d is even,

2(d−1)/2 if d is odd.
(6)

For every signature (p, q), section 11 will construct a representation of Cliff(p,m)
on a complex vector space with dimension NC(p + m). This section shows that a
nontrivial11 representation over C cannot be smaller than this.

Consider the complexified Clifford algebra12

CliffC(p+m) = Cliff(p,m)⊗ C, (7)

which is obtained from Cliff(p,m) by allowing complex coefficients instead of only
real coefficients. This doesn’t change the minimum dimension among representa-
tions over C, because any representation of Cliff(p,m) on a complex vector space
gives a representation of CliffC(p+m) of the same dimension just by allowing com-
plex coefficients in the algebra. The complexified algebra depends only on p+m.

The structure of these algebras is described by the isomorphisms13

Cliff(2n) 'MC(2n)

Cliff(2n+ 1) 'MC(2n)⊕MC(2n),

where MC(k) is the algebra of all matrices of size k×k with components in C. The
minimum dimension of a nontrivial representation of MC(k) on a complex vector
space is k.14 Altogether, this implies that the minimum dimension of a nontrivial
representation of Cliff(p,m) on a complex vector space is NC(p+m).

11The representation that maps every element of the algebra to zero is called the trivial representation. Its
dimension is zero.

12A more careful notation is Cliff(p,m)⊗R C. The subscript R means that (rA)⊗R B = A⊗R (rB) for all r ∈ R.
13Figueroa-O’Farrill (2015), section 4, table 3. Equations (2.7.4a)-(2.7.4b) in Benn and Tucker (1989) are meant

to say this, too, but equation (2.7.4b) has a significant typographical error.
14Etingof et al (2011), theorem 2.6
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8 Canonical basis: definition

Section 9 will construct the regular representation of Cliff(V, g). The construction
refers to a canonical basis for the algebra Cliff(V, g). This section explains what
that means.

First, let e1, e2, ..., ed be a list of vectors in V that are orthogonal to each other
and that satisfy e2

k = ±1. This will be called a canonical basis for V . The
quantities

1

ej

ejek with j < k (8)

ejeke` with j < k < `

...and so on...

are all linearly independent, and every element of the Clifford algebra is a linear
combination of these.15 The list of quantities (8) will be called a canonical basis
for the Clifford algebra.

The vector factors in each product (8) may be written in any order, with an
overall minus sign if the permutation is odd, because equation (3) implies that
orthogonal vectors anticommute with each other:

ab = −ba if g(a,b) = 0. (9)

15Article 03910
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9 The regular representation

This section constructs a faithful matrix representation of Cliff(p,m). The dimen-
sion of this representation is greater than NC(p+m), but this section constructs it
anyway to introduce some of the ingredients that will also be used in section 11 to
construct representations that have the minimum dimension NC(p+m).

Define d ≡ p+m, and let X1, X2, X3, ... be the elements of the canonical basis16

for the Clifford algebra. For each Xj, let Φ(Xj) be the column matrix with 2d

components, all of which are zero except the jth component, which is 1:

Φ(X1) =


1
0
0
...

 Φ(X2) =


0
1
0
...

 Φ(X3) =


0
0
1
...

 and so on.

Then Φ(A) may be defined for all elements A of the Clifford algebra using

Φ

(∑
k

rkXk

)
≡
∑
k

rkΦ(Xk).

For each A in the Clifford algebra, let γ(A) be the N ×N matrix defined by

γ(A)Φ(Xk) = Φ(AXk).

These matrices satisfy
γ(A)γ(B) = γ(AB)

for all elements A,B of the Clifford algebra, so this gives a real representation of
dimension 2d called the regular representation.

16This was defined in section 8.
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10 Is the regular representation reducible?

The algebra Cliff(2, 0) is generated by two vectors e1, e2 satisfying

e1e2 = −e2e1 e2
1 = e2

2 = 1.

In this case, the regular representation has dimension 4. The regular representation
is reducible: the subspace of dimension 2 spanned by

Φ
(
(1± e1)(1 + e2)

)
= Φ(1) + Φ(e2)± (Φ(e1) + Φ(e1e2))

is self-contained under the action of γ(A) for all A ∈ Cliff(2, 0).17 This gives a
representation of dimension NC(2) = 2 that is still faithful and still real.

The algebra Cliff(0, 2) is generated by two vectors e1, e2 satisfying

e1e2 = −e2e1 e2
1 = e2

2 = −1.

Again, the regular representation has dimension 4. This representation does not
contain any smaller representation over R, but it can be re-packaged as a smaller
representation over C, because the vector space of dimension 2 over C spanned by

Φ(1) + iΦ(e2)± (Φ(e1) + iΦ(e1e2))

is self-contained under the action of γ(A) for all A ∈ Cliff(0, 2). This representation
is still faithful, but it’s not real: it is not equivalent to any real representation of
dimension 2.

17Checking this for γ(e1) and γ(e2) is sufficient, because these generate the whole algebra.

13
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11 Irreducible representations over C
Section 9 constructed the regular representation of Cliff(V, g). The regular represen-
tation is a faithful real representation with dimension 2d, where d is the dimension
of V . This section explains how to construct a representation of dimension NC(d)
over C. A nontrivial representation over C cannot be smaller than this.18

As in section 7, let CliffC(V ) be the algebra obtained from Cliff(V, g) by allowing
complex coefficients. The construction described here will give a representation of
CliffC(V ) on a complex vector space W . Restricting that representation to the
subset Cliff(V, g) ⊂ CliffC(V ) gives a representation of Cliff(V, g).

Let e1, e2, ..., ed ∈ V be a canonical basis for V .19 Let n be the largest integer
that is ≤ d/2, and for each ` ∈ {1, 2, ..., n}, use the abbreviation Γ` for either
e2`−1e2` or ie2`−1e2`, whichever makes Γ2

` = 1. If d is odd, then also define Γn+1 to
be either ed or ied, whichever makes Γ2

n+1 = 1. All of these quantities Γ` commute
with each other. Now define P ≡

∏
`(1 + Γ`), where the product is over all n or

n+ 1 values of ` when d is even or odd, respectively. The fact that each Γ` squares
to 1 implies

Γ`P = P. (10)

Let X1, X2, X3, ... be the elements of a canonical basis for the Clifford algebra19

Cliff(V, g). Using only the n vectors e2`, we can construct 2n of the elements in the
canonical basis. Every other element of the canonical basis is proportional to one
of these times one or more of the Γ`s.

20 Equation (10) then implies that of the 2d

quantities XkP , only 2n of them are linearly independent (over C).
Now define Φ as in section 9. The previous paragraph deduced that only 2n of

the vectors Φ(XkP ) are linearly independent (over C), so this gives a representation
of CliffC(V ) on a complex vector space W of dimension 2n = NC(d). Restricting to
the subset Cliff(V, g) ⊂ CliffC(V ) then gives a representation of Cliff(V, g) on W .

18Section 7
19Section 8
20To confirm this, use e2`−1 ∝ e2`Γ`.
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12 Example: Cliff(2, 0)

The algebra Cliff(2, 0) is generated by vectors e1, e2 satisfying e2
1 = e2

2 = 1 and
e1e2 = −e2e1. The recipe described in section 11 gives

P = 1 + ie1e2.

The quantities that were denoted XkP in section 11 are P , e1P , e2P , and e1e2P .
These can all be written as QP or as e2QP for some Q that belongs to the algebra
generated by Γ1 ≡ ie1e2, so the identity Γ1P = P implies that only two of XkP s
are linearly independent over C. The two quantities P and e2P are linearly inde-
pendent, so the two vectors Φ(P ) and Φ(e2P ) span a representation of Cliff(2, 0).
To express this as a matrix representation, write

Φ(P ) =

[
1
0

]
Φ(e2P ) =

[
0
1

]
.

Use the general relationship γ(A)Φ(B) = Φ(AB) to confirm that this gives

γ(e1) =

[
0 −i
i 0

]
γ(e2) =

[
0 1
1 0

]
.

This representation uses complex components, but we can get a real representation
(a representation in which each matrix has only R-valued components) by using

Φ(P + ie2P ) = Φ(P ) + iΦ(e2P )

Φ(iP + e2P ) = iΦ(P ) + Φ(e2P )

as the basis vectors instead of Φ(P ) and Φ(e2P ). If we write

Φ(P + ie2P ) =

[
1
0

]
Φ(iP + e2P ) =

[
0
1

]
,

then the matrices representing e1 and e2 are

γ(e1) =

[
1 0
0 −1

]
γ(e2) =

[
0 1
1 0

]
.

15
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13 Example: Cliff(3, 0)

The algebra Cliff(3, 0) is generated by vectors e1, e2, e3 that satisfy e2
k = 1 and that

anticommute with each other. The recipe described in section 11 gives

P = (1 + ie1e2)(1 + e3).

The quantities that were denoted XkP in section 11 are

P e1P e2P e3P

e1e2P e2e3P e3e1P e1e2e3P.

These can all be written as21 QP or as e2QP for some Q that belongs to the algebra
generated by the quantities Γ1 ≡ ie1e2 and Γ2 ≡ e3, so the identities

Γ1P = P Γ2P = P

imply that only two of XkP s are linearly independent over C. The two quantities
P and e2P are linearly independent, so the two vectors Φ(P ) and Φ(e2P ) span a
representation of Cliff(3, 0). To express this as a matrix representation, write

Φ(P ) =

[
1
0

]
Φ(e2P ) =

[
0
1

]
.

Use the general relationship γ(A)Φ(B) = Φ(AB) to confirm that this gives

γ(e1) =

[
0 −i
i 0

]
γ(e2) =

[
0 1
1 0

]
. γ(e3) =

[
1 0
0 −1

]
.

In this representation, every 2× 2 matrix with complex components represents an
element of Cliff(3, 0), so this is not equivalent to any real representation of the same
dimension, in contrast to the example in section 12.

21Checking this for ek is sufficient, because the three basis vectors ek generate all of Cliff(3, 0). The relationships
e1 = ie2Γ1 and e3 = Γ2 show that each of the three basis vectors ek may be written as Q or e2Q with Q in the
algebra generated by the Γ`s.

16



cphysics.org article 86175 2024-12-09

14 Example: Cliff(1, 3)

The algebra Cliff(1, 3) is generated by vectors ek with k ∈ {1, 2, 3, 4} that all
anticommute with each other, normalized so that e2

1 = −1 and e2
k = 1 if k ∈

{2, 3, 4}. The recipe described in section 11 gives

P = (1 + e1e2)(1 + ie3e4). (11)

The 16 quantities that were denoted XkP in section 11 may all be written in one
of the forms22

QP e2QP e4QP e2e4QP

with Q in the algebra generated by the quantities Γ1 ≡ e1e2 and Γ2 ≡ ie3e4. The
identities Γ1P = P and Γ2P = P then imply that only four of the 16 quantities
XkP are linearly independent over C, so the vectors

Φ(P ) Φ(e2P ) Φ(e4P ) Φ(e2e4P )

span a representation of dimension 4. The components of each matrix γ(ek) may
be worked out by writing

Φ(P ) =


1
0
0
0

 Φ(e2P ) =


0
1
0
0

 Φ(e4P ) =


0
0
1
0

 Φ(e2e4P ) =


0
0
0
1


and using the general relationship γ(A)Φ(B) = Φ(AB).

22To confirm this, use e1 = e2Γ1 and e3 = −ie4Γ2.

17
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15 Another way to construct representations

This section describes another way23 to construct a representation of Cliff(p,m)
on a complex vector space of dimension NC(p + m).24 In this construction, each

Dirac matrix is manifestly either hermitian (γ†k = γk) or antihermitian (γ†k = −γk),
according to whether γ2

k = I or γ2
k = −I, respectively.25

Start with the 2× 2 matrices

X ≡
[
0 1
1 0

]
Y ≡

[
0 1
−1 0

]
Z ≡

[
1 0
0 −1

]
. (12)

These satisfy

XY = −Y X = −Z

Y Z = −ZY = −X (13)

ZX = −XZ = Y

and
X2 = I Y 2 = −I Z2 = I (14)

where I is the identity matrix. We can use these matrices to construct other (larger)
matrices using the tensor product. The tensor product of a 2× 2 matrix

A =

[
a b
c d

]
with an N ×N matrix B is the 2N × 2N matrix A⊗B defined by

A⊗B ≡
[
aB bB
cB dB

]
,

23This method is also reviewed in Appendix B of Polchinski (1998).
24Recall (section 7) that NC(p+m) is the smallest possible dimension of a complex vector space that can host a

nontrivial representation of Cliff(p,m).
25M† denotes the conjugate transpose of a matrix M .

18
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where each entry on the right-hand side is an N × N block. Using this, we may
iteratively define the tensor product of any number of 2× 2 matrices, like this:

A⊗B ⊗ C ≡ A⊗ (B ⊗ C).

The generalization to matrices of arbitrary order should be clear. The tensor
product satisfies

(A⊗B ⊗ C)(A′ ⊗B′ ⊗ C ′) = (AA′)⊗ (BB′)⊗ (CC ′), (15)

with an obvious generalization to any number of factors.
To construct a representation of Cliff(p,m) when d ≡ p + m is even, define n

by d = 2n, and define the matrices

γ1 = ε1X ⊗ I ⊗ I ⊗ I ⊗ · · ·
γ2 = ε2Y ⊗ I ⊗ I ⊗ I ⊗ · · ·
γ3 = ε3Z ⊗X ⊗ I ⊗ I ⊗ · · ·
γ4 = ε4Z ⊗ Y ⊗ I ⊗ I ⊗ · · · (16)

γ5 = ε5Z ⊗ Z ⊗X ⊗ I ⊗ · · ·
γ6 = ε6Z ⊗ Z ⊗ Y ⊗ I ⊗ · · ·

and so on up to γ2n. The number of factors on each line is n. Each εk is either 1 or
i, chosen to control the sign in γ2

k = ±(identity matrix). Equations (13)-(14) may
be used to confirm that the matrices (16) satisfy (5), so this gives a representation
of Cliff(p,m) of dimension 2n = NC(2n), using matrices with complex components.

When d is odd, define n by d = 2n+ 1, construct the first 2n Dirac matrices as
shown above, and define the remaining one by

γ2n+1 ≡ ε2n+1γ1γ2 · · · γ2n (17)

with ε2n+1 chosen to control the sign in γ2
2n+1 = ±(identity matrix). The fact that

the γs in (16) all anticommute with each other implies that they also anticommute
with (17), so this gives a representation of Cliff(p,m) of the same dimension 2n =
NC(2n+ 1).

19
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16 Representations with a custom form

This section shows that if the dimension of V is even, then Cliff(V, g) has a
minimum-size representation in which all of the diagonal elements of every Dirac
matrix are zero.

Start with Dirac matrices that generate a representation of Cliff(p,m):

γ̄1, γ̄2, ..., γ̄d (18)

with d ≡ p+m. The d+ 1 matrices26

γk = X ⊗ γ̄k =

[
0 γ̄k
γ̄k 0

]
for k ∈ {1, 2, ..., d} (19)

γd+1 ∝ Y ⊗ I =

[
0 I
−I 0

]
(20)

all anticommute with each other. The proportionality factor in (20) can be chosen
so that γd+1 squares to ±(identity matrix) with the desired sign, so this gives a
complete set of Dirac matrices for Cliff(p + 1,m) or Cliff(p,m + 1), depending on
the proportionality factor.

If the matrices (18) each have order 2n, then the matrices (19)-(20) each have
order 2n+1. If d is odd and 2n = NC(d), then 2n+1 = NC(d+ 1), so in this case the
d+ 1 Dirac matrices (19)-(20) have the minimum possible size.

In this representation, the quantity that will be denoted Γ in section 24 is a
diagonal matrix. This is convenient for separating an irreducible representation of
the full Clifford algebra into two irreducible representations of the even subalgebra,
as described in section 24.

26In these equations, 0 and I stand for the zero matrix and the identity matrix, respectively, of the same size as
the γ̄’s.
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17 Representations with another custom form

This section shows that every Cliff(p,m) has a minimum-size representation in
which only one Dirac matrix has nonzero elements on the diagonal.

Start with Dirac matrices that generate a representation of Cliff(p,m):

γ̄1, γ̄2, ..., γ̄d (21)

with d ≡ p+m. The d+ 1 matrices

γk = X ⊗ γ̄k =

[
0 γ̄k
γ̄k 0

]
for k ∈ {1, 2, ..., d} (22)

γd+1 ∝ Z ⊗ I =

[
I 0
0 −I

]
(23)

all anticommute with each other. The proportionality factor in (23) can be chosen
so that γd+1 squares to ±(identity matrix) with the desired sign, so this gives a
complete set of Dirac matrices for Cliff(p + 1,m) or Cliff(p,m + 1), depending on
the proportionality factor.

If the matrices (21) each have order 2n, then the matrices (22)-(23) each have
order 2n+1. If d is odd and 2n = NC(d), then 2n+1 = NC(d+ 1), so in this case the
d+ 1 Dirac matrices (22)-(23) have the minimum possible size.

When d is odd, the new Dirac matrix defined by γd+2 ∝ γ1γ2 · · · γd+1 anti-
commutes with all of the others, and it can be normalized so that it squares to
±(identity matrix) with the desired sign. This gives a complete set of Dirac matri-
ces for Cliff(p+2,m), Cliff(p+1,m+1), or Cliff(p,m+2), still using matrices with
the minimum possible size, and γd+1 is still the only one with nonzero elements on
the diagonal.

Representations of this form can be convenient when the signature is lorentzian,
because then we can take the diagonal Dirac matrix to be the one corresponding
to the timelike dimension.
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18 Real representations

The constructions described in sections 11 and 15 give representations of Cliff(p,m)
of dimension NC(p + m), which is the smallest possible dimension for a nontriv-
ial irreducible representation.27 In those constructions, the matrices were allowed
to have components in C, even though the algebra being represented – namely
Cliff(p,m) – requires all coefficients to be in R. Those representations may turn
out to be real (with all matrix components in R) for some signatures but not for
others. Real representations of larger dimension exist for any signature,28 but here
we are interested in real representations of the smaller dimension NC(p+m).

Let NR(p,m) denote the minimum dimension among real representations of
Cliff(p,m). Clearly NR(p,m) ≤ 2NC(p + m), because any representation of di-
mension N over C may be regarded as29 a representation of dimension 2N over
R. The interesting question is, when is NR(p,m) less than NC(p,m)? This table
summarizes the answer:30

(p−m) mod 8 NR(p,m)

0,1,2 NC(p+m)

3,4,5,6,7 2NC(p+m)

Sections 19-21 will describe a few methods that may be used to construct real
representations of various signatures iteratively, starting with (p,m) = (1, 0) and
incrementing p + m with each step. Using those methods, real representations of
dimension NC(p+m) may be constructed for every signature (p,m) in which such
representations exist. This will be illustrated in section 22.

27Section 7
28Section 9 constructed a real representation of dimension 2p+m for any Cliff(p,m).
29If v is a nonzero vector, then v and iv are linearly independent over R: the only pair of real numbers a, b for

which av + biv = 0 is a = b = 0.
30Benn and Tucker (1989), table 2.10 (The “dimension” column in that table is the dimension over R, and their

n is my d.)
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19 Real representations, method 1

This section shows that if we start with a real representation of Cliff(p,m) with
p+m even, then we can get real representations of the algebras tabulated here (with
n defined by p+m = 2n) without increasing the dimension of the representation:

algebra when it works

Cliff(p+ 1,m) when p+m is even and n+m is even

Cliff(p,m+ 1) when p+m is even and n+m is odd

To do this, suppose that we have Dirac matrices for a representation of Cliff(p,m)
with p+m = 2n:

γ1, γ2, ..., γ2n. (24)

Now define an additional Dirac matrix γ2n+1 by

γ2n+1 = γ1γ2 · · · γ2n. (25)

This matrix is clearly real if the matrices (24) are real. The matrices γ1, γ2, ..., γ2n+1

generate a representation of another Clifford algebra. To determine its signature,
use the fact that (25) squares to (−1)n+m. To see this, note that it is a product of
n mutually commuting bivectors γjγj+1. If each of the original 2n Dirac matrices
squared to +1, then the square of each bivector would be −1. This gives a factor of
(−1)n. The other factor (−1)m accounts for the fact that m of the Dirac matrices
actually square to −1 instead. Altogether, this gives the results tabulated above.
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20 Real representations, method 2

This section shows that if we start with a real representation of Cliff(p,m) with
p+m odd, then we can get real representations of the algebras tabulated here by
doubling the dimension of the representation:

algebra when it works

Cliff(p+ 1,m) when p+m is odd

Cliff(p,m+ 1) when p+m is odd

Cliff(m+ 1, p) when p+m is odd

To do this, define n by p + m = 2n + 1, and suppose that we have a real repre-
sentation of dimension 2n = NC(p,m) for the Clifford algebra Cliff(p,m). For any
matrix M , let M ⊗ (p,m) denote the set of matrices M ⊗ γa, where γa are the
matrices in the original representation of Cliff(p,m).31 Let I denote the identity
matrix of order 2n, and define X, Y, Z as in equation (12). The matrices

Z ⊗ (p,m) X ⊗ I

give a real representation of Cliff(p+ 1,m). The matrices

Z ⊗ (p,m) Y ⊗ I

give a real representation of Cliff(p,m+ 1). The matrices

Y ⊗ (p,m) Z ⊗ I,

give a real representation of Cliff(m + 1, p). All of these real representations have
dimension 2n+1 = NC(p+m+ 1).

31The tensor product ⊗ is defined in section 15.
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21 Real representations, method 3

This section shows that if we start with a real representation of Cliff(p,m), then
we can get real representations of the algebras tabulated here without changing the
dimension of the representation:

algebra when it works

Cliff(p+ 4,m− 4) when m ≥ 4

Cliff(p− 4,m+ 4) when p ≥ 4

To do this, suppose we have a real representation in which the first four Dirac
matrices

γ1, γ2, γ3, γ4

all square to +1. Then the matrix

M ≡ γ1γ2γ3γ4 (26)

squares to +1, anti-commutes with each of the first four Dirac matrices, and com-
mutes with each of the others. This implies that the new matrices

γ̄k ≡

{
Mγk if k = 1, 2, 3, 4,

γk if k ≥ 5
(27)

still anti-commute with each other, and the first four of them square to −1. So the
new set of Dirac matrices γ̄ has signature (p− 4,m+ 4).

Similarly, if we have a real representation in which the first four Dirac matri-
ces square to −1, then equations (26)-(27) give a new set of Dirac matrices with
signature (p+ 4,m− 4).
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22 Real representations for d = 2 through d = 11

Define X, Y, Z as in equation (12). Start with the real representation of Cliff(1, 1)
defined by

γ1 = X γ2 = Y.

and the real representation of Cliff(2, 0) defined by

γ1 = X γ2 = Z.

From those starting points, we can proceed like this:

• Applying method 1 to these representations of Cliff(1, 1) and Cliff(2, 0) gives
(in either case) a real representation of Cliff(2, 1) using matrices of order 2.

• Applying method 2 to this representation of Cliff(2, 1) gives real representa-
tions of Cliff(2, 2) and Cliff(3, 1) using matrices of order 22.

• Applying method 1 to these representations of Cliff(2, 2) and Cliff(3, 1) gives
(in either case) a real representation of Cliff(3, 2) using matrices of order 22.

• Applying method 2 to this representation of Cliff(3, 2) gives real representa-
tions of Cliff(3, 3) and Cliff(4, 2) using matrices of order 23.

• Applying method 3 to this representation of Cliff(4, 2) gives a real represen-
tation of Cliff(0, 6) using matrices of order 23.

• Applying method 1 to these representations of Cliff(3, 3) and Cliff(4, 2) gives
(in either case) a real representation of Cliff(4, 3) using matrices of order 23,

• Applying method 3 to this representation of Cliff(4, 3) gives a real represen-
tation of Cliff(0, 7) using matrices of order 23.

Figure 1 shows this pattern extended to d = 11.
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1
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3oo 3 // (8, 0) (5, 3) 3 // (1, 7)
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10 32× 32 (1, 9) (5, 5)
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11 32× 32 (2, 9) (6, 5)3oo 3 // (10, 1)

Figure 1 – In this figure, (p,m) denotes a real representation with that signature. The labels
1,2,3 on the arrows refer to methods 1,2,3 for obtaining representations in other signatures, as
described in sections 19-21. (Some arrows are not shown because they don’t lead to anything
new.) The first column is the dimension d = p+m of the original vector space, and the second
column is the size of each Dirac matrix (N ×N). 27
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23 Traces

When using a matrix representation γ of Cliff(p,m), we often need to compute the
trace of a product of Dirac matrices. This section derives one general result about
such traces.

Let x,y, ... be any list of N ≥ 1 mutually orthogonal vectors that are not
self-orthogonal. If N is even, or if N is odd with N < p+m, then

Trace(γ(x)γ(y) · · · ) = 0. (28)

This holds for all representations of any dimension, not just for irreducible repre-
sentations of the minimum possible dimension.

To deduce this, use the fact that the trace of a product is invariant under a
cyclic permutation of the factors: Trace(AB) = Trace(BA). In particular,

Trace
(
γ(x)γ(Q)

)
= Trace

(
γ(Q)γ(x)

)
,

which implies

Trace
(
γ(xQ)

)
= Trace

(
γ(Qx)

)
. (29)

for any vector x and any other element Q of the Clifford algebra. If Q is a product
of an odd number of vectors, each of which is orthogonal to x, then xQ = −Qx,
so equation (29) says that the trace must be zero. This proves that equation (28)
holds when N is even, as long as N > 0

Now suppose that N is odd. Let Q be a product of an odd number of vectors,
and let v denote some other vector that is orthogonal to all of the vector factors in Q
but not self-orthogonal. Such a vector v exists if N < p+m. Then we have vQv =
−v2Q where v2 is a non-zero real number. The trace is invariant under cyclic
permutations of the factors, so this implies that the quantity Trace(γ(v2Q)) =
v2Trace(γ(Q)) is zero. This proves that equation (28) holds when N is odd if
N < p+m.
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24 Representations of the even subalgebra

The even subalgebra of a Clifford algebra consists of those elements which are
linear combinations of products of even numbers of vectors. The even subalgebra
of Cliff(p,m) will be denoted Cliffeven(p,m).

Section 7 determined the minimum possible dimension NC(p+m) of a nontrivial
representation of Cliff(p,m) on a complex vector space. That result, combined with
the isomorphism32

Cliffeven(p,m) ' Cliff(m, p− 1), (30)

may be used to infer the minimum possible dimension Neven,C(p+m) of a nontrivial
representation of Cliffeven(p,m) on a complex vector space. The conclusion is:

• When p+m is odd, Neven,C(p+m) = NC(p+m).

• When p+m is even, Neven,C(p+m) = NC(p+m)/2.

When p + m is even, a representation of Cliff(p,m) of dimension NC(p + m) be-
comes reducible when restricted to Cliffeven(p,m), separating into two irreducible
representations that each have dimension NC(p + m)/2. To construct these two
irreducible representations, choose vectors e1, e2, ..., ep+m ∈ Cliff(p,m) that satisfy
the conditions in section 8. Define Γ = εe1e2 · · · ep+m with ε ∈ {1, i} chosen so that
Γ2 = 1. Then the quantities

P± ≡
1± Γ

2

are both projections (P 2
+ = P+ and P 2

− = P−), and they annihilate each other
(P+P− = 0). The projections P± belong to Cliffeven(p,m), and they commute with
everything in that algebra. Now, start with a representation γ of Cliff(p,m) of
dimension N , and restrict it to Cliffeven(p,m). Then we can get two smaller repre-
sentations of Cliffeven(p,m) by multiplying everything by γ(P+) or by multiplying
everything by γ(P−). Both of these representations have dimension N/2.

32Benn and Tucker (1989), page 39, equation (2.3.1). Article 03910 also derives this isomorphism.
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25 Example: Cliff(1, 3)

Section 14 explained how to construct a representation of Cliff(1, 3) on a four-
dimensional vector space over C. That representation is irreducible. To illustrate
the recipe that was described in section 24, this section shows how that representa-
tion of Cliff(1, 3) decomposes into two irreducible representations of Cliffeven(1, 3).
The notation in this section is the same as in section 14.

The algebra Cliffeven(1, 3) is generated by the six bivectors ejek with j < k. The
quantity that was denoted Γ in section 24 is

Γ = ie1e2e3e4.

This satisfies Γ2 = 1, so the quantities

P± ≡
1± Γ

2

are both projections. The quantity Γ commutes with everything in Cliffeven(1, 3),
so the projections P± do, too. However, Γ anticommutes with ek, so

P+ek = ekP− P−ek = ekP+.

When P is defined by equation (11) as before, these projections satisfy

P+P = P P−P = 0

P+e2e4P = e2e4P P−e2e4P = 0

P+e2P = 0 P−e2P = e2P

P+e4P = 0 P−e4P = e4P.

The first column of relationships says that applying γ(P+) to Φ leaves a represen-
tation of Cliffeven(1, 3) spanned by the two vectors Φ(P ) and Φ(e2e4P ). The second
column of relationships says that applying γ(P−) to Φ leaves a representation of
Cliffeven(1, 3) spanned by the two vectors Φ(e2P ) and Φ(e4P ). These are irreducible
representations of Cliffeven(1, 3).
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26 Real representations of the even subalgebra

Section 24 explained how to produce representations of Cliffeven(p,m) on a com-
plex vector space of the smallest possible dimension Neven,C(p + m). Depending
on the signature (p,m), real representations may exist with that same dimension
Neven,C(p+m). One way to determine when such representations exist is to use the
isomorphism (30) together with the table in section 18. The result is summarized
in this table, using Neven,R(p,m) to denote the minimum dimension among real
representations of Cliffeven(p, q):

(p−m) mod 8 Neven,R(p,m)

7,0,1 Neven,C(p,m)

2,3,4,5,6 2Neven,C(p,m)

To construct real representations of dimension Neven,C(p,m) when they exist,
start with a real representation of Cliff(p,m) of dimension NC(p+m). Such repre-
sentations exist whenever p−q modulo 8 is either 0, 1, or 2.33 A real representation
of Cliff(p,m) is still real when restricted to Cliffeven(p,m). Multiplying every Dirac
matrix by i reverses the signature from (p,m) to (m, p), giving a representation
of Cliff(m, p) that becomes real when restricted to Cliffeven(m, p). Altogether, this
gives real representations of Cliffeven(p,m) of dimension NC(p+m) whenever p− q
modulo 8 belongs to {6, 7, 0, 1, 2}.34

That already accounts for the cases with odd p−m in the first row of the table,
because Neven,C(p + m) = NC(p + m) when p − q is odd.35 When p − q is even,
Neven,C(p + m) is equal to NC(p + m)/2, so the remaining question is for which
signatures (p,m) the real representations described in the preceding paragraph
remain real when the dimension-halving projections described in section 24 are
applied. The answer can be deduced like this:

33Section 18
34This is consistent with the symmetry Cliffeven(m, p) ' Cliffeven(p,m) (article 08264).
35Section 24
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• When p−q modulo 8 is 0 or 4, the product e1e2 · · · ep+m squares to 1, so in this
case the quantity that was denoted Γ that section doesn’t include a factor of
i, so we get real representations of Cliffeven(p,m) of dimension Neven,C(p,m).

• When p − q modulo 8 is 2 or 6, the product e1e2 · · · ep+m squares to −1,
so in this case the quantity that was denoted Γ that section does include a
factor of i, so we don’t get real representations of Cliffeven(p,m) of dimension
Neven,C(p,m).

This accounts for the cases with even p−m in the table shown above.
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27 Summary of minimum dimensions

This section gathers the minimum-dimension results that were introduced in the
preceding sections. Notation:

• NC(p+m) is the smallest dimension of a complex vector space that can host
a nontrivial representation of Cliff(p,m).

• Neven,C(p + m) is the smallest dimension of a complex vector space that can
host a nontrivial representation of Cliffeven(p,m).

• NR(p + m) is the smallest dimension of a real vector space that can host a
nontrivial representation of Cliff(p,m).

• Neven,R(p+m) is the smallest dimension of a real vector space that can host
a nontrivial representation of Cliffeven(p,m).

For representations hosted on complex vector spaces, the smallest dimensions are36

NC(d) =

{
2d/2 if d is even,

2(d−1)/2 if d is odd
Neven,C(d) =

{
2(d/2)−1 if d is even,

2(d−1)/2 if d is odd.

For representations hosted on real vector spaces, the smallest dimensions are37

p−m
mod 8 NR(p,m) Neven,R(p,m)

0 2d/2 2(d/2)−1

1 2(d−1)/2 2(d−1)/2

2 2d/2 2d/2

3 2(d+1)/2 2(d+1)/2

p−m
mod 8 NR(p,m) Neven,R(p,m)

4 2(d/2)+1 2d/2

5 2(d+1)/2 2(d+1)/2

6 2(d/2)+1 2d/2

7 2(d+1)/2 2(d−1)/2

with d ≡ p+m. This agrees with table 2.10 in Benn and Tucker (1989).
36Sections 7 and 24
37Sections 18 and 26
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28 Some terminology

A recurring theme in physics is that even when the math is clear, the language can
be confusing because words aren’t always used consistently. This section summa-
rizes some of the different dialects that are used in the context of representations
of Clifford algebras. This section uses the abbreviation d ≡ p+m.

• This terminology is common in the math literature:38 a representation of
Cliff(p,m) of dimension NC(p,m) is called a pinor representation, and a
representation of Cliffeven(p,m) of dimension Neven,C(p,m) is called a spinor
representation. Elements of the vector spaceW on which the representation
acts are called pinors or spinors, respectively.39 When d is odd, pinors and
spinors are the same. When d is even, one pinor consists of two spinors.40

• This terminology is also common in the math literature:41 when Cliff(p,m)
or Cliffeven(p,m) is a simple algebra,42 a minimum-dimension representation
of that algebra is called a spinor representation. When Cliff(p,m) or
Cliffeven(p,m) is not simple, a minimum-dimension representation is called a
semi-spinor representation.

• This terminology is common in the physics literature: In a representation of
Cliff(p,m) on a vector space W of dimension NC(p,m), an element of W is
called a Dirac spinor. When d is even, Cliffeven(p,m) has representations
on a vector space W of dimension NC(p,m)/2, and an element of that W

38Example: Figueroa-O’Farrill (2015), section 3, page 7
39Warning: for all d, Harvey (1990) defines a pinor representation to be an irreducible representation of the Clifford

algebra, but then for some odd values of p−m, the space of pinors is defined to be the direct sum of the two vector
spaces on which two inequivalent pinor representations act. That language in definition 11.10, which is almost one
and a half pages long. In that book, for those values of p− q, a pinor is an element of the space of pinors (example:
the text between equations 12.97 and 12.98) but is not an element of the space on which a pinor representation acts.
The opportunities for confusion are abundant.

40Section 24
41Example: Benn and Tucker (1989), section 2.5, page 55
42A simple algebra is isomorphic to a full matrix algebra in which the components of each matrix are elements of

an associative division algebra (Brešar (2010), theorem 3.4).
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is called a chiral spinor43 or Weyl spinor.44 When d is even, one Dirac
spinor consists of two chiral spinors (Weyl spinors).45

• A real representation of Cliff(p,m) of dimension NR(p,m) is called a Majo-
rana representation.46

• Starting with a real representation of Cliff(p,m) of dimension NR(p,m), mul-
tiplying all Dirac matrices by i (which flips the signature from (p,m) to (m, p))
gives what is sometimes called a pesudo-Majorana representation47 or
sometimes just Majorana representation.48

43Example: Wipf (2016), section 4.4
44Peskin and Schroeder (1995), section 3.2, page 44
45The two chiral spinors come from using the projections (1 ± Γ)/2 that were defined in section 24. These two

representations are exchanged with each other by a reflection along any individual vector, because such a reflection
flips the sign of Γ. The name chiral alludes to this reflection.

46Example: Figueroa-O’Farrill (2015), section 3, pages 8-9. When comparing that source to this article, beware
that we use opposite conventions for writing the signature: the quantity denoted s− t in that source corresponds to
−(p−m) in this article. (Recall footnote 4 in section 1.)

47Page 15 in Figueroa-O’Farrill (2015) criticizes this as “a nebulous concept best kept undisturbed.”
48Example: Wipf (2016), section 4.3, below equation (4.32)

35



cphysics.org article 86175 2024-12-09

29 References

(Open-access items include links.)

Ablamowicz, 2016. “On the structure theorem of Clifford algebras” https:

//ouweb.tntech.edu/cas/pdf/math/techreports/TR-2016-3.pdf

Benn and Tucker, 1989. An Introduction to Spinors and Geometry with Ap-
plications in Physics. Adam Hilgar
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