
cphysics.org article 81674 2025-01-26

The Wedge Product and the
Definition of the Determinant

Randy S

Abstract This article uses the question in the title to
motivate the wedge product, also called the exterior
product. Many things that are traditionally expressed
using the cross product in three-dimensional space have
natural generalizations to any number of dimensions when
expressed in terms of the wedge product. The wedge prod-
uct can also be used to define the determinant of a linear
transformation. Basic properties of the determinant are
obvious from this definition.
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1 Introduction

In 3-dimensional space, the cross product of two vectors

a = (a1, a2, a3) b = (b1, b2, b3)

is defined by

a× b ≡ (a2b3 − a3b2,

a3b1 − a1b3,

a1b2 − a2b1).

The fact that this has three components tempts us to call it a “vector,” and for
many purposes we can treat it as a vector. However, if we pay close enough atten-
tion to how the cross product is actually used in physics, we realize that treating
the cross product as a vector is not necessary. If we discard this unnecessary part of
the cross product idea, then it has a natural generalization to D-dimensional space.
This natural replacement for the cross product is called the wedge product (also
called the exterior product), the subject of this article.1

The wedge product works in any number of dimensions. It also works for the
product of any number of vectors, not just two vectors. It provides a natural
way of defining the determinant of any linear transformation, and key properties
of the determinant are more obvious from this definition than they are from the
traditional one.2,3

1Other roles of this product are introduced in articles 03910 and 91116.
2The definition given in this article is constructive: we can use it to calculate the determinant. An even simpler

non-constructive characterization is available (Fearnley-Sander (1975)). In the context of a D-dimensional vector
space over C, the determinant is uniquely charcaterized by the product property det(LM) = (detL)(detM) together
with the property det(zI) = zD for all z ∈ C, where L,M are linear transformations and I is the identity transfor-
mation. In the context of a vector space over R, the same characterization is sufficient if D is odd (with z ∈ R in
place of z ∈ C), but if D is even then we also need the condition det(R) = −1 for at least one reflection R.

3According to Axler (1995), much of linear algebra (the study of linear transformations of vector spaces) can be
formulated without using determinants at all, but determinants are still important in other areas of mathematics, so
having a simple and easy-to-use definition is still valuable.
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2 Key properties of the cross product

These properties of the cross product are important:

• Its inputs are two vectors, a and b.

• It is antisymmetric in its two inputs: a× b = −b× a.

• It is linear in both of its inputs. In particular, if we flip the sign of either one
of its inputs, then the whole thing changes sign.

• Define the magnitude of a× b, denoted |a× b|, to be the square-root of the
sum of the squares of the components. This quantity is equal to the area of
the parallelogram defined by a and b.

• When the magnitude of a× b is nonzero, it has an orientation. If somebody
gives us the components of a× b but doesn’t tell us what a and b were, we
can still determine which vectors lie within the plane defined by a and b.

We can generalize the cross product to D-dimensional space in a way that preserves
all of these properties, but the generalization is not a vector. To emphasize this, the
generalization has a different name: the wedge product. The remaining sections
define it and highlight some of its properties.
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3 The wedge product of two vectors

In D-dimensional space, the wedge product of two vectors

a = (a1, a2, ..., aN) b = (b1, b2, ..., bN)

is an entity a ∧ b with these components:

ajbk − akbj for all j, k ∈ {1, 2, ..., N}.

We immediately see that this entity cannot be a vector, because the number of
components is not equal to D. How many components does it have? Well, we
might as well only count the components with j < k, because the components with
k > j are just the negatives of the ones with j < k. The number of components
with j < k is (

D

2

)
=
D2 −D

2
.

This happens to be 3 when D = 3, but that’s a distracting coincidence. The wedge
product is not a vector. We can keep track of its components using two indices
instead of one:

(a ∧ b)jk ≡ ajbk − akbj. (1)

If a ∧ b isn’t a vector, then what is it? We can answer that question the same
way we answer any “what is it” question in math: by becoming familiar with its
properties. That’s what the remaining sections are about.
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4 Properties of the wedge product of two vectors

The wedge product has all the properties that were listed in section 2. These
properties are obvious from the definition:

• If we swap a and b, then the components of the wedge product change sign:
a ∧ b = −b ∧ a.

• The wedge product is linear in both of its inputs. In particular, if we flip the
sign of either one of its inputs, then the whole thing changes sign.

The next two properties might not be so obvious:

• If we define the magnitude |a ∧ b| to be the square-root of the sum of the
squares of its components (counting only the components with j < k), then
the magnitude is equal to the area of the parallelogram defined by a and b.

• When its magnitude is nonzero, the wedge product has an orientation. If
somebody gives us the components of a ∧ b but doesn’t tell us what a and
b were, we can still determine which vectors lie within the plane defined by
a and b.

These might not be obvious at first, but they are both easy to prove. The next
section shows how.

6



cphysics.org article 81674 2025-01-26

5 Proof of the parallelogram-area property

First consider the parallelogram-area property:

|a ∧ b|2 ≡
∑
j<k

(ajbk − akbj)2 =
1

2

∑
j,k

(ajbk − akbj)2

=
∑
j,k

a2
jb

2
k −

∑
j,k

(ajbj)(akbk)

= |a|2|b|2 − (a · b)2

= |a|2|b|2 − |a|2|b|2 cos2 θ

= |a|2|b|2 sin2 θ,

where θ is the angle between a and b. This proves

|a ∧ b| = |a| |b| sin θ,

which is the area of the parallelogram defined by a and b, as claimed. This works
for any number of dimensions D ≥ 2, not just D = 3.
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6 Proof of the orientation property

Now consider the orientation property. Suppose that somebody gives us the com-
ponents (a ∧ b)jk and asks us to determine whether another vector c lies within
the plane defined by a and b, but without telling us the individual components of
a and b. To solve this riddle, consider the quantities

Tjkm ≡
1

2

∑
π

(−1)π(a ∧ b)π(j)π(k)cπ(m),

where the sum is over all permutations of the D index-values, with a coefficient
−1 for odd permutations and +1 for even permutations, so that swapping any
two of Tjkm’s subscripts is equivalent to changing the overall sign. In words, T is
completely antisymmetric. The quantities Tjkm are all zero if and only if the
three vectors a, b, c are coplanar. To see this, use equation (1) to deduce

Tjkm =
∑
π

(−1)πaπ(j)bπ(k)cπ(m).

This shows that T is completely antisymmetric in the three vectors a, b, c: it
changes sign whenever two of them are swapped. If c can be written as a linear
combination of a and b, then this antisymmetry implies T = 0. Therefore, if the
three vectors are coplanar, then T = 0. What about the converse? We can always
choose a basis in which all components of a are zero except possibly the first one,
all components of b are zero except possibly the first two, and all components of
c are zero except possibly the first three. In such a basis, the antisymmetry of T
implies

T123 = a1b2c3,

which is zero if and only if at least one of the three factors a1, b2, c3 is zero. In
other words, T is zero if and only if the three vetors are coplanar, so the riddle is
solved.

This shows that the wedge product a ∧ b encodes the orientation of the plane
defined by the vectors a and b.

8



cphysics.org article 81674 2025-01-26

7 The wedge product of multiple vectors, part 1

The definition of the wedge product of two vectors, equation (1), can also be written
like this:

(a ∧ b)jk ≡
∑
π

(−1)πaπ(j)bπ(k).

We can generalize this to the wedge product of any number of vectors. For three
vectors, it’s the expression that appeared in the previous section:

(a ∧ b ∧ c)jkm ≡
∑
π

(−1)πaπ(j)bπ(k)cπ(m).

The pattern should be clear from these examples.
We can also define the wedge product of two wedge products: if A is the wedge

product of K vectors and B is the wedge product of M vectors, then A∧B is defined
by antisymmetrizing over all K + M indices and dividing by K!M !. (Notice that
this reduces to equation (1) if K = M = 1.) With this definition, we can easily see
that A ∧B is equal to the wedge product of the K +M original vectors that were
used to construct A and B.
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8 The wedge product of multiple vectors, part 2

The wedge product of K vectors in D-dimensional space has these properties:

• The wedge product is associative. Example:

(a ∧ b) ∧ c = a ∧ (b ∧ c) = a ∧ b ∧ c.

• It changes sign if any two of the vectors are swapped.

• It is linear in each vector. In particular, if we flip the sign of any one vector,
then the whole thing changes sign.

• It is nonzero if and only if all of the vectors are linearly independent. In other
words, it is zero if and only if one of the vectors can be written as a linear
combination of the others.

• If we define its magnitude to be the square-root of the sum of the squares
of its D-choose-K components, then the magnitude is the volume of the
(hyper)parallelepipid defined by the K vectors.

Geometrically, the wedge product of K vectors represents an oriented element of
K-volume. If K = N , then it has only one component. The significance of this
case is highlighted in the next section. If K > N , then it is identically zero because
that many vectors cannot all be linearly independent.

These properties obviously still hold when K = 1, which is a single ordinary
vector, so the pattern is complete.
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9 The determinant of a linear transformation

Let V be an D-dimensional vector space over the real or complex numbers. The
wedge product of D vectors has only one component, so if v1, ...,vD is a set of
D linearly independent vectors in V , and if u1, ...,uD is another set of D linearly
independent vectors V , then

v1 ∧ v2 ∧ · · · ∧ vD ∝ u1 ∧ u2 ∧ · · · ∧ uD.

Such a product is called a top-dimensional form, because it has the largest num-
ber of vector factors that any nonzero wedge product can have in a D-dimensional
vector space.4 In words: all top-dimensional forms are proportional to each other.

We can use this fact to define the determinant of a linear transformation. Let V
be an D-dimensional vector space over the real or complex numbers, let v1, ...,vD
be any set of D linearly independent vectors in V , and let L : V → V be any linear
transformation of V . Then

(Lv1) ∧ (Lv2) ∧ · · · ∧ (LvD) = (detL)v1 ∧ v2 ∧ · · · ∧ vD

for some real or complex number detL that is uniquely determined by this equation.
The number detL is called the determinant of L. From this definition, we can
easily deduce some key properties of the determinant:

• If L and M are two linear transformations, then det(LM) = (detL)(detM).

• If L is has D linearly independent eigenvectors,5 then detL is equal to the
product of the D eigenvalues of L. To prove this, take the factors vn to be
the eigenvectors of L.

• detL 6= 0 if and only if L is invertible.

• If L is invertible, then det(L−1) = 1/ detL.

4The wedge product of any number of vectors is zero if the vectors are not all linearly independent of each other.
5Recall that a vector v is called an eigenvector of L with eigenvalue λ if Lv = λv.
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10 Pseudovectors

If a and b are two vectors in 3-dimensional space, then their cross product c ≡ a×b
has the same number of components (three) as a vector. Even more, it transforms
like a vector under ordinary rotations: a×b→ (Ra)×(Rb) is the same as c→ Rc,
for any rotation R with unit determinant.6 As a consequence, if v1,v2,v3 are
three vectors, then the quantity v1 · (v2× v3) is invariant under ordinary rotations
vn → Rvn. The quantity v1 · (v2 × v3) can be interpreted as the volume of the
parallelepiped with edges vn.

This has a natural generalization to D-dimensional space. If v1, ...,vD−1 are
D − 1 vectors, then their wedge product

v1 ∧ · · · ∧ vD−1 (2)

has the same number of components (namely D) as a vector, and those components
can be arranged so that it transforms like a vector under ordinary rotations. The
proof is simple: given another vector vD, the wedge product of (2) with vD is in-
variant under any transformation vn → Rvn with detR = 1. This is a consequence
of the definition of the determinant given in the previous section. Therefore, we
can arrange the components of the quantity (2) so that its “dot product” with vD
is invariant under rotations. When the D components of (2) are arranged this way,
it’s called a pseudovector (or axial vector).

6The unit-determinant condition excludes reflections.
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