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Phase Structure of
the Quantum Ising Model
in One-Dimensional Space

Randy S

Abstract The quantum Ising model is a system of qubits defined
on a one-dimensional lattice (a discrete version of one-dimensional
space), with an especially simple hamiltonian governing the system’s
time evolution. It is actually a family of models, parameterized by a
real number λ ≥ 0. This family is interesting because it has a nontriv-
ial phase structure: the model has a symmetry that is respected
by the lowest-energy state when λ < 1 and that is broken by the
lowest-energy state when λ > 1, a phenomenon called spontaneous
symmetry breaking (SSB). These two phases are strictly distinct
from each other only when the lattice is infinite. This article defines
the model first on a finite lattice and then explores how the strict
distinction between the two phases arises when the lattice becomes
infinite. The concept of superselection sectors, which is important
throughout quantum field theory, is one of the keys to understanding
how SSB works. The article also explores how this phase structure
manages to coexist with another property of the model called self-
duality, which is a kind of invariance under λ→ 1/λ.
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1 Introduction and context

Many introductions to quantum field theory (QFT) introduce the subject of sponta-
neous symmetry breaking (SSB) using classical analogies or semiclassical analyses.
This article uses the quantum Ising model in one-dimensional space to study SSB
without making such compromises. The quantum Ising model is a system of qubits
whose behavior is governed by a hamiltonian that depends on a parameter λ ≥ 0,
which I’ll call the coupling. The model can be defined in (the lattice version of)
D-dimensional space for any D, but this article focuses on the case D = 1, where
the calculations are relatively easy to manage.

On an infinite lattice, the model exhibits two distinct phases: a symmetric
phase when |λ| < 1, and an SSB phase (a phase with spontaneously broken
symmetry) when λ > 1. The case λ = 1, which sits at the boundary between the
symmetric and SSB phases, is called the critical point. This article explores the
phase structure by first defining the model on a finite lattice and then considering
the infinite-lattice limit. Sections 2-4 define two slightly different versions of the
model. Sections 5-7 review/introduce some general concepts, and the remaining
sections study the models’ phase structure.

Much of the literature about the Ising model uses another variant in which
both space and time are discretized.1 The discrete-time variant is often called the
two-dimensional Ising model, referring to the number of spacetime dimensions in-
stead of just the number of spatial dimensions.2 Much of the literature about the
Ising model is concerned with its properties at the critical point, where the corre-
lation length diverges and the differences between various discretizations become
unimportant.3 The Ising model has a natural generalization to any number of
dimensions, but this article considers only one-dimensional space (2d spacetime),
because this is the easiest case with a nontrivial phase structure.

1Section IIC in Fradkin and Susskind (1978) and section IV in Kogut (1979) describe the relationship between
the discrete- and continuous-time variants. Appendix F in Harlow and Ooguri (2021) reviews a generalization.

2After Wick rotation, the model can be be reinterpreted as a classical statistical model in 2d space (instead of
2d spacetime). I’m using the name “quantum Ising model” to emphasize the conceptual distinction.

3This mathematical phenomenon is called universality. Article 21916 emphasizes its relevance to QFT.
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2 The Hilbert space and qubit operators

The model studied in this article is based on a discretized version of one-dimensional
space, which will be called the lattice. It will be defined first using a finite number
N of points, and then we’ll explore what happens when N →∞.

Choose an integer N . Consider a 2N -dimensional Hilbert space spanned by
vectors |b〉, one for each N -digit binary number b, with the inner product defined
by

〈b|b〉 = 1 〈b′|b〉 = 0 if b′ 6= b.

Any other vector in the Hilbert space is a linear combination of these basis vectors
|b〉 with complex coefficients. For each n ∈ {1, 2, ..., N}, define the self-adjoint
Pauli operators Zn and Xn by

Zn|b〉 =

{
|b〉 if the nth digit is 0

−|b〉 if the nth digit is 1
Xn|b〉 = |b(n)〉

where b(n) is obtained from b by flipping the nth digit (replacing 0 ↔ 1). I’ll
call them qubit operators, because each pair Xn and Zn defines a qubit (article
36176). Using the standard notation

[A,B] ≡ AB −BA {A,B} ≡ AB +BA,

these operators satisfy4

Z2
n = 1 X2

n = 1 {Xn, Zn} = 0 (1)

[Xj, Xk] = [Xj, Zk] = [Zj, Zk] = 0 whenever j 6= k.

4The symbols 1 denotes either the identity operator or the number 1, depending on the context.
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3 The hamiltonian

The quantum Ising model on a lattice with N points has several versions, differing
from each other in their boundary conditions – how the hamiltonian treats
the qubits near the endpoints of the lattice. This article will study two different
versions.5 The first one uses the hamiltonian

H = −HX − λHZ with HX =
N∑
n=1

Xn HZ =
N−1∑
n=1

ZnZn+1. (2)

The second sum can be regarded as a sum over links, where each link is a pair
of neighboring sites (n, n + 1) in the lattice. I’ll call this version the left-right
symmetric version, because the hamiltonian is symmetric about the center of the
lattice (which is a site if N is odd, or the midpoint between two sites if N is even).
The second version uses the hamiltonian

Ĥ = −ĤX − λHZ with ĤX =
N−1∑
n=1

Xn, (3)

with HZ defined as before. This version has a property called self-duality even
when N is finite (section 21), not just when N → ∞, so I’ll call this the self-
dual version. The two versions differ from each other by a single qubit operator:
H − Ĥ = XN .

Whichever version is used, an eigenstate of the hamiltonian will be called an
energy eigenstate, and the corresponding eigenvalue will be called the energy
eigenvalue or just the energy (article 22871). The state(s) that have the lowest
energy will be called the ground state(s).

5 This article doesn’t consider the version with the periodic boundary condition, in which the one-dimensional
space wraps back on itself like a circle. That version is attractive because it has translation symmetry even on a
finite lattice, but that doesn’t necessarily make the model any easier to analyze (footnote 24). Mbeng et al (2020)
considers periodic and nonperiodic versions of the model.
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4 Local observables and the flip-all-bits symmetry

The model associates one qubit with each point in the lattice – with each value of
the index n ∈ {1, 2, ..., N}. Consecutive index-values represent neighboring points
in the lattice, so a string of consecutive index-values represents a region of space.
The local observables associated with a given region of space at a given time t are
represented by operators in the algebra that is generated by the operators Xn(t)
and Zn(t) for all n in the given region, and the t-dependence is defined by

Xn(t) = U−1(t)XnU(t) Zn(t) = U−1(t)ZnU(t)

with
U(t) = exp(−iHt) or exp(−iĤt),

depending on which version of the model is used.
The model has a symmetry implemented by the unitary operator

S ≡
∏
n

Xn, (4)

where the product is over all lattice sites. This operator commutes with both
versions of the hamiltonian and with each Xn, but it anticommutes with each Zn.
This implies

S−1Xn(t)S = Xn(t) S−1Zn(t)S = −Zn(t), (5)

which in turn implies that S implements an internal symmetry: it does not mix
observables associated with different regions of space at any given time. I’ll call
it the flip-all-bits symmetry, because if |b〉 is any of the basis states defined in
section 2, then S|b〉 = |b′〉 where the binary number b′ is obtained from b by flipping
all of the bits. More generically, this is called a Z2 symmetry,6 because the group
it generates has only two elements (1 and S, because S2 = 1) and so is isomorphic
to the additive group of integers modulo 2.

6Z is standard notation for the additive group of integers, and ZK uses addition modulo K.
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5 Superselection sectors: the concept

This article is mostly concerned with the limit N → ∞. This section reviews a
concept that is central to understanding the model’s interpretation in that limit.

Any time the state ends up in the form |ψ〉 =
∑

n |ψn〉 where the terms |ψn〉
cannot be mixed with each other by any of the operators representing future ob-
servables that could feasibly be measured, we might as well replace the original
superposition |ψ〉 with one of those distinguished terms |ψn〉, because we can only
experience one of them.7 This is the criterion we use, either explicitly or implicitly,
to recognize the occurrence of a measurement in quantum theory (article 03431). If
the distinguished terms |ψn〉 are eigenstates of an observable with distinct eigenval-
ues, then we say that the observable has been measured, and the state-replacement
rule tells us to project the original state onto one of those eigenstates. The criterion
doesn’t tell us which one, nor does it tell us exactly when the projection should
be applied, but the criterion works well enough in practice: it is as predictive as it
needs to be, for everything that real experiments have actually been able to do.

The same criterion plays an important role in understanding SSB, illustrated
here by the quantum Ising model in the limit N → ∞. In that limit, the Hilbert
space defined in section 2 is much too big: it encompasses many different super-
selection sectors, subspaces that cannot be mixed with each other by any local8

observables – observables associated with bounded regions of space at a given time.
In this case, the criterion reviewed in the previous paragraph is unambiguous: any
state of the form |ψ〉 =

∑
n |ψn〉, where the terms |ψn〉 belong to different superse-

lection sectors, might as well be replaced by one of those terms |ψn〉.

7 The statement about experience applies to models that are meant to be good representations of real systems.
This article is using the Ising model only as a toy model: it’s not intended to have practical applications to any real
system, but we still hold it to at least some of the same principles, because the purpose of studying the toy model
is to develop intuition about the consequences of those principles.

8I’m specifying local observables here because other observables are defined in terms of these as part of the
definition of the limit N →∞, using an approach like Witten (2021) describes in section 2.2.
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6 Choosing a superselection sector

When applying the state-replacement rule in the wake of a measurement, quantum
theory doesn’t tell us which of the possible outcomes should be selected. It only
assigns probabilities to them. We can’t be sure which one we should chose until
the measurement occurs in the real world and we experience one of the outcomes.
We can only do this after the measurement occurs. In contrast, when we choose a
superselection sector, we are choosing the set of allowed initial states.

When N → ∞, the Hilbert space defined in section 2 encompasses many dif-
ferent superselection sectors.9 Which one should we choose? We can think of this
as part of deciding which model we should choose, and the answer is the same:
we should choose whichever one agrees with the results of real experiments. That
might be too much to expect when studying a toy model like the one we’re studying
in this article, but we can still apply some general guidelines based on experience
with more realistic models.

One guideline is the spectrum condition, which says that the spectrum of the
hamiltonian should have a finite lower bound (article 22871). In the quantum Ising
model, the spectrum condition is automatic when N is finite. To enforce it when
N → ∞, we can substract the N -dependent lowest energy from the hamiltonian
before taking the limit.10 We can choose one of the states that asymptotically
approaches the lowest possible energy (which is now zero), retaining all states that
can be obtained from that one by applying finite11 numbers of qubit operators
(section 2), but discarding states that are orthogonal to all of those. The resulting
Hilbert space might still encompass more than one superselection sector, but at
least they all satisfy the spectrum condition.

9Even if we didn’t know this, we would still know that the Hilbert space is too big, because the Hilbert space
used to represent observables in quantum theory is normally supposed to be separable: every orthonormal basis
should be countable (article 90771). The Hilbert space defined in section 2 is not separable when N =∞.

10This is illustrated in last picture in section 13.
11Sections 2.2 and 3.3 in Witten (2021) explain how choosing a separable subspace relates to choosing a topology

in which to complete the algebra of observables.
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7 Spontaneous symmetry breaking: definition

In some cases, restricting the model to a single superselection sector that satisfies
the spectrum condition breaks what would have otherwise been a symmetry of the
model. This is called spontaneous symmetry breaking (SSB).12 The quantum
Ising model in one-dimensional space exhibits this phenomenon with respect to the
flip-all-bits symmetry that was defined in section 4.

In the Ising model, perfect SSB – with perfect superselection sectors – requires
N →∞. That’s the subject of the remaining sections in this article, but the related
concept of effective SSB is more relevant for real-world systems. As emphasized in
section 5, any time a system ends up in a state of the form |ψ〉 =

∑
n |ψn〉 where the

terms |ψn〉 cannot be mixed with each other by any of the operators representing
future observables that could feasibly be measured, we might as well replace the
original superposition |ψ〉 with one of those distinguished terms |ψn〉. If the model
has a symmetry that mixes these distinguished terms |ψn〉 with each other, then
applying the state-replacement rule breaks that symmetry. Because of the qualifier
feasibly, this can occur even if the size of the system (analogous to the value of N)
is finite.13

This article uses the quantum Ising model as a toy model, not intended to be
a good representation of any real system. In a toy model, the condition “could
feasibly be measured” does not have any clear meaning. That’s why this article
focuses on perfect SSB. Keep in mind, though, that in more realistic models, perfect
SSB is interesting mainly because it ensures that effective SSB will occur when the
system is cool enough.

12SSB is often regarded as a consequence of requiring the ground state ρ(· · · ) ≡ 〈g| · · · |g〉/〈g|g〉 to satisfy the
cluster property, which roughly says that ρ

(
Q(x)Q′(y)

)
→ ρ

(
Q(x)

)
ρ
(
Q′(y)

)
as |x − y| → ∞. In words: it

says that ground-state correlations between observables that are far away from each other become negligible as the
distance between them goes to infinity. The relationship between the cluster property and the superselection-sectors
criterion is not addressed in this article. (This article doesn’t consider correlation functions.)

13Sections 1.6-1.7 in Landsman (2013) present a related-but-different perspective.
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8 Outline of the remaining sections

Sections 3 defined two slightly different hamiltonians, which give two slightly differ-
ent versions of the quantum Ising model when N is finite. The difference between
them doesn’t really matter in the limit N →∞, but it does matter when N is finite.
Understanding how the SSB phase emerges in the limit N → ∞ in both versions
can be enlightening, so this article analyzes both of them. Here’s an outline:

• Sections 12-20 analyze the left-right symmetric version of the model, with
hamiltonian (2). The analysis of this model will confirm what section 1 said
about the phase structure: in the limit N → ∞, the flip-all-bits symmetry
(5) is spontaneously broken if and only if λ > 1.

• Sections 21-24 analyze the other version of the model, the one that uses the
hamiltonian (3). For arbitrary N , this version of the model is self-dual,
which is a kind of invariance under λ→ 1/λ.

Both versions of the model should make the same predictions when N → ∞,
but the self-duality of the second version might seem incompatible with the phase
structure of the first version, where the cases λ < 1 and λ > 1 are distinguished
from each other by qualitatively different properties. Section 22 decomposes this
paradox into three pieces, and sections 22-24 explain how each piece is resolved.

11



cphysics.org article 81040 2024-03-04

9 The zero-coupling case

Start with the left-right symmetric hamiltonian (2), which will occupy our attention
from now through section 20.

When N is large, constructing the ground state(s) explicitly is typically difficult,
but it becomes easy in two limiting cases: λ = 0, and λ→∞. This section considers
the λ = 0 case, and the next section considers λ→∞.

When λ = 0, the left-right symmetric hamiltonian (2) reduces to HX . The
operator HX is a sum of single-qubit operators, so the qubits don’t interact with
each other in this case. The ground state is

|g〉 ≡
∑
b

|b〉, (6)

where the sum is over all N -digit binary numbers b, because this is an eigenstate
of every Xn with eigenvalue 1.14 The state (6) is an eigenstate of each Xn with
eigenvalue 1, so this state has energy −N , which is the lowest possible for the
hamiltonian HX .

Other energy eigenstates can be constructed by multiplying |g〉 by a product of
one or more Zs. The result is again an eigenstate of each Xn, now with eigenvalues
±1 depending on whether a factor of Zn was included in the product. Altogether,
this gives a set of 2N energy eigenstates, because each of the N operators Zn may
be either included in the product or not. This is enough states to span the Hilbert
space, so all other energy eigenstates must be superpositions of these.15 The energy
eigenvalues are all integers, either all even integers or all odd integers, depending
on whether N is even or odd. This is a prominent feature of the λ = 0 side of the
pictures shown in section 13.

14Recall that Xn flips the nth bit, so Xn merely permutes the summands |b〉 with each other without changing
their coefficients.

15A superposition of two energy eigenstates with equal energies is another energy eigenstates with that same
energy.
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10 The infinite-coupling limit

To define the limit λ → ∞, we can use the rescaled16 hamiltonian λ−1H. In the
limit λ→∞, the rescaled hamiltonian reduces to HZ . The all-0s and all-1s states

|000 · · · 000〉 |111 · · · 111〉

are both ground states.17 They both have the same energy, namely −(N−1), which
is the negative of the number of links. This is the lowest eigenvalue of HZ .

Other energy eigenstates can be constructed by multiplying either of these two
ground states by a product of one or more Xs. The result is again an eigenstate of
each term in HZ , now with eigenvalues ±1 depending on which factors of Xn were
included in the product. Multiplying by all of the Xns exchanges the two ground
states with each other.

Altogether, this gives a set of 2N energy eigenstates, which is enough to span
the Hilbert space, so all other energy eigenstates must be superpositions of these.
The energy eigenvalues are all integers, either all even integers or all odd integers,
depending on whether N is even or odd. For the original hamiltonians H and
Ĥ, without the overall rescaling factor λ−1, these integers describe the asymptotic
slopes of the energy-versus-λ graphs for large λ. These slopes are a prominent
feature of the pictures shown in section 13.

16This rescaling is perfectly legal. The overall proportionality factor is not important, because changing it is the
same as changing the unit of energy or the unit of time. We could have defined the hamiltonian more generally as
H ∝ − cos(φ)HX − sin(φ)HZ , and then the special cases φ = 0 and φ = π/2 correspond to λ = 0 and λ → ∞,
respectively, aside from the choice of units.

17The all-0s state is an eigenstate of every Zn with eigenvalue 1, and the all-1s state is an eigenstate of every Zn

with eigenvalue −1, so both states are eigenstates of every ZnZn+1 with eigenvalue 1.
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11 Spontaneous symmetry breaking: preview

The previous section showed that in the limit λ → ∞, the model has two ground
states – the all-0s state and the all-1s state – that are exchanged with each other
by the flip-all-bits symmetry. This is true for arbitrary N .

In the limit N → ∞, local observables cannot mix the all-0s and all-1s states
with each other: no matter how we change the states inside a finite region of space
(finite number of lattice sites), they will still be orthogonal to each other because
of their opposite bit-values arbitrarily far away. This illustrates SSB.

This illustration is almost too simple, though, because these two states are
both eigenstates of all of the single-qubit operators Zn. When λ is finite, none
of the ground state(s) are eigenstates of any single-qubit operators (except trivial
operators that are proportional to the identity operator). Instead, the qubits are
all entangled with each other, to a degree that increases as λ decreases toward the
critical value λ = 1. Even if we had an explicit expression of the form

∑
b cb|b〉 for

each ground state, with known coefficients cb, diagnosing SSB directly from those
expressions would be difficult.

Section 18 uses a less direct but easier approach. The result is that when
N → ∞, the flip-all-bits symmetry is spontaneously broken for all λ > 1. It
remains unbroken for λ < 1.

14
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12 Energy eigenstates on a two-site lattice

When N = 2, the sums in the hamiltonian (2) reduce to

HX = X1 +X2 HZ = Z1Z2,

so the hamiltonian reduces to

H = −(X1 +X2)− λZ1Z2.

The Hilbert space is only 4-dimensional (only two qubits), so the complete set of
energy eigenstates is easy to determine analytically. Here are the results:

Eigenvalue Eigenstate
√
λ2 + 4 |00〉+ |11〉+ 1

2

(
−λ−

√
λ2 + 4

) (
|01〉+ |10〉

)
λ |01〉 − |10〉

−λ |00〉 − |11〉

−
√
λ2 + 4 |00〉+ |11〉+ 1

2

(
−λ+

√
λ2 + 4

) (
|01〉+ |10〉

)
in order from highest to lowest energy. The ground state is the last entry in this list.
The results tabulated above are consistent with the observations in sections 9 and
10. When λ = 0, only one state has the lowest energy, namely |00〉+|11〉+|01〉+|10〉,
and this state is invariant under the flip-all-bits symmetry. When λ→∞, the two
lowest energies of the rescaled hamiltonian λ−1H both become equal to −1. Use

lim
λ→∞

−λ+
√
λ2 + 4

λ
= 0

to see that the corresponding energy eigenstates become |00〉±|11〉, and since their
energies are equal, the set of lowest-energy states includes |00〉 and |11〉, as observed
in section 10.

15
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13 Energy spectrum on small lattices

Sections 15-(20) will show how to calculate the spectrum of energies exactly, on
a lattice with an arbitrary number N of sites. For small N , the energy spectrum
may also be determined numerically. Here are a few examples:18,19

18 These results were generated using Python. The pictures are slightly blurry because I reduced the resolution to
keep the file size under control. The Python script is posted here: https://cphysics.org/extras/81040a.html

19These spectra are evidently invariant under a sign-change of the energy. To explain this, let πZ be the product
of all of the Zns, and let πX be the product of all of the Xns with n even. Then πXπZ anticommutes with every
term in the hamiltonian, so if |ψ〉 is an energy eigenstate, then so is πXπZ |ψ〉, with the opposite sign for the energy.

16
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Here’s the N = 7 case again, this time showing the energies relative to the lowest
energy:

The arrow calls attention to where the lowest and second-lowest energies cross
λ = 1. Section 18 will show that this is the threshold between the symmetric and
SSB phases when N →∞.

17
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14 More notation

To streamline the analysis in the following sections, let I denote the N×N identity
matrix, which has components

Ijk =

{
1 if j = k

0 otherwise,

and let T denote the translation matrix with components

Tjk =

{
1 if j + 1 = k,

0 otherwise.

For N = 5, the matrices I and T are

I =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 T =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

.
In this article, if A is an operator on the Hilbert space, then its adjoint will be
denoted A∗, as in article 74088. Given a matrix M whose individual components
Mjk are either complex numbers or operators on the Hilbert space, the notation
M † will be used for the matrix with components

(M †)jk = (Mkj)
∗

(notice the transpose), where the right-hand side is the complex conjugate of Mkj

if it’s a complex number, or the adjoint of Mkj if it’s an operator.

18
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15 How to diagonalize the hamiltonian, part 1

The next goal is to diagonalize20 the left-right symmetric version of the hamiltonian,
equation (2), repeated here for convenience:

H = −
N∑
n=1

Xn − λ
N−1∑
n=1

ZnZn+1. (7)

Define
An ≡ ZnSn+1 Bn ≡ −iZnSn (8)

with21

Sn ≡
∏
k≥n

Xk SN+1 ≡ 1. (9)

The operators (8) are self-adjoint.22 Use equations (1) to get

{Aj, Ak} = 2δjk {Aj, Bk} = 0 {Bj, Bk} = 2δjk. (10)

This is a Clifford algebra, so An and Bn will be called Clifford operators.
Each of these Clifford operators is a nonlocal23 combination of the original qubit
operators X,Z. The nonlocality is evident in equation (9). Use24

Xn = iAnBn ZnZn+1 = −iAnBn+1 (11)

and use the fact that the As and Bs anticommute with each other to write (7) as

H = −i
N∑
n=1

AnBn + iλ
N−1∑
n=1

AnBn+1,

20I’m using the word diagonalize as an abbreviation for finding all of the eigenvectors and eigenvalues.
21Mnemonic: S stands for a string of Xs, like in (4).
22This is why the factor of i is included in Bn.
23Here, nonlocal means not contained within any small neighborhood.
24 This works well because the lattice has an endpoint that provides a natural point at which the string of factors

of X in the definitions (8) can begin, in contrast to the periodic version that was mentioned in footnote 5.
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which may also be written

H =
i

2

N∑
j=1

N∑
k=1

(BjM
†
jkAk − AjMjkBk) (12)

where Mjk are the components of the N ×N matrix

M = I − λT, (13)

with I and T defined as in section 14. For N = 5, the matrix (13) is

M =


1 −λ 0 0 0
0 1 −λ 0 0
0 0 1 −λ 0
0 0 0 1 −λ
0 0 0 0 1

.
We can write H even more concisely as

H =
i

2
(B†M †A− A†MB) (14)

with

A ≡


A1

A2
...
AN

 B ≡


B1

B2
...
BN

.
The matrices A and B both have size N × 1, and each of their components is an
operator on the Hilbert space. If the two matrices A and B are concatenated into
a single matrix of size 2N , then equation (14) can also be written like this:

H =
i

2

[
A
B

]†[
0 −M
M † 0

][
A
B

]
. (15)

In the middle matrix, each “0” represents an all-zeros matrix of size N ×N .

20
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16 Interlude: some matrix math

Thanks to equation (15), the task of diagonalizing the hamiltonian has essentially
been reduced to the task of diagonalizing the self-adjoint matrix

i

[
0 −M
M † 0

]
, (16)

with M given by equation (13). That’s progress, because the structure of this
matrix is simpler than the structure of the hamiltonian, when the hamiltonian
is viewed as a matrix acting on the 2N -dimensional Hilbert space. This section
explains how to relate the eigenvectors25 and eigenvalues of any matrix of the form
(16) to the eigenvectors and eigenvalues of the positive-definite matrices M †M and
MM †. This section does not use equation (13).

Here’s some useful notation: for any nonzero N -component vector u, define

m(u) ≡
√

(Mu)†Mu

u†u
=

√
u†M †Mu

u†u
.

If u is an eigenvector of M †M , then m2(u) is the corresponding eigenvalue. We will
see that the eigenvalues of (16) are ±m(u).

The matrices M †M and MM † don’t necessarily have the same eigenvectors,
but they do have the same eigenvalues, and they have the same numbers of linearly
independent eigenvectors corresponding to each of those eigenvalues. This will be
proved first for the nonzero eigenvalues, and then for the zero eigenvalues.

To prove that M †M and MM † have the same number of linearly independent
eigenvectors for each nonzero eigenvalue, suppose that u is an eigenvector of M †M
with eigenvalue m2(u). Then Mu is clearly an eigenvector of MM † with the same
eigenvalue m2(u). If u and u′ are two linearly independent eigenvectors of M †M
with the same nonzero eigenvalue m2(u) 6= 0, then Mu and Mu′ are linearly inde-
pendent, because M †Mu ∝ u and M †Mu′ ∝ u′ are. Similarly, if ũ is an eigenvector

25The word vector will be used here for any single-column matrix whose components are ordinary complex numbers
(not operators).
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of MM †, then M †ũ is an eigenvector of M †M with the same eigenvalue, and this
construction again preserves linear independence if the eigenvalue is nonzero. Al-
together, this shows that M †M and MM † have the same nonzero eigenvalues, and
they have the same numbers of linearly independent eigenvectors corresponding to
each nonzero eigenvalue.

The matrices M †M and MM † are both self-adjoint, so they must each have ex-
actly N linearly independent eigenvectors. The previous paragraph already showed
that they have the same numbers of eigenvectors with nonzero eigenvalues, so they
must also have the same number of eigenvectors with eigenvalue zero.26 Altogether,
since M †M and MM † have the same number of linearly independent eigenvectors
with each eigenvalue, including zero.

Let U denote a set of N mutually orthogonal eigenvectors of M †M . The pre-
ceding results imply that we can choose a corresponding set Ũ of N mutually
orthogonal unit eigenvectors of MM † and a one-to-one correspondence between U
and Ũ with these properties:27

• If u ∈ U and m(u) 6= 0, then the corresponding ũ ∈ Ũ is ũ = Mu/m(u).

• If u ∈ U and m(u) = 0, then the corresponding ũ ∈ Ũ satisfies MM †ũ = 0.

Given such sets U and Ũ with this correspondence between them, every 2N -
component vector of the form [

±ũ
iu

]
is an eigenvector of the matrix (16) with corresponding eigenvalue ±m(u):

i

[
0 −M
M † 0

][
ũ
iu

]
= m(u)

[
ũ
iu

]
i

[
0 −M
M † 0

][
−ũ
iu

]
= −m(u)

[
−ũ
iu

]
. (17)

26This inference assumes that N is finite. If N =∞, then M†M and MM† can have different numbers of linearly
independent eigenvectors with eigenvalue zero. Example: if T is defined as in section 14, then T †T has one zero
eigenvalue when N =∞, but TT † doesn’t have any.

27If more than one u ∈ U has eigenvalue zero, then we must make arbitrary choices to establish a one-to-one
correspondence with Ũ .
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To check this when m(u) = 0, us the fact that the conditions M †Mu = 0 and
MM †ũ = 0 imply (Mu)†Mu = 0 and (M †ũ)†M †ũ = 0, respectively, which then
imply Mu = 0 and M †ũ = 0.

Altogether, the construction described above gives one pair of eigenvectors of
(16) for each u ∈ U , and all of these eigenvectors of (16) are orthogonal to each
other. The set U has N elements, so this gives a complete set of 2N mutually
orthogonal eigenvectors of (16). One important consequence of this is that the
matrix (16) may be written

i

[
0 −M
M † 0

]
=
∑
u∈U

m(u)

([
ũ
iu

][
ũ
iu

]†
−
[
−ũ
iu

][
−ũ
iu

]†)
(18)

if the us and ũs are normalized so that[
ũ
iu

]†[
ũ
iu

]
=

[
−ũ
iu

]†[−ũ
iu

]
= 1, (19)

which will be assumed from now on. The next section uses the identity (18) as a
step toward diagonalizing the hamiltonian.
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17 How to diagonalize the hamiltonian, part 2

When M is given by (13), the matrix M †M has only real-valued components. The
eigenvalues of M †M are real-valued, too, so we can choose the eigenvectors in the
set U (defined in section 16) to have only real-valued components, and similarly
for the set Ũ . If these vectors are also normalized as in (19), then equations (10)
imply that the operators28

c(u) ≡ 1√
2

[
A
B

]†[−ũ
iu

]
with u ∈ U (20)

satisfy
{c(u), c(u′)} = 0 {c(u), c∗(u′)} = δ(u, u′) (21)

with

δ(u, u′) ≡

{
1 if u = u′

0 otherwise.

These are the canonical anticommutation relations for a set of fermion modes,
one for each u ∈ U , so the operators c(u) will be called fermion operators.29

Substitute (18) into (15) and use (21) to get this expression for the hamiltonian:

H =
1

2

∑
u∈U

m(u)
(
c∗(u)c(u)− c(u)c∗(u)

)
=

1

2

∑
u∈U

m(u)
(
2c∗(u)c(u)− 1

)
.

To see why this is useful, define |g〉 to be the state satisfying

c(u)|g〉 = 0 for all u ∈ U. (22)

28The factor 1/
√

2 here compensates for the factor of 2 in equations (10).
29Molignini (2013) gives a pedagogical review of the Majorana-fermion representation of the Ising model.
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Then |g〉 has the lowest possible energy, and all other energy eigenstates can be
written ∏

u∈V

c∗(u)|g〉

with corresponding eigenvalue

E(V ) ≡
∑
u∈V

m(u)− 1

2

∑
u∈U

m(u). (23)

Each subset V ⊂ U gives a different eigenstate. The set U has N elements, so the
number of distinct subsets V ⊂ U is 2N . This matches the number of dimensions of
the Hilbert space, as it should, because when the Hilbert space is finite-dimensional,
it should have a basis consisting of eigenstates of the hamiltonian.30

Equation (23) gives the complete set of energy eigenvalues of the hamiltonian
(2), one for each subset V ⊂ U . The numbers m(u) are the positive square roots
of m2(u), and the numbers m2(u) are the eigenvalues of the matrix

M †M = I − λ(T † + T ) + λ2T †T, (24)

or of the matrix
MM † = I − λ(T † + T ) + λ2TT †, (25)

with M defined by (13). The problem of determining the complete energy spectrum
has been reduced to determining the eigenvalues of the matrix (24) (or (25)), which
has a relatively simple structure. This will be done in sections 19-(20).

30This is not necessarily true when the Hilbert space is infinite-dimensional.

25



cphysics.org article 81040 2024-03-04

18 Spontaneous symmetry breaking: derivation

This section shows that in the limit N → ∞, the model with λ > 1 has two
superselection sectors that both satisfy the spectrum condition and that are ex-
changed with each other by the flip-all-bits symmetry defined in section 4. This is
spontaneous symmetry breaking. The analysis will be done in three steps:

1. Show that the model has two linearly independent ground states.

2. Show that this 2d space of ground states includes two states, say |g+〉 and
|g−〉, that are exchanged with each other by the flip-all-bits symmetry.

3. Show that the ground states |g±〉 cannot be mixed with each other by any
local observables.

If these conditions are satisfied, then we can generate the required pair of super-
selection sectors by acting on |g+〉 or |g−〉, respectively, with the algebra of local
observables.31

The first step is to show that the model has two linearly independent ground
states. According to (23), the difference between the two lowest eigenvalues of H
is zero if and only if one of the quantities m(u) is zero. To see when this happens,
consider the case N = 5, from which the pattern for arbitrary N should be clear.
When N = 5, the matrix (24) is

M †M =


1 −λ 0 0 0
−λ 1 + λ2 −λ 0 0
0 −λ 1 + λ2 −λ 0
0 0 −λ 1 + λ2 −λ
0 0 0 −λ 1 + λ2

. (26)

31Section 2.2 in Witten (2021) explains how the algebra may be completed to include other observables (not just
the local ones) after one of the ground states is selected.
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The vector

w =


1

1/λ
1/λ2

1/λ3

1/λ4

 (27)

satisfies

M †Mw =


0
0
0
0

1/λ4

,
so the vector w is not quite an eigenvector, but for any λ > 1, it approaches an
eigenvector with eigenvalue zero as N →∞.32,33 For any finite N , the ground state
|g〉 is unique. We just learned that if λ > 1, then M †M has an eigenvector u0 ∈ U
for which m(u0) → 0 as N → ∞, so the state c∗(u0)|g〉 becomes another ground
state in that limit. The ground states |g〉 and c∗(u0)|g〉 are linearly independent,
so this completes step 1.

For reference in step 3, below, the N = 5 version of the matrix (25) is

MM † =


1 + λ2 −λ 0 0 0
−λ 1 + λ2 −λ 0 0
0 −λ 1 + λ2 −λ 0
0 0 −λ 1 + λ2 −λ
0 0 0 −λ 1

. (28)

The matrix (28) is like (26) but with the index order reversed, so we can apply the

32It also approaches an eigenvector with eigenvalue zero in the limit λ→∞, even if N is finite, as anticipated in
section 10.

33This doesn’t work when |λ| < 1, because in that case the N → ∞ version of the vector w is not normalizable,
so it we can’t rescale it to give a unit eigenvector of M†M . This is one indication that λ = 1 is a threshold between
two qualitatively different phases.
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same kind of reasoning as before: if λ > 1, then the vector

w̃ =


...

1/λ3

1/λ2

1/λ
1

 (29)

approaches an eigenvector of MM † with eigenvalue zero as N →∞.
For step 2, start with the fact that the ground state is unique when N and

λ are finite, because then M †M does not have any eigenvectors with eigenvalue
zero when N is finite.34 The unitary operator S that implements the flip-all-bits
symmetry (equation (4)) commutes with the hamiltonian, so the unique ground
state must also be an eigenstate of S. The operator S anticommutes with every
Zn, so it anticommutes with each of the Clifford operators An and Bn defined in
section 15, which in turn implies that it anticommutes with each of the fermion
operators c(u) defined in section 17. Use this to see that the state c∗(u)|g〉 is also an
eigenstate of S, but with the opposite eigenvalue (same magnitude, opposite sign).
For convenience, write c0 as an abbreviation for c(u0) when u0 is the eigenvector
of M †M for which m(u0) → 0 as N → ∞. We just learned that |g〉 and c∗0|g〉 are
both eigenstates of S with opposite eigenvalues (same magnitude, opposite sign),
so the two mutually orthogonal states

|g±〉 ≡
(
1± c∗0

)
|g〉 (30)

are exchanged with each other by S. In the limit N → ∞ with λ > 1, these two
states are both ground states, so we have two ground states that are exchanged
with each other by the symmetry. This completes step 2.

To address step 3, we need to show that the two states (30) are not mixed
with each other by any local observables.35 The anticommutation relations (21)

34This will be confirmed in sections 19-20.
35In symbols: we need to show that 〈g+|Q|g−〉 = 0 and 〈g−|Q|g+〉 = 0 for any local observable Q.
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and equation (22) imply that the states |g±〉 are both eigenstates of the operator
c0 + c∗0, with opposite eigenvalues:

(c0 + c∗0)|g±〉 = ±|g±〉. (31)

Equation (20) implies

c0 + c∗0 = −
√

2A†ũ0.

An earlier paragraph showed that the vector ũ0 approaches the form (29) as N →
∞, so the operator c0 + c∗0 approaches the form

c0 + c∗0 → −
√

2
N∑
n=1

Anλ
n

λN
(32)

as N → ∞. Now recall the definition of An in equations (8)-(9): it is a product
of qubit operators associated with lattice sites ≥ n only. Therefore, for any given
finite value of n, the terms in the sum (32) involving qubit operators at lattice
sites k ≤ n all go to zero, because λk/λN goes to zero for all k 6= n when n is
held fixed and N → ∞.36 This implies that when N → ∞, the operator c0 + c∗0
commutes with all local observables. Combined with equation (31) this implies
that local observables cannot mix the two ground states |g±〉 with each other. This
completes step 3.

Altogether, this shows that in the limit N → ∞, the model with hamiltonian
(2) is in the SSB phase for all λ > 1.

For λ < 1, the model is in the symmetric phase. This can be proved by showing
that all of the m(u)s approach nonzero limits as N → ∞ when λ < 1 (sections
19-20). Then the lowest energy in (23) is attained only when the set V is empty.
That implies that the ground state is unique, so it must be an eigenstate of the
operator S that implements the flip-all-bits symmetry.

36This is why the operators A,B were defined using a product of qubit operators that extends to the right (toward
the index N) instead of to the left (toward the index 0). That matters because we’re taking the limit as the lattice
becomes infinite in only one direction, namely to the right.
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19 The energy spectrum, part 1

As explained in section 17, we can calculate the complete energy spectrum by
determining the eigenvalues of the matrix (24), which can also be written like this:

M †M = (1 + λ2)I − λJ (33)

with

J ≡ T † + T +


λ 0 0 · · ·
0 0 0
0 0 0
... . . .

.
For N = 5, this is

J =


λ 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0

.
The eigenvectors of M †M are the same as those of J .

To find eigenvectors of J , consider the ansatz

v =


v1

v2
...
vN


with components

vn = βzn − 1

βzn
, (34)

where β and z are complex numbers to be determined. This ansatz automatically
satisfies all but the first and last rows of the eigenvector equation

Jv =

(
z +

1

z

)
v, (35)
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so the eigenvalue is z + 1/z. The first and last rows of equation (35) are

λ

(
βz − 1

βz

)
+ βz2 − 1

βz2
=

(
z +

1

z

)(
βz − 1

βz

)
βzN−1 − 1

βzN−1
=

(
z +

1

z

)(
βzN − 1

βzN

)
(36)

which we can use to determine the values of β and z. After expanding the right-
hand sides, equations (36) reduce to

λ

(
βz − 1

βz

)
= β − 1

β

0 = βzN+1 − 1

βzN+1
. (37)

The second equation may be used to express b in terms of z:

β =
±1

zN+1
,

and using this to eliminate β from the first equation in (37) gives

λ

(
zN − 1

zN

)
= zN+1 − 1

zN+1
. (38)
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20 The energy spectrum, part 2

To find values of z that satisfy equation (38), consider two possibilities:

• z is a positive real number, so z = eθ for some real number θ.

• z is a complex number with magnitude 1, so z = eiθ for some real number θ.

For the first possibility, equation (38) becomes

λ sinh(Nθ) = sinh
(
(N + 1)θ

)
. (39)

The trivial solution θ = 0 does not give an eigenvector, because in that case z =
β = 1, which makes the ansatz (34) zero. The hyperbolic sine function, sinh, has a
monotonically increasing magnitude as a function of θ > 0, so equation (39) does
not have any other solutions unless λ > 1, in which case has only one solution.
Equation (38) shows that this one solution approaches

z → λ

as N → ∞, so the corresponding eigenvalue of J approaches z + 1/z → λ + 1/λ,
which means that the corresponding eigenvalue of (33) approaches zero. This agrees
with the result that was obtained in step 1 in section 18.

For the second possibility, z = eiθ, equation (38) becomes

λ sin(Nθ) = sin
(
(N + 1)θ

)
. (40)

Any nonzero solutions of this equation give an eigenvalue of J equal to z + 1/z =
2 cos θ, whose magnitude cannot exceed 2.

Are these the only eigenvalues of (35)? We could answer this by counting
the number of solutions of (38), because we know that J must have N eigenvalues
altogether.37 The solution-counting approach is tricky, though, so I’ll use a different

37If we could determine that equation (40) has exactly N solutions for λ ≤ 1 and exactly N −1 solutions for λ > 1,
then we would know that we have found all of the eigenvalues and eigenvectors of J .
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approach: I’ll use a computer to determine the eigenvalues of the matrix J and
graph them all as a function of λ for several different values of N . The goal is to
discover if J has any other eigenvalues that are not included in the ones we already
found analytically. Here’s an example:38

This picture shows the eigenvalues of J , computed numerically, for a lattice with
N = 30 sites, over the range 1/30 < λ < 30. The horizontal axis is log λ so that
the region with λ < 1 gets the same attention as the region with λ > 1. With
the exception of one eigenvalue that approaches λ + 1/λ for large N when λ > 1,
all of the other eigenvalues have magnitudes ≤ 2. This is good evidence that the
matrix (33) doesn’t have any eigenvalues other than the ones we already found
analytically, namely:

• eigenvalues of the form 1 + λ2 − 2λ cos(α), and

• one eigenvalue that approaches zero for N →∞ when λ > 1.

The complete spectrum of the hamiltonian (2) may then be obtained by using these
eigenvalues of the matrix (33) in equation (23).

38The Python script used to generate this picture is posted here: https://cphysics.org/extras/81040b.html
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21 The self-dual model

Section 3 defined two different hamiltonians. The first version, equation (2), was
the subject of equations (12)-(20). Starting in this section, we’ll study the other
version, equation (3). Intuitively, the difference between the two models should
become irrelevant when N → ∞, because they differ only in how they treat the
Nth qubit. The motive for studying both versions was previewed in section 8.

As previewed in section 8, the energy spectrum of the hamiltonian (3) is invari-
ant under the replacement λ → 1/λ, up to a rescaling of the energy scale by an
factor of λ. This property of the energy spectrum is called self-duality. To prove
this, temporarily append an extra site to the left end39 of the lattice, so that the
allowed index-values are

0, 1, 2, ..., N.

The hamiltonian is defined by equation (3), repeated here for convenience:

Ĥ = −
N−1∑
n=1

Xn − λ
N−1∑
n=1

ZnZn+1. (41)

This hamiltonian doens’t involve the extra qubit, but the extra qubit allows us to
define these new qubit operators that are dual to the original ones:

X̃n ≡ ZnZn+1 for 1 ≤ n ≤ N − 1

Z̃n ≡
n∏
k=0

Xk for 0 ≤ n ≤ N. (42)

This relationship is nonlocal, but the algebra generated by the X̃s and Z̃s is iso-
morphic to the one generated by the original operators X and Z. The hamiltonian
(41) can be written in terms of the dual operators like this:

Ĥ = λ

(
−

N−1∑
n=1

X̃n −
1

λ

N−1∑
n=1

Z̃n−1Z̃n

)
. (43)

39This directional language assumes that the index labeling the lattice sites increases from left to right.
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This looks like (41) with the replacements X → X̃ and Z → Z̃ and λ→ 1/λ, except
that one of the sums is shifted and except for the overall factor of λ. The overall
factor of λ doesn’t matter, because it just redefines the unit of energy. The shifted
sum doesn’t matter, either: the original hamiltonian (41) and the dual hamiltonian
(43) both include one ZZ-term for each X term, the only difference being that the
ZZ term is to the right (for (41)) or left (for (43)) of the corresponding X term.
We can map one to the other just by relabeling the index-values

(0, 1, 2, ..., N)→ (N, ..., 2, 1, 0),

which clearly cannot affect the hamiltonian’s eigenstates or eigenvalues. This shows
that the model with hamiltonian (41) is self-dual even when N is finite.

This is a property of the hamiltonian (41), so the extra qubit that we temporar-
ily appended to the lattice (namely the n = 0 qubit) isn’t really needed. It adds an
extra bit to the binary numbers b in section 2, effectively replacing each eigenstate
with a pair of eigenstates having the same eigenvalue, distinguished from each other
only by the value of the extra bit. Aside from this trivial doubling, the extra qubit
has no effect on the hamiltonian’s eigenstates or eigenvalues, so the extra bit will
be omitted from now on.
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22 A few paradoxes

Intuitively, predictions obtained using the self-dual hamiltonian (3) should agree
with those using the left-right symmetric hamiltonian (2) when N → ∞, because
they differ only in how they treat the Nth qubit. In particular, they should both
become self-dual when N → ∞. The results derived earlier for the the left-right
symmetric hamiltonian (2) might seem incompatible with self-duality, though. I’ll
express this as a few paradoxes:

• The two-phases paradox: For the hamiltonian (2), for N =∞, the ground
state respects the flip-all-bits symmetry when λ < 1 but not when λ > 1.

• The number-of-ground-states paradox: For the hamiltonian (2), the low-
est energy has two corresponding eigenstates for λ > 1 but only one corre-
sponding eigenstate for λ < 1.

• The spectrum shape paradox: The pictures in section 13 show that the
second-lowest energy diverges away from the lowest energy as λ decreases
from 1 to 0 but stays close to the lowest energy as λ increases from 1 to ∞.

How can these features of the hamiltonian (2) be consistent with the self-duality
of the hamiltonian (3), if their predictions become identical when N →∞?

The two-phases paradox is resolved by the fact that the relationship (42) be-
tween the original qubit operators X,Z and the dual qubit operators X̃, Z̃ is nonlo-
cal. Self-duality is a property of the energy spectrum and of the number of energy
eigenstates associated with each energy eigenvalue, but it does not preserve the
association between observables and regions of space:40 the original flip-all-bits
operator (4) is transformed to a single Z̃-operator.

Section 23 illustrates how the number-of-ground-states paradox is resolved, and
section 24 illustrates how the spectrum shape paradox is resolved.

40Cotler et al (2017) shows that the structure of the hamiltonian as a sum of local observables is closely related
to the structure of the energy spectrum, but that relationship is only sensitive to the equivalence class of the
hamiltonian’s local structure.
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23 The zero- and infinite-coupling cases

When λ = 0, the self-dual hamiltonian (41) reduces to

− ĤX = −
N−1∑
n=1

Xn. (44)

The ground state of (44) would be unique (section 9), except that the sum in (44)
doesn’t include the Nth qubit.41 Because of that unused qubit, the hamiltonian
(44) actually has two linearly independent ground states when λ = 0, namely

1± ZN
2

∑
b

|b〉, (45)

where the operators (1 ± ZN)/2 project the unused qubit to the bit-value 0 or 1,
respectively. The two ground states (45) are distinguished from each other only by
observables that involve the unused qubit.

When λ→∞, the hamiltonian (41) approaches

−HZ = −
N−1∑
n=1

ZnZn+1, (46)

up to an overall factor of λ. In this case, the lowest energy is attained by two
linearly independent ground states, just like in section 10.

This shows that the cases λ = 0 and λ → ∞ both have the same number
of linearly independent ground states, namely two. Even more, when λ = 0, we
can choose a basis for the two-dimensional space of ground states in which the
chosen basis states (namely (45)) are exchanged with each other by the flip-all-bits
symmetry, just like we can when λ → ∞. However, the cases λ = 0 and λ → ∞
differ from each other in one crucial respect. In the case λ = 0, in the limit N →∞,

41As promised at the end of the previous section, the Hilbert space no longer includes the 0th qubit.
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the bit that breaks the flip-all-bits symmetry – namely the Nth bit – gets pushed
out to spatial infinity, where it is beyond the reach of any local observables. The
result is that the ground state is invariant under the flip-all-bits symmetry as far as
any local observables can tell. In contrast, in the case λ→∞, all of the bits break
the symmetry, so the fact that the symmetry is broken remains visible to local
observables even when N = ∞. In both cases, λ = 0 and λ → ∞, the two basis
states that are exchanged with each other by the flip-all-bits symmetry cannot be
mixed with each other by any local observables when N = ∞, so in each case we
get two superselection sectors. Here’s the key: we must choose one of those two
superselection sectors. In the case λ = 0, they are identical to each other as far as
local observables can tell. In the case λ→∞, they are not.42

We only considered the extreme cases λ = 0 and λ→∞ here, but this already
illustrates how the number-of-ground-states paradox is resolved. The next section
studies the self-dual model for arbitrary values of λ.

42Actually, that’s only true if the system of qubits is regarded as one part of a larger system. In a pretend universe
described entirely by the quantum Ising model, with nothing else at all, the choice between the all-0s state and the
all-1s state would be purely a matter of convention. A similar statement holds for any truly perfect symmetry of any
truly complete model. The SSB phase is still distinct from the symmetric phase, but different superselection sectors
related to each other by symmetry are effectively equivalent to each other.
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24 Energy spectrum on small lattices

When N → ∞, the case λ = 1 is special in the self-dual model, just like it was
in the left-right symmetric model. To highlight what happens when λ = 1, this
section shows a few examples of the energy spectrum, determined numerically, for
small values of N .43 The pictures on the left side show the energies as a function
of λ, like in section 13 but for the self-dual hamiltonian (41). The pictures on

the right side show the energies rescaled by
√
λ as a function of log λ, so that the

self-duality property λ−1/2E(λ) = λ1/2E(1/λ) is evident.

43The source code used to generate these results is the same as in footnote 18.
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Here’s the N = 7 case, this time showing the energies relative to the lowest energy:

This highlights something special about the critical point λ = 1 (log λ = 0): when
N → ∞, the gap between the the infinum of the energy spectrum and the con-
tinuum of higher energies shrinks to zero. As explained in Kogut (1979), this
phenomenon plays an important role in understanding how a relativistic quantum
field theory (QFT) with exact Poincaré symmetry – and even exact conformal sym-
metry – can emerge in the appropriate limit from a model defined on a discrete
lattice.

This also illustrates how the spectrum shape paradox (section 22) is resolved.
When N → ∞, the spectrum is gapless at λ = 1. This is true no matter which
hamiltonian is used, (2) or (3). For the hamiltonian (2), the second-lowest energy
diverges away from the lowest energy as λ decreases from 1 to 0. As λ increases
from 1 to ∞, the energy that would be second-lowest when N is finite becomes
identical to the lowest energy when N = ∞, so it is no longer the second -lowest
energy. For λ > 1, the second-lowest energy when N =∞ corresponds to the third -
lowest energy when N is finite, and that energy level diverges away from the lowest
energy as λ increases from 1 to ∞, just like self-duality says it should. The fact
that the spectrum becomes gapless at λ = 1 makes this bait-and-switch possible.
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