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Renormalization Group Flow
Near the Trivial Fixed Point

Randy S

Abstract Article 10142 introduced the idea of the renormalization group
in quantum field theory. In colloquial terms, the renormalization group describes
how a model changes when we “zoom out.” Article 22212 derived a system of
ordinary differential equations that describe how the coefficients in the action of
a scalar quantum field change under the flow of the renormalization group. This
article uses those flow equations to study which parts of the action are relevant
(becoming more important at lower resolution) and which parts are irrelevant
(becoming less important at lower resolution) with respect to the trivial fixed
point, where interactions are absent.
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1 Introduction

Article 22212 studied the effect of renormalization group transformations1 on a
family of models of a single scalar quantum field φ(x) in d-dimensional spacetime.
The models were defined using the path integral formulation,2 with a euclidean
action of the form3

S[φ] =

∫
ddx

((
∂φ(x)

)2

2
+ c2

φ2(x)

2!
+ c4

φ4(x)

4!
+ c6

φ6(x)

6!
+ · · ·

)
. (1)

A renormalization group transformation changes the values of the coefficients. In
the local potential approximation, the action (1) retains its original form but
with coefficients cn whose values depend on the scale factor λ that parameterizes
the renormalization group flow. Parts of the action whose coefficients increase as λ
increases become more important at lower resolution, and parts of the action whose
coefficients decrease as λ increases become less important at lower resolution. These
are called relevant and irrelevant parts of the action, respectively.

Article 22212 derived the λ-dependence of the coefficients cn using the local
potential approximation together with the one-loop approximation. Section 13 will
show that treating d as a continuous parameter can reveal indirect evidence of a
nontrivial fixed point when d = 3 called the Wilson-Fisher fixed point. The
evidence is not compelling by itself, because that fixed point lies outside the domain
where those approximations work well, but taking d = 4 − ε with 0 < ε � 1 puts
the fixed point close to the trivial fixed point, where those approximations should
work well. Further investigation has produced better evidence for the existence of
such a nontrivial fixed point when d = 3.4

1Article 10142 defines these transformations.
2Article 63548
3To define the models, spacetime was treated as a lattice instead of as a continuum. Those details of how the

models were defined are not important here, though, so here the action is written as an integral over x instead of as
a sum over x.

4Kleinert and Schulte-Frohlinde (2001) reviews some of the methods that have been used for this. As a warning,
section 14 describes another example, one that could presumably be debunked by using such better approximations.
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2 The system of flow equations

This section reviews the system of flow equations that article 22212 derived. These
equations describe the λ-dependence of the action’s dimensionless coefficients ~g ≡
(g2, g4, ...). Use the abbreviations5

ωd ≡
Ωd

2(2π)d
∂ ≡ ∂

∂s
t ≡ log λ

where Ωd is the “surface area” of the unit sphere in d-dimensional euclidean space-
time. Examples:

Ω1 = 2 Ω2 = 2π Ω3 = 4π Ω4 = 2π2.

The flow equations are
d

dt
g2k(t) = β2k

(
~g(t)

)
with the beta functions β2k(~g ) given by

β2k

(
~g(t)

)
≈
(
d+ (2− d)k

)
g2k(t) + ωd ∂

2k log
(
1 + ∂2V (s)

)∣∣
s=0

(2)

for all k ∈ {1, 2, 3, 4, ...}, and

V (s) = g2(t)
s2

2!
+ g4(t)

s4

4!
+ g6(t)

s6

6!
+ g8(t)

s8

8!
+ · · · (3)

The derivatives with respect to s will be calculated in section 3, and those results
will be used in section 4 to write the individual flow equations more explicitly.

Article 22212 derived these equations with the help of a few approximations.
Most of this article pretends that these equations are exact.

5The definition t ≡ log λ saves a little writing, because d~g/dt = λ d~g/dλ. The variable s is used in equation (2).
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3 Expansion in powers of the field

This section evaluates the derivatives with respect to s in equation (2). Use the
abbreviation D ≡ 1 + ∂2V (s). Then6

∂ log(D) =
V3

D

∂2 log(D) =
V4

D
− V 2

3

D2

∂3 log(D) =
∂5V

D
− 3V4V3

D2
+

2V 3
3

D3

∂4 log(D) =
∂6V

D
− 4V5V3 + 3V 2

4

D2
+

12V4V
2

3

D3
− 6V 4

3

D4

∂5 log(D) =
V7

D
− 5V6V3 + 10V5V4

D2
+

30V 2
4 V3 + 20V5V3

D3
− 60V4V

3
3

D4

+ terms with ≥ 4 factors of odd-order derivatives of V

∂6 log(D) =
∂8V

D
− 15V6V4 + 6V7V3 + 10V 2

5

D2

+
30V6V

2
3 + 120V5V4V3 + 30V 3

4

D3
− 270V 2

4 V
2

3

D4

+ terms with ≥ 3 factors of odd-order derivatives of V

∂7 log(D) =
V9

D
− 7V8V3 + 21V7V4 + 35V6V5

D2
+

210V6V4V3 + 210V5V
2

4

D3
− 630V 3

4 V3

D4

+ terms with ≥ 2 factors of odd-order derivatives of V

∂8 log(D) =
V10

D
− 28V8V4 + 35V 2

6

D2
+

420V6V
2

4

D3
− 630V 4

4

D4

+ terms with ≥ 1 factor of odd-order derivatives of V

6The coefficients were cross-checked by calculating them both by computer and by hand. The script that did the
symbolic calculations is posted here: https://cphysics.org/extras/79649v.html
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4 The system of flow equations, explicit version

Use the equations from section 3 in the flow equation (2) to get these explicit
expressions for the individual flow equations:7

dg2

dt
= 2g2 + ωd

g4

1 + g2

dg4

dt
= (4− d)g4 + ωd

(
g6

1 + g2
− 3g2

4

(1 + g2)2

)
dg6

dt
= (6− 2d)g6 + ωd

(
g8

1 + g2
− 15g6g4

(1 + g2)2
+

30g3
4

(1 + g2)3

)
(4)

dg8

dt
= (8− 3d)g8 + ωd

(
g10

1 + g2
− 28g8g4 + 35g2

6

(1 + g2)2
+

420g6g
2
4

(1 + g2)3
− 630g4

4

(1 + g2)4

)
and so on. Section 5 will explain how Feynman diagrams can be used to understand
the structure of these equations. Section 6 will re-define the symbols β2k and g2k

so that the analysis doesn’t become cluttered with unenlightening factors of ωd.

7The first three equations agree with equations (5.57) in Skinner (2016), after correcting a minor typo.

6



cphysics.org article 79649 2024-12-14

5 Relating the structure to Feynman diagrams

The structure of equations (4) is easy to understand when each term is depicted as
a Feynman diagram.8 Each term is represented by a single Feynman diagram. In
a given term, each factor of gn in the numerator is represented by a vertex with n
edges emanating from it, and each factor of 1+g2 in the denominator is represented
by connecting two edges to give a single edge with no free ends. For terms with
one factor of ωd in the original form of the flow equations, the connections are such
that the graph is connected and has exactly one loop. This term contributes to βk,
where k is the total number of edges with one loose end. Example: the term

g6g
2
4

(1 + g2)3

in β8 is represented by this Feynman diagram:

The top vertex has 6 edges, representing the factor of g6. The other two vertices
each have 4 edges, representing the two factors of g4. The three sides of the triangle
(the lines with no loose ends) represent the three factors of 1+g2 in the demoninator.
This term contributes to β8 because 8 edges have one loose end.

For another example, consider the term g10/(1 + g2) in β8. This is represented
by a Feynman diagram with a single vertex having 10 edges, two of which are
connected to each other to form a single loop (a single line with no loose ends) that
represents the single factor of 1+g2 in the denominator. The number of edges with
one loose end is 8, so this term contributes to β8.

8Article 22212
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6 Absorbing the factors of ωd

The factors of ωd in equations (4) can be absorbed into the definitions of g2k and
β2k. To do this, multiply the equation for g2k by ωk−1

d , then define

g′2k ≡ ωk−1
d g2k β′2k ≡ ωk−1

d β2k,

and then rename
g′2k → g2k β′2k → β2k.

This gives
d

dt
g2k(t) = β2k

(
~g(t)

)
(5)

with

β2(~g ) = 2g2 +
g4

1 + g2

β4(~g ) = (4− d)g4 +
g6

1 + g2
− 3g2

4

(1 + g2)2

β6(~g ) = (6− 2d)g6 +
g8

1 + g2
− 15g6g4

(1 + g2)2
+

30g3
4

(1 + g2)3
(6)

β8(~g ) = (8− 3d)g8 +
g10

1 + g2
− 28g8g4 + 35g2

6

(1 + g2)2
+

420g6g
2
4

(1 + g2)3
− 630g4

4

(1 + g2)4
.

The rest of this article uses these new versions of g2k and β2k so that the analysis
doesn’t become cluttered with unenlightening factors of ωd.
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7 Fixed points and (ir)relevant directions

The system (5) of differential equations is autonomous, which means that the
independent variable t enters only through the unknown functions ~g(t). A fixed

point9 of the system (5) is a set of initial values ~g(0) = ~g ∗ for which ~β(~g ∗) = 0,
which implies ~g(t) = ~g ∗ for all t. In the context of renormalization, a fixed point
at the origin (~g ∗ = 0) is called the trivial fixed point, because it corresponds to a
quantum field model with no interactions. Other fixed points are called nontrivial.

If we start at a point ~g = ~g ∗+δg where δg is an infinitesimal perturbation, then
a solution of the flow equations with this initial condition may progress toward or
away from the fixed point as a function of increasing t. These perturbations are
called irrelevant and relevant, respectively.10 In most cases, the (ir)relevance of a
perturbation can be diagnosed by linearizing the flow equations around the fixed
point:

d δ~g(t)

dt
= M δ~g +O

(
(δg)2

)
δ~g(t) ≡ ~g(t)− ~g ∗, (7)

where M is the matrix with components Mjk = ∂βj/∂gk evaluated at the fixed
point. In the linear approximation, if ψ is an eigenvector of M so that Mψ = mψ
for some real number m, then the flow equation is satisfied by δg(t) = exp(mt)ψ.
This shows that negative eigenvalues of M correspond to irrelevant perturbations
and that positive eigenvalues of M correspond to relevant perturbations.11 When
m = 0, the nonlinear terms must be considered in order to determine the direction
of the flow.

9In the math literature about differential equations, fixed points are called critical points or equilibrium
points. In physics, the name critical point usually refers to a point in model-space where the correlation length
diverges in units of the lattice scale (article 10142).

10Articles 10142 and 22212
11According to the definition given in the text, if δg is a linear combination of an irrelevant perturbation and a

relevant perturbation, then δg is a relevant perturbation. This is illustrated by the pictures in section 13. For the
study of universality and continuum limits, the important quantity is the number of linearly independent relevant
perturbations (modulo the irrelevant ones), because that’s the number of parameters needed to parameterize the set
of quantum field models that have continuous-spacetime limits in a neighborhood of the given fixed point (article
10142).
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8 Linearized flow near the trivial fixed point

This section initiates the study of the flow near the trivial fixed point ~g = 0. This
section studies the flow using the linear approximation, in which terms of order
~g 2 are ignored. This approximation is sufficient when all of the eigenvalues of the
matrix M in equation (7) are nonzero. When M has a zero eigenvalue, then higher-
order terms must be included in order to determine the direction of the flow. That
will be done in section 10. For simplicity, these analyses will ignore all g2k with
2k ≥ 10.

Use the notation

~g ≡


g2

g4

g6

g8


so that equations (6) may be written

d

dt
~g = M~g +O(g2) ⇒ ~g(t) = eMt~g(0) +O(g2)

with

M =


2 1 0 0
0 4− d 1 0
0 0 6− 2d 1
0 0 0 8− 3d

 = 2I + (2− d)X

where I is the identity matrix and X is defined by

X ≡


0 −r 0 0
0 1 −r 0
0 0 2 −r
0 0 0 3

 r ≡ 1

d− 2
.

This article assumes d ≥ 3 from now on, so r > 0.
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9 Solution of the linearized flow equations

The matrix X has these eigenvectors:

ψ2 ≡


1
0
0
0

 ψ4 ≡


−r
1
0
0

 ψ6 ≡


r2/2
−r
1
0

 ψ8 ≡


−r3/3!
r2/2
−r
1


with

Xψ2 = 0 Xψ4 = ψ4 Xψ6 = 2ψ6 Xψ8 = 3ψ8. (8)

Implications:

• If ~g(0) ∝ ψ2, then ~g(t) = e2t~g(0) +O(g2).

• If ~g(0) ∝ ψ4, then ~g(t) = e(4−d)t~g(0) +O(g2).

• If ~g(0) ∝ ψ6, then ~g(t) = e(6−2d)t~g(0) +O(g2).

• If ~g(0) ∝ ψ8, then ~g(t) = e(8−3d)t~g(0) +O(g2).

The structure of the eigenvectors ψ2k should be compared to the structure of the
normal-ordered version of the operators φ2k described in article 23277.12

12The value of r might be different, because the value of r depends on exactly how the renormalization group is
defined (article 22212).
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10 Rewriting the nonlinear flow equations

The next goal is to write the full nonlinear equations in terms of eigenfunctions of
the linearized RG equations, so that the (ir)relevance of operators with marginal
scaling dimensions can be determined. To do this, define

U ≡


1 −r r2/2 −r3/3!
0 1 −r r2/2
0 0 1 −r
0 0 0 1

 ⇒ U−1 =


1 r r2/2 r3/3!
0 1 r r2/2
0 0 1 r
0 0 0 1

.
The set of equations (8) may also be written

MU = U∆ ∆ ≡


2 0 0 0
0 (4− d) 0 0
0 0 (6− 2d) 0
0 0 0 (8− 3d)

,
which implies U−1MU = ∆. Now define ~u(t) by

~u(t) ≡


u2(t)
u4(t)
u6(t)
u8(t)

 ≡ U−1~g(t), (9)

which satisfies

d

dt
~u(t) = U−1 d

dt
~g(t)

= U−1M~g(t) +O(g2)

= (U−1MU)~u(t) +O(u2)

= ∆~u(t) +O(u2).

12
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This shows that the components of ~u(t) are the eigenfunctions of the linearized RG
equations. To write the nonlinear RG equations in terms of ~u, first write them as13

d

dt
~g = M~g + ~β NL(~g ). (10)

According to equations (6), the components of ~β NL(~g ) are14

βNL
2 = −g4g2 +O(g3)

βNL
4 = −g6g2 − 3g2

4 +O(g3)

βNL
6 = −g8g2 − 15g6g4 +O(g3) (11)

βNL
8 = − 28g8g4 − 35g2

6 +O(g3).

All of the quadratic terms are negative, a consequence of the pattern that was
shown in section 3. Multiply both sides of (10) by U−1 and then substitute

~g(t) = U~u(t)

to get
d

dt
~u = ∆~u+ U−1~β NL(U~u ). (12)

Instead of working this out explicitly in full generality, the following sections con-
sider cases where a single component of ~u(0) is nonzero, because the goal is to
determine whether such a perturbation of the action is (ir)relevant.

13The superscript NL stands for nonlinear.
14To derive these expressions, use 1/(1 + g2) = 1− g2 +O(g22).
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11 Example: all components zero except u4(0)

Section 9 used the linearlized flow equations, which cannot resolve whether the case
~g(0) ∝ ψ4 is relevant or irrelevant when d = 4. To resolve this, suppose that u4(0)
is the only nonzero component of ~u(0). Then

~g(0) = U~u(0) = U


0

u4(0)
0
0

 =


−r
1
0
0

u4(0).

Use this in (11) to get

βNL
2

(
U~u(0)

)
= ru2

4(0) +O(u3)

βNL
4

(
U~u(0)

)
= −3u2

4(0) +O(u3)

βNL
6

(
U~u(0)

)
= 0 +O(u3)

βNL
8

(
U~u(0)

)
= 0 +O(u3).

Use this in (12) to get

d

dt
u4(t)

∣∣∣∣
t=0

= (4− d)u4(0)− 3u2
4(0) +O(u3) (13)

When ~u(0) is small, the sign of the right-hand side is determined by the linear term
unless its coefficient is zero, in which case the sign is determined by the quadratic
term. If u4(0) is the only nonzero component of ~u(0), then the sign is negative
when d = 4, so in that case equation (13) says that the corresponding perturbation
of the action is irrelevant.

Even though this perturbation is irrelevant for all d ≥ 4, it still induces nonzero
values of all of the coefficients g2k with 2k ≥ 6 at t increases. Each of equations (6)
has a term involving only g4 and g2, so if g4 and g2 are the only nonzero gs when
t = 0, then every g2k has a nonzero initial derivative. That phenomenon was not
visible in this section, because this section ignored terms of order g3.

14



cphysics.org article 79649 2024-12-14

12 Example: all components zero except u6(0)

Section 9 used the linearlized flow equations, which cannot resolve whether the case
~g(0) ∝ ψ6 is relevant or irrelevant when d = 3. To resolve this, suppose that u6(0)
is the only nonzero component of ~u(0). Then

~g(0) = U~u(0) = U


0
0

u6(0)
0

 =


r2/2
−r
1
0

u6(0),

which gives

βNL
2

(
U~u(0)

)
=
r3

2
u2

6(0) +O(u3)

βNL
4

(
U~u(0)

)
= −3r2

2
u2

6(0) +O(u3)

βNL
6

(
U~u(0)

)
= 15ru2

6(0) +O(u3)

βNL
8

(
U~u(0)

)
= −35u2

6(0) +O(u3).

Use this in (12) to get

d

dt
u6(t)

∣∣∣∣
t=0

= (6− 2d)u6(0)− 20ru2
6(0) +O(u3) (14)

If u6(0) is the only nonzero component of ~u(0), then the sign is negative when
d = 3, so in that case equation (13) says that the corresponding perturbation of
the action is irrelevant.15

Now the phenomenon described at the end of section 11 is already visible at
order u2: the value of βNL

8 is nonzero, even though the initial values of g2k are
zero for all 2k ≥ 8. This occurs because the equation for β8 in (6) has a term
proportional to g2

6.
15This agrees with the first paragraph on page 32 in Poland et al (2019) and also with the text below equation

(2.1) in Alvarez-Gaume et al (2019).
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13 The Wilson-Fisher fixed point

According to standard lore, the quantum field model that led to the flow equations
(2) doesn’t have any nontrivial fixed points when d ≥ 4 but does have an isolated
nontrivial fixed point when d = 3. This isolated nontrivial fixed point is called the
Wilson-Fisher fixed point.16 This section reviews the usual textbook evidence
(not proof) for the existence of such a fixed point and analyzes its stability.

For this analysis, use a small-g approximation and ignore terms of order g3 and
higher, and consider flows that start at a point where all components of ~g are zero
except g2 and g4. In that approximation and for that set of initial conditions, the
flow equations (5)-(6) reduce to

β2(~g ) = 2g2 + g4 − g2g4 +O(g3)

β4(~g ) = (4− d)g4 − 3g2
4 +O(g3) (15)

β2k(~g ) = 0 +O(g3) for all 2k ≥ 6.

If we pretend that these equations are exact, then the fixed-point condition β2 =
β4 = 0 has a nonzero solution when d < 4:17

g∗2 =
d− 4

2 + d
< 0 g∗4 =

4− d
3

> 0. (16)

We should be wary of this prediction, though, because it relies on a small-g approx-
imation, and the values of g2 and g4 at this fixed point might not be small enough
for that approximation to be valid.

The original quantum field model is defined only for integer values of d (the
number of spacetime dimensions), but the flow equations are defined for arbitrary
real values of d. If we treat d as a continuous parameter in the flow equations,
then we can study the properties of the nontrivial fixed point for d = 4 − ε with

16The first two sections Liendo (2017) give a concise introduction.
17This is zero when d = 4. When d > 4, g∗4 is negative, which is not allowed because then the function V (s) defined

by equation (3) would not have a lower bound, and then the path integral would be undefined (article 22212).
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0 < ε � 1 and extrapolate the results to ε = 1 (d = 3), where the underlying
quantum field model can be defined. This bold extrapolation turns out to work
well, at least after making other improvements to the approximations that led to
equation (2).18

We can analyze the (in)stability of the nontrivial fixed point just like we did
for the trivial fixed point in sections 8-9. With respect to the fixed point (16), the
linearized flow equations are given by equation (7) with

δ~g =

[
δg2

δg4

]
and

M =

[
2− g∗4 1− g∗2

0 4− d− 6g∗4

]
=

[
(2 + d)/3 (6 + d)/(2 + d)

0 d− 4

]
.

The matrix M has two eigenvectors ψ2 and ψ4, with eigenvalues (2+d)/3 and d−4,
respectively, so the flow equations have these solutions:

• If ~g(0) ∝ ψ2, then ~g(t) = e(2+d)t/3~g(0) +O(δg2).

• If ~g(0) ∝ ψ4, then ~g(t) = e(d−4)t~g(0) +O(δg2).

This shows that when d < 4, the perturbations corresponding to ψ2 and ψ4 are
relevant and irrelevant, respectively.

The flow pattern defined by equations (15) is shown in the pictures on the next
two pages.19 Each arrow20 shows the direction of the vector (β2, β4) at that point
in the g2-g4 plane. When d = 3 (first picture), the flow has two fixed points: a
nontrivial fixed point (upper left) and the trivial fixed point (lower right). When
d = 4 (second picture), the flow has only the trivial fixed point. When d = 3.9
(third picture, with closeup in the fourth picture), the nontrivial fixed point is

18Kleinert and Schulte-Frohlinde (2001) reviews of some of the methods that have been used to study the Wilson-
Fisher fixed point in a more general family of models with N scalar fields.

19The script that generated these pictures is posted here: https://cphysics.org/extras/79649f.html
20The arrows are all drawn with the same length (this is why the titles say normalized), because otherwise the

disparity in their relative lengths would make deciphering the picture too difficult.
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closer to the trivial fixed point. For d = 4 − ε with arbitrarily small ε > 0, the
nontrivial fixed point can be made arbitrarily close to the trivial fixed point, where
the small-g approximation is valid.

0.2 0.0
g2

0.0

0.2

0.4

g 4

d = 3.0, normalized

0.2 0.0
g2

0.0

0.2

0.4

g 4

d = 4.0, normalized
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0.2 0.0
g2

0.0

0.2

0.4
g 4

d = 3.9, normalized

0.02 0.00
g2

0.00

0.02

0.04

g 4

d = 3.9, normalized

From these pictures, the existence of a flow from the trivial fixed point to the non-
trivial one is evident. These results remind us of an important fact: when a given
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perturbation of the action is characterized as (ir)relevant, that characterization
refers to a specific fixed point. With respect to the trivial fixed point, two linearly
independent relevant perturbations exist in the g2-g4 plane (modulo the irrelevant
ones). In contrast, with respect to the nontrivial fixed point, the set of infinites-
imal perturbations in the g2-g4 plane is spanned by one linear and one nonlinear
perturbation.

Recall (article 10142) that the number of linearly independent relevant pertur-
bations (modulo the irrelevant ones) is the number of parameters that must be
tuned while the continuum limit is being taken in order to obtain a model that
differs from the scale-invariant fixed point. A two-parameter family of models has
been constructed directly (and nonperturbatively) in continuous three-dimensional
spacetime.21 Those models all live near the trivial fixed point, in the sense that
they can be reached from a lattice model (one that treats spacetime as a lattice) by
controlling the rate at which the parameters g2 and g4 approach zero while the limit
is being taken. The resulting family of models in continuous spacetime retains two
independent parameters, corresponding to the correlation length (or single-particle
mass, which is the inverse of the correlation length) and interaction strength. For
most of these models, the interaction strength is nonzero: the models are nontriv-
ial, even though they are closely associated to the trivial fixed point. Within this
family of models, only one of them is scale-invariant, and its interaction strength
is zero. This is the trivial fixed point.

That two-parameter family of models does not include the quantum field model
corresponding to the Wilson-Fisher fixed point. The Wilson-Fisher fixed point cor-
responds to a quantum field model in continuous spacetime that has a nonzero
interaction strength in addition to being scale-invariant. As far as I know, this
model has not yet been constructed nonperturbatively, even though we have com-
pelling evidence for its existence.

21Several references about the construction of this family of models are cited at the bottom of page 3 in section
2.1 of Dedushenko (2022).
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14 A continuum of fixed points?

Equations (5)-(6) were derived using some approximations, including a small-
coupling approximation, so they are not guaranteed to be valid except when ~g
is infinitesimal. Still, just for fun, we could pretend that equations (5)-(6) are ex-
act and ask whether they have any nontrivial fixed points, even though this doesn’t
necessarily tell us anything reliable about the original quantum field model.

This section highlights a fun feature of the flow equations (5)-(6), namely the
existence of a continuum of fixed points. This is presumably22 only an artifact
of the approximations that were used to derive equation (2). If this feature of
the approximate system of flow equations (5)-(6) really were a true feature of the
underlying quantum field model, then this continuum of fixed points would be
called a conformal manifold,23 and a perturbation of the action that keeps the
model in this manifold would be called an (exactly) marginal perturbation.

A nontrivial fixed point of equations (5)-(6) is a nonzero value of ~g for which
β2k(~g ) = 0 for all k ∈ {1, 2, 3, ...}. Such values of ~g clearly exist, because a glance
at equations (6) shows that for each k, the condition β2k(~g ) = 0 can be solved for
g2k+2 as a function of the gn with n ≤ 2k:

g4 = −2(1 + g2)g2

g6 = −(4− d)(1 + g2)g4 +
3g2

4

1 + g2

g8 = −(6− 2d)(1 + g2)g6 +
15g6g4

1 + g2
− 30g3

4

(1 + g2)2
(17)

g10 = −(8− 3d)(1 + g2)g8 +
28g8g4 + 35g2

6

1 + g2
− 420g6g

2
4

(1 + g2)2
+

630g4
4

(1 + g2)3

and so on. By substitution, we can express each g2k+2 as a function of only two
variables: g2k = p2k(g2, d) for all k ≥ 2. Inspection of equations (17) reveals that

22I have not checked this myself, and I don’t know of any references that check it, but if the quantum model really
did have such a continuum of fixed points, then surely references about this phenomenon would be easy to find!

23Article 10142
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these functions are polynomials,24 so they are finite for all g2.
25 This shows that

the system of flow equations (5)-(6), without any additional constraints, has a
continuum of fixed points: one for every value of g2 except g2 = −1, where the
functions (6) are undefined.

Even if the approximations that led to equation (2) were exact, we would still
need to check that the function V (s) defined in equation (3) converges at the
alleged fixed points. To ensure that the path integral is well-defined (within the
approximations that led to (2)), we should also require V (s) to have a finite lower
bound. These conditions are easy to check when ~g is small enough to justify the
linear approximation, as long as d ≥ 5 so that the coefficients of the linear terms
in (17) are all nonzero.26 The linearized version of equations (17) is

g2k+2 =
(
(d− 2)k − d

)
g2k +O(g2). (18)

for all k ≥ 1. When d ≥ 5, the coefficients g2k+2 with k ≥ 2 all have the same sign,
so we can choose the sign of g2 to make them all positive, which ensures that V (s)
has a finite lower bound. To check convergence, we can use the ratio test for the
coefficients in (3). Equation (18) gives

g2k+2/(2k + 2)!

g2k/(2k)!
≈ (d− 2)k

(2k + 2)(2k + 1)

when k is large. This ratio goes to zero as k → ∞, indicating that V (s) is finite
for all s, as required.27 A similar conclusion holds for all real values of d except
d ∈ {3, 4}, in which case the ratio test is affected by the nonlinear terms in (18).26

Again, this continuum of fixed points is presumably an artifact of the approxi-
mations that led to equation (2). The original quantum field model does not have
any such continuum of fixed points, as far as I know.

24A Python script that uses the SymPy library to derive these polynomials symbolically is posted here: https:

//cphysics.org/extras/79649s.html
25The polynomial p2k all go to zero when g2 → −1, but one of the approximations that was used to derive the

beta functions (6) assumes g2 > −1, and the beta functions (6) are undefined when g2 = −1.
26When d = 3 or d = 4, one of the coefficients is zero, and then the linear approximation is no longer sufficient

even when ~g is small, as explained at the beginning of section 8.
27This implication follows from the first theorem quoted in Cruz-Uribe (1997).
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