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Energy, Momentum, and
Angular Momentum

in Classical Electrodynamics
Randy S

Abstract Article 98002 introduced the stress-energy tensor for
the electromagnetic field interacting with a charged particle in flat
spacetime. This article highlights the associated conservation laws,
shows how the conservation of momentum can be used to infer the
Lorentz force equation that governs the particle’s behavior, and
clarifies the relationship of the stress-energy tensor to the “spin” of
the electromagnetic field.
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1 Review of the equations of motion

Maxwell’s equations are introduced in article 31738. This article uses the same
notation and conventions.

The electric field E and the magnetic field B are two parts of a single field called
the electromagnetic (EM) field. This single field is represented by the Faraday
tensor, whose components are denoted Fab(x). The Faraday tensor is antisym-
metric, which means

Fab(x) = −Fba(x). (1)

The relationship between Fab and E,B is described in article 31738.
Maxwell’s equations can be written as two equations. The first equation

∂aFbc + ∂bFca + ∂cFab = 0 (2)

does not depend on a spacetime metric. The second equation

∂aF
ab = −J b (3)

does implicitly depend on a spacetime metric, which is assumed here to be the
Minkowski metric with the mostly-minus convention:

ηab ≡


1 if a = b = 0,

−1 if a = b 6= 0,

0 otherwise.

The J on the right-hand side of (3) accounts for charges and currents.
The Lorentz force equation1

mẌb = qẊa(τ)Fab

(
X(τ)

)
(4)

is the equation of motion governing the behavior of a charged particle in this
model. This form of the Lorentz force equation is introduced in article 98002.

1Here, the worldline parameter is the particle’s proper time τ .
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2 Conservation of stress-energy

Write ηab for the components of the Minkowski metric. Whenever the EM field
satisfies Maxwell’s equations (2) and (3) with J = 0, the quantity2,3

T ab ≡ 1

4
ηabF•×F

•× − η•×F a•F b× (5)

satisfies
∂aT

ab = 0 (if J = 0). (6)

This is local conservation law for the free EM field. It holds for any allowed behavior
of the EM field4 in any region of spacetime where charges and currents are absent
(J = 0). From article 98002, we recognize the quantity T ab defined in (5) as the
stress-energy tensor for the EM field by itself (J = 0). The goal here is to derive
the conservation law (6).

To derive (6), start by applying ∂a to the definition (5) without using the equa-
tions of motion (2) or (3). For the first term in (5), use the identity

F•×F
•× = ηabηcdFacFbd (7)

to get

∂a

(
1

4
ηabF•×F

•×
)

=
1

2
F•×(∂bF •×). (8)

For the second term in (5), the result of applying ∂a is

∂a
(
− η•×F a•F b×) = −η•×(∂aF

a•)F b× − η•×F a•∂aF
b×.

2To make the equation easier to parse, this equation uses the symbols • and × for summed indices.
3When the number of spacetime dimensions is 6= 4, the definition of T ab in equation (5) would need an overall

dimensionful coefficient to make the conventional units of Fab (article 00669) consistent with the conventional units
of energy (equation (14)). To avoid cluttering the equations, this article omits that coefficient.

4In this model, a behavior of the EM field is allowed if and only if it satisfies the equations of motion (2) and (3).
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Overall, this gives the identity

∂aT
ab = Ωb − η•×(∂aF

a•)F b× (9)

with

Ωb ≡ 1

2
F•×(∂bF •×)− η•×F a•∂aF

b×. (10)

To get a more enlightening expression for Ωb, rewrite this second term like this:

−η•×F a•∂aF
b× = −Fa•∂aF b•

=
1

2
F•a(∂

aF b• + ∂•F ab)

=
1

2
F•×(∂×F b• + ∂•F×b).

The antisymmetry property (1) was used to get the third expression, and one
summed index was relabeled to get the last expression. Use this in equation (10)
to get

Ωb =
1

2
F•×(∂bF •× + ∂×F b• + ∂•F×b).

Use this in (9) to get the identity

∂aT
ab =

1

2
F•×(∂bF •× + ∂×F b• + ∂•F×b)− η•×(∂aF

a•)F b×. (11)

This is an identity : it holds whether or not the field satisfies Maxwell’s equations
(2) and (3). If the field does satisfy Maxwell’s equations (2) and (3), then it reduces
to

∂aT
ab = η•×J

•F b×. (12)

When J = 0, this gives the conservation law (6).
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3 Energy and momentum of the EM field

From here thorugh section 10, we will consider the EM field by itself (J = 0).
The timelike coordinate x0 will also be denoted t, so the spacetime coordinates are
x = (t,x) = (t, x1, x2, ..., xD).

If Fab goes to zero at spatial infinity, then integrating (6) over all space gives

d

dt

∫
dDx T 0b = 0 (if J = 0). (13)

This is a collection of conservation laws, one for each value of the index b. The
quantity T 00 is called the energy density of the EM field, and the quantities
T 0k = T k0 with k ∈ {1, ..., D} are called the (components of the) momentum
density of the EM field.

Equation (13) implies that the (total) energy

E ≡
∫
dDx T 00(x) (14)

and (total) momentum

P k ≡
∫
dDx T 0k(x) k ≥ 1 (15)

satisfy the conservation laws

d

dt
E = 0

d

dt
P k = 0 (if J = 0). (16)

Remember that the symbol E here refers to energy, whereas the symbol Ek refers
to the components of the electric field vector.
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4 Energy and momentum in terms of E and B

We can use equation (5) in (14) and (15) to get explicit expressions for the energy
and momentum in terms of the electric and magnetic fields. The components of
the electric and magnetic fields are

Ek ≡ Fk0 Bjk ≡ Fjk. (17)

For the energy, this gives

E =

∫
dDx T 00 T 00 =

1

2

∑
k

(Ek)
2 +

∑
j<k

(Bjk)
2

 . (18)

For the momentum, it gives

P j =

∫
dDx T 0j T 0j =

∑
k

Bjk(x)Ek(x). (19)

These expressions for T 00 and T 0j are the energy density and momentum density
of the EM field. This expression for the momentum density is also called the
Poynting vector.

In the special case D = 3, the energy density and momentum density (the
integrands of (18) and (19)) may be written

T 00 =
E2 + B2

2
T 0k = (E×B)k,

using the notation from article 31738.
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5 Static fields can have momentum!

According to the expressions for T 0j shown in the previous section, even static
(time-independent) fields can have momentum.5 This might seem counterintuitive,
because our experience with models of tangible objects suggests that momentum
involves motion. In fact, the word momentum comes from the Latin word for “to
move.” Old words are sometimes given new meanings to reflect new understanding,
though, and this is one of those cases. In modern physics, momentum is defined
to be the conserved quantity associated with translation symmetry.6 With this
definition, nonzero momentum doesn’t necessarily imply motion, as illustrated by
the equations shown in the previous section: a time-independent configuration of
the EM field can indeed have nonzero momentum.7 If this is still troubling, notice
that a Lorentz boost can change the magnitude of the momentum even if the fields
are independent of the time coordinate.

An electric field by itself does not have nonzero momentum (or angular momen-
tum), nor does a magnetic field by itself. To have nonzero momentum (or angular
momentum), the combination

∑
k BjkEk must be nonzero. It is nonzero in the

“paradox” described in section 17-4 of Feynman et al (1989): the solenoid supplies
the magnetic field, and the charges attached to the disk supply the electric field.

5Equation (24) shows that static fields can have angular momentum, too.
6The relationship between translation symmetry and the stress-energy tensor (5) is explained in article 32191

by explaining the relationship between the Hilbert stress-energy tensor (which is used here) and the canonical
stress-energy tensor associated with translation symmetry via Noether’s theorem.

7Readers who have some preliminary knowledge of quantum field theory might wonder whether this is explained
by some kind of “moving photon” picture of static fields in quantum electrodynamics (QED). No, it isn’t. A
completely time-independent state of the EM field can have nonzero momentum in QED, too, just like it can in
classical electrodynamics, and trying to relate this to the phenomena we call photons does not provide any deeper
explanation than the one given here.
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6 Angular momentum of the EM field

Suppose J = 0, as in the preceding sections. The stress-energy tensor (5) for the
EM field is symmetric in a↔ b:

T ab(x) = T ba(x).

We can use this together with the conservation law (6) to deduce the related con-
servation law

∂aM
abc = 0 (20)

with
Mabc = xbT ac − xcT ab. (21)

As explained in article 49705, the quantities M 0jk with j, k ∈ {1, 2, ..., D} are the
components of the angular momentum density – for the EM field in this case.
The integral8

J jk ≡
∫
dDx M 0jk

≡
∫
dD (xjT 0k − xkT 0j) (22)

over the spatial coordinates is the total angular momentum, and (20) implies
that it is conserved:

d

dt
J jk = 0.

Language alert: the name total angular momentum is used for two different things.
In this article, total refers to the fact that each component of J jk includes the con-
tributions from all parts of the system – the total system. In the context of quantum
physics, total often refers instead to a special rotation-invariant combination of all
of the components of J jk.

8This J should not be confused with the current density in equation (3), which has only one index.
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7 Orbital angular momentum and spin: introduction

Recall that the magnetic field B can be written in terms of a gauge field A like this
(article 98002):

Bjk(x) = ∇jAk(x)−∇kAj(x). (23)

Also recall that rotational symmetry is associated with the conservation of angular
momentum.9 When the coordinate system is rotated, the components of the gauge
field are affected in two ways: the argument x of each component is affected, and
the different components are mixed with each other. These two effects of a rotation
can be associated with two different contributions to the total angular momentum,
called orbital angular momentum and spin, respectively. This section explains
how to define these contributions in a gauge-invariant way10 and highlights the fact
that they are both nonlocal, even though their sum is local.

This article is about classical electrodynamics, not quantum electrodynamics
(QED), but one aspect of QED is worth mentioning here: the nonlocality of the
spin-observable is consistent with the phenomena we call photons in QED. Photons
are often called particles, partly because they can be approximately localized –
but the key word here is approximately. The Reeh-Schlieder theorem11 implies,
among other things, that the concept of a strictly localized particle is not consistent
with the general principles of relativistic quantum field theory (which includes
QED). To borrow a slogan from Peres (2002), this is “well known to those who know
things well,” even though misleading/misguided stories about pointlike particles
in QED are still abundant. The main result of this section – namely that the
observable representing spin is nonlocal – doesn’t contradict the fact that a single
photon in QED has nonzero spin. Photons are nonlocal, too, despite what many
popular stories say.12

9Articles 12342, 49705, and 32191
10Observables must be invariant under gauge transformations Ak → Ak +∇kθ (article 98002).
11Witten (2018) reviews the proof of the Reeh-Schlieder theorem.
12Occasionally, physicists use the term “point particles” as a (careless) way of alluding to the fact that in relativistic

quantum field theory, interactions are local in spacetime – in contrast to string theory, where interactions are nonlocal.
Locality in this sense is an input to the Reeh-Schlieder theorem, which says that particles can’t be strictly localized!
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8 Orbital angular momentum and spin: nonlocality

Start with the Hilbert stress-energy tensor (5), which is gauge-invariant. We will
be interested in the components13

T 0k = −F 0`F k
` =

∑
`

Bk`E`

with j, k ∈ {1, 2, ..., D}, because these are the components that occur in the angular
momentum density M 0jk. Use this expression for T 0k in (22) to get14

J jk =

∫
dDx

(∑
`

(xjBk` − xkBj`)E`

)
. (24)

Use (23) in (24) to get

J jk = J jk0 + J jk1 (25)

with

J jk0 ≡
∫
dDx E · (xj∇kA− xk∇jA) (26)

J jk1 ≡
∫
dDx

(
(E · ∇Aj)x

k − (E · ∇Ak)x
j
)
. (27)

Recall that we’re assuming J = 0 (section 3). If the field satisfies its equations of
motion, including ∇ · E = 0, then we can use∫

dDx (E · ∇Aj)x
k =

∫
dDx ∇ · (EAjx

k)−
∫
dDx (EAj) · ∇xk

= 0−
∫
dDx EkAj

13A sum over j is implied when the index j occurs both as a superscript and subscript in the same term. In the
last expression, the sum is written explicitly because j no longer occurs as a superscript.

14For D = 3, this can be written J =
∫
d3x x× (E×B) with J = (J23, J31, J12).
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to get this simpler expression for J jk1

J jk1 =

∫
dDx (EjAk − EkAj). (28)

The quantities J jk0 and J jk1 are associated with the orbital angular momentum
and spin, respectively, but they don’t qualify as observables because they are not
gauge-invariant. The angular momentum (24) is gauge-invariant, but the individual

contributions J jk0 and J jk1 are not.
To get observables corresponding to the orbital angular momentum and spin,

let G(x) be a Green’s function for Poisson’s equation, which means15

∇2

∫
dDy G(x− y)f(y) = f(x) (29)

for all sufficiently well-behaved functions f(x), and G(x)→ 0 zero when |x| → ∞.
Given such a “function,” define

Ãj(t,x) ≡
∑
k

∫
dDy G(x− y)∇kBkj(t,y). (30)

This is manifestly gauge-invariant, because it’s expressed entirely in terms of the
magnetic field B. Using equation (23), we can also write it in terms of the gauge
field A like this:

Ãj(t,x) = Aj(t,x)−∇j

∫
dDy G(x− y)∇ ·A(t,y). (31)

The field Ã with these components is called the transverse part of A, because it
(clearly) satisfies ∇ · Ã = 0. Equation (31) also shows that it satisfies

∇jÃk(x)−∇kÃj(x) = Bjk(x), (32)

15The arguments are written in boldface to indicate that only the spatial coordinates are involved.
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so we can repeat the steps that led to equations (26) and (28) but with Ã in place
of A. The result is

J jk = J̃ jk0 + J̃ jk1

with

J̃ jk0 ≡
∫
dDx E · (xj∇kÃ− xk∇jÃ) (33)

J̃ jk1 ≡
∫
dDx (EjÃk − EkÃj). (34)

These are the observables corresponding to the field’s orbital angular momen-
tum and spin, respectively. They look superficially like the previous expressions
(26) and (28), but with two key differences: the definition (30) implies that J̃ jk0 and

J̃ jk1 are gauge-invariant (they qualify as observables), and it also implies that they

are nonlocal – because Ã at each point in space depends on the magnetic field at
all points in space.

Even though the observables (33) and (34) are individually nonlocal, their sum
J jk is local, because the term involving G in (31) cancels in the sum. By construc-
tion, their sum J jk is the total angular momentum (22), which is (the integral of)
a local function of the electric and magnetic fields.
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9 Orbital angular momentum and spin: conservation

Rotational symmetry is associated with the conservation of a system’s total angular
momentum. The angular momenta of different parts of the system are generally not
separately conserved, because the different parts can exchange angular momentum
with each other. One exception occurs for the free EM field (with no charges or
currents), which has been the focus of this article so far.16 In this case, the orbital
and spin parts defined above are separately conserved. This section outlines the
proof that the spin part J̃ jk1 is separately conserved. We already know from section
6 that the total angular momentum J jk is conserved, so this implies that the orbital
part J̃ jk0 is also separately conserved.

Combine equations (30) and (34) to get this expression for the spin part:

J̃ jk1 =

∫
dDx dDy Ej(x)G(x− y)

∑
`

∇`B`k(y)− (j ↔ k).

To calculate the time-derivative of this, use the J = 0 version of Maxwell’s equation
(3) to rewrite the time-derivative of the E-factor, and use Maxwell’s other equation
(2) to rewrite the time-derivative of the B-factor.17 This gives

d

dt
J̃ jk1 =

∫
dDx dDy

(
−
∑
`

∇`B`j(x)

)
G(x− y)

∑
`

∇`B`k(y)− (j ↔ k)

+

∫
dDx dDy Ej(x)G(x− y)

∑
`

∇`

(
∇kE`(y)−∇`Ek(y)

)
− (j ↔ k).

The first line on the right-hand side is zero because of the antisymmetry in j, k. In
the second line, the first term in large parentheses is zero because the J = 0 version
of Maxwell’s equation (3) implies ∇ · E = 0, and the remainder is zero because
of (29) and the antisymmetry in j, k. Altogether, this shows that the spin part is
separately conserved when charges and currents are absent.

16Charges and currents will be incorporated starting in section 11.
17Article 31738 shows how those equations are expressed in terms of the electric and magnetic fields.
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10 Orbital angular momentum and spin: a warning

The stress-energy tensor that occurs in general relativity is called the Hilbert
stress-energy tensor. The stress-energy tensor shown in equation (5) is the Hilbert
stress-energy tensor for the EM field. As explained in article 32191, this differs
from the canonical stress-energy tensor that is associated with Noether’s theorem,
namely

T abC =
1

4
ηabF cdFcd − F ac∂bAc. (35)

The Hilbert tensor is symmetric and gauge-invariant, but the canonical stress-
energy tensor is not. Article 32191 explains that the canonical and Hilbert stress-
energy tensors are the same modulo an identically-conserved term when the field
satisfies its equations of motion. That doesn’t make them interchangeable, though,
especially not with respect to angular momentum:

• If the canonical stress-energy tensor (35) were used in the definition (21) of
the angular momentum density M , then the conservation law (20) would not
hold, because (20) relies on T ab being symmetric.

• If the canonical stress-energy tensor (35) were used in the definition (22) of

the total angular momentum J jk, then the spin term J jk1 in (25) would be
absent.

These issues shouldn’t cause any concern, because the canonical stress-energy ten-
sor is not an observable: observables must be invariant under gauge transformations
(article 98002), and the canonical stress-energy tensor is not. That’s why this ar-
ticle uses the Hilbert stress-energy tensor instead: it is gauge-invariant, it arises
automatically in general relativity, and it accounts for all of the field’s angular
momentum – including the spin term – when used in the definition (22).

15
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11 How to infer the Lorentz force equation

Maxwell’s equations govern the behavior of the EM field under the influence of
any given current J . The Lorentz force equation describes how J is influenced
by the EM field, so that the influence goes both ways. The behavior of J is not
uniquely determined by Maxwell’s equations, but Maxwell’s equations do constrain
the behavior of J to some degree. One such constraint (the conservation law
∂aJ

a = 0) was derived in article 31738. This section shows that with the help of
an extra assumption, we can also deduce the Lorentz force equation.

The extra assumption is that the complete system, including both EM field
and matter,18 has a conserved total momentum of the form pk +

∫
T 0k where pk

is the matter’s contribution to the momentum and where
∫
T 0k is the EM field’s

contribution to the momentum, as in section 3.19 The assumption that this total
momentum is conserved implies

dpk

dt
= − d

dt

∫
dDx T 0k. (36)

The right-hand side of this equation can be evaluated using only Maxwell’s equa-
tions, so this gives us an equation for the force (dpk/dt) that the EM field exerts
on the matter.

To evaluate the right-hand side of (36), start with the result (12), which can
also be written

∂aT
ab = gabFacJ

c. (37)

Setting b = k ∈ {1, ..., D} and integrating (37) over all of space gives

d

dt

∫
dDx T 0k = −

∫
dDx FkcJ

c = −
∫
dDx (EkJ

0 +
∑
j

BkjJ
j). (38)

18In the context of electrodynamics in flat spacetime, matter means everything other than the electromagnetic
field. In the context of general relativity, matter typically means everything (including the electromagnetic field)
other than the metric field.

19This assumption is consistent with equations (40)-(41) in the next section.
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Substitute this into the right-hand side of (36) to get

dpk

dt
=

∫
dDx (EkJ

0 +
∑
j

BkjJ
j). (39)

If we further assume that the matter consists of a single pointlike charged particle,
so that the current J is non-zero only at one point in space at any given time,
then the integral on the right-hand side of (39) is just the integrand with E and
B evaluated at that one time-dependent point. In that case, equation (39) is the
Lorentz force equation (article 54711), which describes how the EM field influences
the behavior of the charged particle.

17
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12 The full stress-energy tensor

The previous section showed how the Lorentz force equation can be inferred from
the conservation of the stress-energy tensor of the full system (particle and EM
field). The next section goes the other direction, using the equations of motion for
the full system to show that the full stress-energy tensor is conserved.20

When a single charged particle is present in addition to the EM field, the full
stress-energy tensor is

T ab(x) ≡ T abF (x) + T abX (x). (40)

The first term T abF is the field-only part that was previously denoted T ab (equation
(5)). The new particle-only term T abX was derived in article 41182, with the result

T abX (x) ≡ m

∫
dτ Ẋa(τ)Ẋb(τ) δD+1

(
x−X(τ)

)
(41)

when the metric is the Minkowski metric. The delta-function δD+1
(
x − X(τ)

)
enforces the constraint that T abX (x) can only be non-zero at points x that are on
the world-line X(τ) of the particle.

20This provides the context for the analysis in article 41182.

18
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13 Conservation of the full stress-energy tensor

If Fab(x) and Xa(τ) satisfy Maxwell’s equations and the Lorentz force equation
(equations (2)-(4)), then the local conservation law

∂aT
ab(x) = 0 (42)

holds at every point x in space-time, where T ab is the full stress-energy tensor
defined in (40).21

To derive (42), start with the stress-energy tensor T ab defined by equation (40).
This is the sum of two parts, a field-only part T abF and a particle-only part T abX . We
will calculate the result of applying ∂a to each of these two parts separately, and
then we will see that the results cancel each other, leaving zero. This gives the
conservation law (42).

The field-only part T abF is given by (12), which can also be written

∂aT
ab
F (x) = −Ja(x)F ab(x). (43)

From article 98002, we have

Ja(x) = q

∫
dτ Ẋa(τ) δD+1

(
x−X(τ)

)
. (44)

Now consider the matter-only part, T abX (x). Apply ∂a to the expression (41) for
T abX (x) to get

∂aT
ab
X (x) = m

∫
dτ Ẋa(τ)Ẋb(τ) ∂aδ

D+1
(
x−X(τ)

)
. (45)

To evaluate the right-hand side, use the identities

∂

∂xa
δD+1

(
x−X

)
= − ∂

∂Xa
δD+1

(
x−X

)
21The quantity that was denoted T ab in sections 2 through 11 is denoted T ab

F from now on.
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and
d

dτ
f
(
X(τ)

)
= Ẋa ∂

∂Xa
f
(
X
)∣∣∣∣
X=X(τ)

.

This gives

∂aT
ab
X (x) = −m

∫
dτ Ẋb(τ)

d

dτ
δD+1

(
x−X(τ)

)
. (46)

Now use integration-by-parts to get

∂aT
ab
X (x) = m

∫
dτ Ẍb(τ) δD+1

(
x−X(τ)

)
. (47)

Equation (47) holds whether or not the particle satisfies the Lorentz force equation.
If the particle does satisfy the Lorentz force equation (4), then we can use this to
rewrite the factor Ẍ, which gives

∂aT
ab
X (x) = q

∫
dτ Ẋa(τ)F ab(x) δD+1

(
x−X(τ)

)
= Ja(x)F ab(x). (48)

Compare this to equation (43) to conclude that

∂aT
ab
F (x) + ∂aT

ab
X (x) = 0

whenever the dynamic variables (field and particle) all satisfy their equations of
motion. This completes the derivation of the conservation law (42).

Thanks to the action principle (article 98002), the signs in Maxwell’s equation
(3) and the Lorentz force equation (4) are tied to each other. If we change the sign
of Fab in both of those equations, then we have not really changed anything: we have
only redefined Fab. That changes the convention, but it doesn’t change the system’s
behavior. However, if we changed the sign of Fab in only one of these two equations
(either (3) or (4) but not both), then we would change the system’s behavior – and
the system would no longer satisfy the action principle. The action principle ties
the signs together in a particular way. This is essential for the conservation law
(42), for the fact that opposite charges attract each other, and for the fact that
parallel currents attract each other.
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14 Energy and momentum

As in section 3, equation (42) implies that the energy (14) and momentum (15)
satisfy the conservation laws (16), where now the quantity T ab in those equations
is the stress-energy tensor (40) of the full system, including the particle and the
EM field. The resulting expressions for the total energy and momentum are

E = EF + EX P k = P k
F + P k

X , (49)

where the subscript F indicates the field-only parts that were already displayed in
equations (18) and (19), and the subscript X indicates the particle-only parts

EX =

∫
dDx T 00

X P k
X =

∫
dDx T 0k

X . (50)

Evaluating these integrals leads to simple expressions for the particle’s energy and
momentum. These calculations are done in aritlce 41182, and the result is

EX = m
dX0

dτ
P k
X = m

dXk

dτ
. (51)

This agrees with the equations that were introduced in article 77597, but now we
have a more satisfying foundation for those equations, because now we see how
they relate to conservation laws in a model that explicitly includes an interaction
between particles: the interaction is mediated by the EM field.22

22We only included one particle in this analysis, but extending the analysis to multiple particles is straightforward,
and then the EM field does mediate an interaction between the particles.
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