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Energy and Momentum at All Speeds
Randy S

Abstract Expressions for the energy and momentum
of an object in terms of its mass and speed are usually
introduced using a low-speed approximation, one that
is valid only for (relative) speeds much less than the
speed of light. This article introduces expressions for
the energy and momentum of a single object that are
valid at any speed, from zero up to the speed of light.
This article also introduces Lorentz transformations.
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1 Introduction

Flat spacetime is the arena for special relativity. Consider an isolated object
in flat spacetime, not interacting with anything else. The object’s energy E and
momentum p both depend on its velocity v. If the object is moving slowly enough,
then we can use the familiar approximations

E ≈ constant +
mv2

2
p ≈ mv (1)

where m is a v-independent quantity that we call the object’s mass. These ap-
proximations are valid for objects moving slowly compared to the speed of light.
This article introduces better equations for E and p that are valid over the full
range of speeds, from zero up to the speed of light. Article 41182 explains how the
better equations can be derived from something deeper, but here they will merely
be treated as axioms. Section 5 shows how they lead to the familiar approximations
(1) when the object is moving slowly enough.
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2 Notation

Momentum and velocity are vectors. In this article, a boldface symbol like v
denotes a vector in three-dimensional space, which may be represented as a list of
three numbers called the components of the vector, like this:

v = (v1, v2, v3).

In flat space with the usual coordinate system,1 the magnitude of the vector v is

|v| ≡
√
v2

1 + v2
2 + v2

3.

The abbreviation
v2 ≡ |v|2

will also be used. Here is a summary of symbols that will be used in this article:

v = velocity E = energy

v = abbreviation for |v| m = mass

p = momentum c = the “speed of light”

p = abbreviation for |p|

The speed of an object is the magnitude v = |v| of its velocity vector v.
Despite being called the “(vacuum) speed of light,” c is a universal constant

whose significance is more basic than light. In special relativity, using units in
which c = 1 is a natural thing to do (article 37431). This article mostly uses
units with c = 1, but some equations will also be shown with factors of c restored.
Starting with an equation written in units with c = 1, we can restore factors of c
by replacing

v→ v/c p→ p/c E → E/c2 m→ m. (2)

1 The “usual” coordinate system for flat space is the coordinate system x1, x2, x3 in which the length ds of a line
segment is given by (ds)2 = (dx1)2 + (dx2)2 + (dx3)2, as explained in article 21808.
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3 Energy and momentum at all speeds

In special relativity, the energy and momentum of an isolated object satisfy these
conditions:

• The combination E2 − p2 cannot be negative. Thanks to this condition, we
can define a quantity m by

m2 ≡ E2 − p2. (3)

• The combination E2 − p2 does not depend on the object’s velocity. This
implies that m is independent of the object’s velocity, so it defines an intrinsic
property of the object. We call it the object’s mass.2 The mass m may be
different for different objects, but the mass of any given object is the same
no matter how fast the object is moving.

• The ratio p/E is equal to the object’s velocity:

v =
p

E
, (4)

where the energy E is understood to be positive:

E > 0. (5)

The following sections highlight some consequences of these conditions.

2 Some people use a different language, in which the velocity-independent quantity m is called “rest mass” and
the energy E is called “relativistic mass.” Language is never perfect, but people with more experience tend to reserve
the word “mass” for the velocity-independent quantity defined by (3).

5



cphysics.org article 77597 2022-02-18

4 Energy and momentum as functions of velocity

This section shows how E and p may both be expressed in terms of only m and v
when m > 0. Re-arrange equation (4) to get

p = Ev. (6)

Take the magnitude of both sides and use the resulting expression for p on the
right-hand side of equation (3) to get

m2 = E2 − v2E2.

Notice that the condition m2 > 0 implies v ≤ 1. Solve this for E and use the
inequality (5) to get

E =
m√

1− v2
. (7)

Subsitute the expression (7) for E into (6)

p =
mv√
1− v2

. (8)

As the speed approaches 1, the denominator in these equations approaches zero.
This says that when m > 0, E and p both grow without bound as v → 1.
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5 The low-speed approximation

The low-speed equations (1) can be derived from the all-speed equations (7) and
(8), by using the approximation

1√
1− v2

= 1 +
v2

2
+O(v4), (9)

which will be derived below. The notation O(v4) means that we are neglecting
terms of order vn for all n ≥ 4.3 To derive the approximation (9), square both
sides and then multiply both sides by 1 − v2 to get the obviously-true equation
1 = 1 + O(v4). We got this obviously-true from equation (9) using reversible
operations,4 so equation (9) is also true.

Use (9) in equations (7) and (8) to get

E = m+
mv2

2
+O(v4) (10)

p = mv +O(v3), (11)

which agree with equations (1). These are good approximations when v � 1,
because then v2 � v and v3 � v2 and so on. In the extreme case v = 0, equation
(10) reduces to

E = m if v = 0. (12)

We might worry that this isn’t valid, because we can’t set v = 0 in equations (7)
or (8). Equation (12) is still valid, though, because we can derive it directly by
setting v = 0 in (4), which gives p = 0, and then using this in (3) to get (12).
After restoring factors of c as explained in section 2, equation (12) becomes the
famous equation E = mc2. This tells us how much energy is contained in an object
with mass m when the object is not moving.

3 If v is very small, then v2 is very very small, and v3 is very very very small, and so on.
4 Taking the square is reversible with the understanding that we should use the positive square root. Multiplying

by 1− v2 is reversible with the understanding that v 6= 1.
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6 The speed limit

An object can have arbitrarily large momentum, but its speed cannot be arbitrarily
large. To see this directly from equations (3)-(4), take the square root of equation
(3) and use (5) to get

E =
√
m2 + p2.

Substitute this into equation (4) to get

v =
p√

m2 + p2
. (13)

This implies v ≤ 1, so the speed of an object never exceeds 1, no matter how large
its momentum happens to be. In particular:

• If the object is massless (m = 0), then equation (13) says that its speed is
automatically equal to the limiting value v = 1.

• If the object is massive (m > 0), then equation (13) says that the speed
approaches its limiting value v → 1 as p → ∞. The harder you throw an
object (p→∞), the closer it comes to moving at the limiting speed (v → 1).
This is illustrated below, with factors of c restored:

v → c as p→∞

momentum (p)

sp
ee

d
(v

)

v = c

v =
p√

m2 + (p/c)2
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7 Can anything travel faster than light?

You may have heard that “nothing can travel faster than light.” Here are some
clarifications:

• The limiting speed c is usually called the “speed of light,” but light travels
at this speed only in empty space. In a medium like air or water, light moves
slower than c, so other entities can outrun light in such a medium. The
limiting speed c is still the same as it is in a vacuum, though: nothing can
move faster than c, regardless of the ambient medium.

• A better name for the speed limit c is the “speed of information.” To see
why, imagine pointing a laser pointer at the left side of the moon and then
quickly re-pointing it at the right side of the moon. The illuminated spot can
move across the moon faster than c, but the illuminated spot isn’t carrying
any information across the moon, just like using two laser pointers to illu-
minate spots on both sides of the moon at the same time doesn’t carry any
information across the moon. It does carry information from the pointer to
the moon, and that speed is limited to c.

• The speed limit c applies to the relative speeds at which co-located entities
can pass by each other. It does not apply to the relative speeds of entities
that are far away from each other, like two galaxies in different parts of the
universe, whatever “relative speed” even means in that case. The local nature
of the speed limit c, and the ambiguity of the naive idea of “relative speed”
between distant objects, is easier to appreciate after studying the geometry
of not-necessarily-flat spacetime. Article 48968 takes a first step in that
direction.
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8 Lorentz symmetry

A Lorentz transformation is any linear transformation of the four quantities
(E, p1, p2, p3) that leaves the right-hand side of equation (3) invariant. The mass
m is invariant under Lorentz transformations.

One example of a Lorentz transformation is
E ′

p′1
p′2
p′3

 =


1 0 0 0
0 C S 0
0 −S C 0
0 0 0 1



E
p1

p2

p3

 (14)

where C and S are any two real numbers satisfying

C2 + S2 = 1. (15)

This qualifies as a Lorentz transformation because it satisfies (E ′)2−(p′)2 = E2−p2.
We recognize (14) as an ordinary rotation in the 1-2 plane, with C = cos θ and
S = sin θ for some angle θ. An ordinary rotation changes the direction of the
object’s velocity v = p/E (because it changes the direction of p), but it does not
change the object’s speed v = p/E (because it doesn’t change p or E).

Another example of a Lorentz transformation is
E ′

p′1
p′2
p′3

 =


C S 0 0
S C 0 0
0 0 1 0
0 0 0 1



E
p1

p2

p3

 (16)

where now C and S are any two real numbers satisfying

C2 − S2 = 1. (17)

The quantities C and S can be written as C = cosh θ and S = sinh θ (section 10).
This qualifies as a Lorentz transformation because it satisfies (E ′)2−(p′)2 = E2−p2.
This type of Lorentz transformation is called a Lorentz boost. A Lorentz boost
changes the object’s speed.
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9 Lorentz boosts and speed, part 1

Equation (4) tells us how Lorentz boosts are related to changes in the object’s
velocity v. If we start with v = 0 (p = 0), then a Lorentz boost along the
1-direction gives 

E ′

p′1
p′2
p′3

 =


C S 0 0
S C 0 0
0 0 1 0
0 0 0 1



E
0
0
0

 =


CE
SE
0
0


with C2 − S2 = 1. According to equation (4), the new velocity has magnitude

v′ =
p′

E ′
=
S

C
. (18)

This is consistent with v ≤ 1, because equation (17) implies that the magnitude of
S/C cannot exceed 1.
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10 The functions sinh and cosh

We know from trigonometry that real numbers C, S satisfying C2 + S2 = 1 can
be written C = cos θ and S = sin θ, for some real number θ. The sine and cosine
functions can be defined by the conditions

eiθ = cos θ + i sin θ cos(−θ) = cos θ

sin(−θ) = − sin θ,

where i is the imaginary unit (i2 = −1). In words: cos θ and sin θ are the even and
odd parts of eiθ, normalized to be real-valued.

Similarly, real numbers C, S satisfying C2 − S2 = 1 can be written C = cosh θ
and S = sinh θ, for some real number θ. These functions are defined by

eθ = cosh θ + sinh θ cosh(−θ) = cosh θ

sinh(−θ) = − sinh θ.

In words: the hyperbolic cosine function cosh θ and hyperbolic sine function
sinh θ are the even and odd parts of eθ, respectively. Explicitly:

cosh θ =
eθ + e−θ

2
sinh θ =

eθ − e−θ
2

.

The trigonometric functions and their hyperbolic relatives satisfy similar-looking
relations, but with different patterns of minus-signs. Examples:

(cos θ)2 + (sin θ)2 = 1 (cosh θ)2 − (sinh θ)2 = 1

and

d

dθ
sin θ = cos θ

d

dθ
sinh θ = cosh θ

d

dθ
cos θ = − sin θ

d

dθ
cosh θ = sinh θ.

The next section highlights another example.
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11 Combining boosts in the same direction

In the context of the functions cos θ and sin θ, the quantity θ is called an angle.
To rotations in the same plane5 can be combined by adding their angles, thanks to
the identity(

cos θ sin θ
− sin θ cos θ

)(
cos θ′ sin θ′

− sin θ′ cos θ′

)
=

(
cos(θ + θ′) sin(θ + θ′)
− sin(θ + θ′) cos(θ + θ′)

)
.

Similarly, in the context of the functions cosh θ and sinh θ, the quantity θ is
called a rapidity – a name motivated by its relationship to speed in equation (18).
Two boosts in the same direction (better: in the same time-space plane) may be
combined by adding their rapidities, thanks to the identity(

cosh θ sinh θ
sinh θ cosh θ

)(
cosh θ′ sinh θ′

sinh θ′ cosh θ′

)
=

(
cosh(θ + θ′) sinh(θ + θ′)
sinh(θ + θ′) cosh(θ + θ′)

)
. (19)

This type of linear transformation is called a hyperbolic rotation. A Lorentz
boost is a hyperbolic rotation in a time-space plane, analogous to an ordinary
rotation in a space-space plane.

5 Traditional language says “about the same axis,” but that only makes sense in three-dimensional space. Saying
“in the same plane” makes sense in any number of dimensions (articles 33629, 12707, and 81674).
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12 Lorentz boosts and speed, part 2

An ordinary rotation in a space-space plane changes the orientation from which
an object is viewed. In contrast, section 9 showed that a hyperbolic rotation in a
time-space plane changes the velocity from which an object is viewed.

To appreciate one implication of the identity (19), suppose we have 3 objects
A, B, and C. From A’s point of view, B is moving in the +x direction with speed
tanh θ. From B’s point of view, C is moving in the +x direction with speed tanh θ′.
The identity (19) says that, from A’s point of view, object C is moving in the +x
direction with speed tanh(θ + θ′). This is summarized below, where the table on
the left is A’s point of view, and the table on the right is B’s point of view:

direction velocity
A 0
B → tanh θ
C → tanh(θ + θ′)

direction velocity
← A − tanh θ
B 0
C → tanh θ′

The important message is that we don’t add the speeds. We add the “angles”
(rapidities) instead. These are not the same thing, because

tanh(θ + θ′) 6= tanh θ + tanh θ′. (20)

Adding speeds works well enough for most everyday purposes, because

tanh θ ≈ θ if |θ| � 1,

so the inequality (20) becomes an approximate equality if θ and θ′ are both small.
Example: if you throw a tomato forward at 70 km/hour while driving forward at
65 km/hour, the billboard will see the tomato approaching at approximately 135
km/hour. This approximation only works for low speeds, though. Instead of a
tomato hitting a billboard, consider light from a flashlight hitting your eyes. In
a vacuum, light travels with speed 1 = tanh∞, so its rapidity is infinite. Since
∞ + θ = ∞, the speed with which the light hits your eyes is always tanh∞ = 1
regardless of how fast the flashlight itself is rushing towards you (or away from
you). The limiting speed is the same from all points of view.
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