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Connections, Local Potentials, and
Classical Gauge Fields

Randy S

Abstract Article 70621 introduced the concept of a fiber bundle and
its specialization to principal bundles and associated vector bundles.
This is the mathematical foundation for the concept of a gauge field
in classical physics. This article explains how the idea of a gauge field
relates to the idea of a principal bundle and how it extends to associated
vector bundles.
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1 Motivation

Article 70621 introduced the concept of a fiber bundle. Roughly, a fiber bundle
consists of a manifold M called the base space with a copy of another manifold
F called the fiber attached to each point of M , in a way that varies smoothly
throughout M . The manifold defined by all of these fibers is called the total space.
Article 70621 also introduced two important specializations of the concept of a fiber
bundle: the concept of a vector bundle, and the concept of a principal bundle.

Many types of field in classical physics may be described as a section1 of a
vector bundle. This includes some fields, like spinor fields, that are not normally
called “vector fields” (a name that is normally reserved for sections of a tangent
bundle).

Gauge fields are different: a classical gauge field is a connection on a principal
bundle. A connection, which is defined everywhere on the total space, may also be
encoded in a collection of local potentials that are each defined in a sufficiently small
part of the base space. The name gauge field may refer either to the connection
or to the corresponding local potentials.

Given a principal bundle and a linear representation ρ of G acting on a vector
space V , we can define an associated vector bundle with fiber V . Any connection on
the principal bundle gives an induced connection on the associated vector bundle.

After a brief review of some prerequisites from article 70621, this article intro-
duces the definitions of connection, local potential, and induced connection, along
with a few other mathematical concepts that are involved in the study of gauge
fields in classical physics.

1Most articles in this series use the word section for a numbered part of the article. This article uses the word
chapter instead, like article 70621 does, because section is the standard name for a mathematical concept that is
prevalent in the study of fiber bundles.
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2 Some notation

M = the base space

E = the total space

p = the bundle projection

τ = the inverse of a local trivialization

τk = the inverse of a local trivialization for a chart Uk
τj→k = transition function from Uj to Uk
σ = a section

m or u = a point in M or in a chart U ⊂M

x = a point in E

X, Y = tangent vector fields on M or E (specified in the text)

Notation for a principal bundle and an associated vector bundle:

G = the structure group

V = a vector space

ρ = a linear representation of G on V

E = the total space of the principal bundle

Ê = the total space of the associated vector bundle

p = the principal bundle projection

p̂ = the associated vector bundle projection

τ or τk = the inverse of a local trivialization of the principal bundle

τ̂ or τ̂k = the inverse of a local trivialization of the associated vector bundle

τj→k = transition function for the principal bundle

τ̂j→k = transition function for the associated vector bundle

δ = a gauge transformation of the principal bundle

[·, ·] = a Lie bracket, or the equivalence class defined in chapter 5
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3 Fiber bundle: review of the definition

Article 70621 introduced the concept of a (smooth) fiber bundle.2 This chapter
reviews the definition. A fiber bundle (E,M, p) involves these data:

• A manifold E called the total space,

• A manifold M called the base space,

• A map p : E →M called the (bundle) projection.

Those data must satisfy these conditions:

• The fibers p−1(m) ⊂ E are all diffeomorphic3 to each other, for all m ∈M .

• Each point m ∈M has a neighborhood U whose inverse image p−1(U) ⊂ E is
diffeomorphic to U ×F , where the manifold F is diffeomorphic to each fiber.
More specifically, a diffeomorphism τ from U × F to p−1(U) exists with this
property: p(τ(u, f)) = u for all (u, f) ∈ U × F . The inverse τ−1 of such a
map is called a local trivialization, so τ will be called an inverse local
trivialization.

Intuitively, the first condition says that E looks like M × F locally, even if it is
not like M × F globally. The second condition says that this local similarity is
compatible with the projection p. Altogether, we can think of the fiber bundle as
a base space M with a copy of the fiber F attached to each point of M in a way
that varies smoothly throughout M .

2For the rest of this article, all manifolds and maps are understood to be smooth (not just topological/continuous).
3This means that they are equivalent to each other as smooth manifolds (article 93875).
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4 Principal bundle: review of the definition

A principal bundle is a special kind of fiber bundle. This chapter reviews the
definition.4

Compared to the general definition of fiber bundle, the definition of a principal
bundle involves two additional pieces of data and a few additional conditions. The
additional data are:

• A Lie group G called the structure group,

• A smooth map E×G→ E called the (right) action of G on the total space
E. The image of (x, g) under this map will be denoted xg.

The additional conditions are:

• The bundle projection p satisfies

p(xg) = p(x) for all g ∈ G and all x ∈ E, (1)

so the fibers over different points of M aren’t mixed with each other by
x→ xg.

• The fiber G̃ is almost the Lie group G, but with no distinguished identity
element.5

• The Lie group G acts on G̃ from the right as a group of diffeomorphisms, and
the local trivializations satisfy the additional condition

τ(u, f)g = τ(u, fg) (2)

for all g ∈ G, with f and u defined as in chapter 3. In words: the maps τ are
G-equivariant in the second argument.

The name principal G-bundle is often used as a concise way to specify the group
G that satisfies these conditions.

4Article 70621
5Article 70621 explains this in more detail.
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5 Associated vector bundle: review of the definition

A vector bundle is another special kind of fiber bundle, one whose fiber is a
vector space.6 Given a principal bundle with structure group G, and given a vector
space V on which a linear representation ρ of G acts, we can define a vector bundle
that is associated to the principal bundle in a particular way, called an associated
vector bundle. This chapter reviews the definition.6

Start with a principal bundle with total space E, base space M , and bundle
projection p : E → M . Consider the cartesian product E × V . Each element of
E × V is an ordered pair (x, v) with x ∈ E and v ∈ V . Let ∼ be the equivalence
relation defined by declaring (xg, ρ(g−1)v) to be equivalent to (x, v) for every g ∈ G.
Let [x, v] denote the equivalence class that includes (x, v), so

[xg, ρ(g−1)v] = [x, v]. (3)

The total space of the associated vector bundle is the quotient Ê ≡ (E × V )/∼,

also denoted Ê = E ×ρ V . The bundle projection p̂ : Ê →M is defined by

p̂
(
[x, v]

)
= p(x).

This is consistent with the equivalence relation (3), because

p̂
([
xg, ρ(g−1)v

])
= p(xg) = p(x) = p̂

(
[x, v]

)
.

The fiber has the structure of a vector space: within the fiber over the point m ∈M ,
addition and scalar multiplication are defined by [x, v1] + [x, v2] ≡ [x, v1 + v2] and
c[x, v] ≡ [x, cv] for any x ∈ E with p(x) = m, where c is a scalar (in R or C,
whichever is the field of scalars for the given vector space V ) Altogether, this
defines a vector bundle with base space M and fiber V .

6Article 70621
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6 The concept of a connection

Let (E,M, p) be any fiber bundle. Consider any point x ∈ E, and let Fx ≡
p−1(p(x)) be the fiber through that point. The vertical subspace at x, denoted
VxE, is the space of vectors that are tangent to Fx at x. This is a subspace of TxE,
the vector space of all vectors tangent to E at x.

A connection specifies a horizontal subspaceHxE, one for each point x ∈ E,
subject to these conditions:7

• Every vector in TxE may be written uniquely as the sum of a vector in VxE
and a vector in HxE.

• The horizontal subspaces vary smoothly throughout E.8

Given a connection, every smooth tangent vector field X on E may be written as
the sum of two smooth tangent vector fields, XV and XH , where all vectors in XV

are in vertical subspaces and all of the vectors in XH are in horizontal subspaces.
A fiber bundle may admit many different connections (many different choices

of horizontal). No one connection is more natural than the others, because the
smooth manifold E is not equipped with any definition of the angle between two
vectors: linear independence is defined, but angles are not.

Sometimes a connection as defined here is called an Ehresmann connection,
but often9 that name is used only for a connection that is complete – an additional
condition that will be described in chapter 7.

7Nakahara (1990), definition 10.2; and Figueroa-O’Farrill (2017), section 5.1, page 37
8The vertical subspaces automatically vary smoothly throughout E, because of the required properties of the

bundle projection p (chapter 3).
9This difference in terminology is acknowledged in the text below definition 3.3.4 in Ryan (2014). Page 81 Kolář

et al (1993) uses the name Ehresmann connection only for complete connections, but section 1 of del Hoyo (2016)
uses the name for connections that are not necessarily complete.
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7 Horizontal lifts

Let (E,M, p) be any fiber bundle, and let γ be a smooth curve10 in E. More
explicitly: let γ be a smooth map from the interval [0, 1] ⊂ R to E. If the curve is
not tangent to any fibers, then applying the bundle projection p : E → M to the
curve γ gives a smooth curve p(γ) in the base space M , which I’ll call the base
curve. Conversely, the curve γ in E is one way to lift the base curve from M to
E. It is not the only way, because many different curves in E project to the same
base curve in M .

With respect to a given connection, a curve γ ⊂ E is called horizontal if all of
its tangent vectors are in horizontal subspaces.11 In this case, the curve γ is called
a horizontal lift of the corresponding base curve p(γ).12

The given connection is called complete if every curve in the base space M
has a horizontal lift.13 If the fiber is a compact manifold, then every connection is
complete.14 A complete connection is also called an Ehresmann connection.15

10A curve is a one-dimensional path. It may be closed or it may have endpoints.
11Kobayashi and Nomizu (1963), chapter 2, page 64
12Proposition 1.13 in de los Ŕıos (2020) and proposition 1.2 in chapter II of Kobayashi and Nomizu (1963) address

the uniqueness of horizontal lifts in the context of a principal bundle.
13Section 2 in del Hoyo (2016) gives an example of a connection that is not complete.
14Kolář et al (1993), page 81
15Sometimes this name is used more generally for connections that are not necessarily complete (footnote 9 in

chapter 6).
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8 Parallel transport

Let (E,M, p) be a fiber bundle on which a connection (a definition of horizontal)
is given. Let γ be a curve in the total space E that starts at a point x and ends
at a point x′. Applying the bundle projection p to this curve gives a curve p(γ)
in the base space M that starts at p(x) and ends at p(x′). The points x and x′ in
E belong to the fibers at p(x) and p(x′), respectively. If the curve γ is horizontal,
then the point x′ ∈ E is said to be obtained from the point x ∈ E by parallel
transport along the curve p(γ) in M . Different connections give different parallel
transports.

In the case of a vector bundle, the fiber is a vector space V , and a point in the
fiber over m ∈ M is a vector at m. In this case, parallel transport is a rule for
transporting a vector along a curve in M .

Parallel transport is usually defined in terms of a connection, as in the first
paragraph above, but we can also think of parallel transport as the more basic
concept.16,17 One author says it like this:18

If care is taken, it is possible to define a connection via parallel trans-
ports. The difficulty comes in identifying the correct statement of how
the parallel transport maps should depend smoothly on each of their
arguments.

To avoid that difficulty, this article treats the concept of a connection as the more
basic concept, which is then used to define parallel transport.

16Theorem 5.4 in Morrison (2018) says this in the context of a principal bundle, and the beginning of section 2.2
in Morrison (2018) says this in the context of a vector bundle.

17Parallel transport around closed loops is sufficient to determine a a connection modulo gauge transformations.
Freed et al (2007) explains this in the text around equation (2.3) (in the preprint). Collier et al (2015) mentions
that parallel transport around closed loops actually determines both the bundle and the connection (modulo gauge
transformations). More references are cited in https://ncatlab.org/nlab/show/parallel+transport, and some
intuition is given in https://mathoverflow.net/questions/338595/.

18McCarthy (2019), page 43
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9 Pushforward and pullback

This chapter reviews two concepts from differential geometry that will be used in
the following chapters. Other prerequisite concepts (vector fields, differential forms,
and other tensor fields) are reviewed in article 09894.

If M and M ′ are smooth manifolds and δ : M →M ′ is a diffeomorphism, then:

• Any vector field19 X on M defines a vector field on δ(M) ⊂ M ′ called the
pushforward of X, denoted δ∗(X) or δ∗X.

• Any differential form ω on M ′ defines a differential form on M called the
pullback of ω, denoted δ∗(ω) or δ∗ω.

Roughly, the definitions are:

• Given a vector field on M , we can think of the vector at each point as being
the “velocity” vector for some curve in M .20 The diffeomorphism δ maps the
curve in M to a curve in M ′, so it implicitly maps vectors tangent to the
original curve in M to vectors tangent to the new curve in M ′. That’s the
pushforward.21

• A differential form ω on M ′ is a (special kind of) map from vector fields
on M ′ to scalar fields on M ′. Given a vector field on M , the effect of the
differential form δ∗ω on that vector field is defined by using the pushforward
to get a vector field on M ′ and then applying ω to that new vector field.22 In
symbols:23

(δ∗ω)(X) = ω(δ∗X). (4)

19Recall (footnote ?? in chapter 1) that the name vector field refers specifically to a field of tangent vectors.
20Isham (1999), definition 2.4
21Tu (2017), section 13.2. This may also be inferred from Lee (2013), proposition 8.19 and the text below it, using

proposition 8.16 as the definition of “δ-related” vector fields. Since δ is a diffeomorphism, pushforwards play nicely
with vector fields, not just with individual vectors: the pushforward maps each vector field on M to a vector field
on M ′ (Tu (2011), section 14.5).

22This is illustrated by example 8.20 on pages 183-184 in Lee (2013).
23The objects δ∗ω and X live on the manifold M , and the objects ω and δ∗X live on the manifold M ′.
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10 Representing a connection as a tensor field

Any connection, as defined in chapter 6, may be represented as a tensor field24 Φ of
type

(
1
1

)
defined on the manifold E. Such a tensor field may be viewed as a device

whose input is a vector field on E and whose output is another vector field on E,
subject to these conditions25 (along with the general conditions that every tensor
field is required to satisfy):

• All of the vectors in the vector field Φ(X) belong to vertical subspaces.

• Φ
(
Φ(X)

)
= Φ(X).

In words: Φ projects every vector field X onto its vertical part XV , as defined in
chapter 6.

Given a connection as defined in chapter 6, the corresponding tensor field Φ is
the one for which Φ(X) = 0 wherever X is horizontal. Conversely, a tensor field Φ
of type

(
1
1

)
satisfying the conditions listed above uniquely determines the horizontal

subspaces: they are the subspaces that Φ projects to zero.26

24Article 09894 reviews the concept of a tensor field.
25Kolář et al (1993), definition 9.3; Koszul (1960), section 3.1, definition 1
26Nakahara (1990), equation (10.4), and Bertlmann (1996), text below equation (2.464)
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11 The concept of a principal connection

The general definition of connection that was given in chapter 6 can be applied to
any fiber bundle, but in the context of a principal G-bundle, the definition is usually
refined by adding one more condition: the pushforward27 of the right action of g on
the total space defines an action of a group element g ∈ G on a horizontal subspace
HxE, and the result of this action should be another horizontal subspace HxgE.28 A
connection satisfying this extra condition is called a principal connection.29 For
the rest of this article, this extra condition is understood to be in effect whenever
referring to any connection on a principal bundle.

Every principal bundle admits a principal connection.30

In terms of the tensor field Φ that was defined in chapter 10, this extra condition
is31

Φ(δ∗X) = δ∗Φ(X)

for any diffeomorphism δ : E → E defined by δ(x) = xg for any fixed g ∈ G. In
words: the projection onto the vertical component should commute with the right
action of G.

27Chapter 9 defined pushforward.
28Figueroa-O’Farrill (2006a), section 1.3.1
29Kolář et al (1993), beginning of section 11.1; and Michor (2008), section 19.1
30Kolář et al (1993), lemma 11.3
31Kolář et al (1993), definition 11.1, pages 99-100
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12 Induced connections on associated bundles

Any connection on a principal bundle (PB) induces a connection on each of its
associated vector bundles (AVB). The induced connection may be defined using
this sequence of steps:32

connection on PB→ parallel transport on PB (step 1)

→ parallel transport on AVB (step 2)

→ connection on AVB. (step 3)

In more detail, consider a principal G-bundle with projection p and an associated
vector bundle with projection p̂, both with base space M . The steps are:

• Step 1: Given a point x ∈ p−1(m) in the fiber over m ∈ M and a curve γ
from m to m′ in M , parallel transport33 gives a point x′ ∈ p−1(m′).

• Step 2: Now consider an associated vector bundle defined by a representation
ρ of G, and let p̂ be its bundle projection. Parallel transport on the associated
vector bundle is defined to take the point34 [x, v] ∈ p̂−1(m) to the point
[x′, v] ∈ p̂−1(m′), where x′ is obtained from x by parallel transport in the
principal bundle (step 1).

• Step 3: In the associated bundle, starting with any point [x, v] ∈ p̂−1(m)
in the total space, parallel transport along any given curve in the base space
gives a curve in the total space (step 2). Declaring the tangent vectors to
these curves to be horizontal defines a connection on the associated bundle.
This connection is said to be induced by the original connection on the
principal bundle.

32Section 1 in Abbassi and Lakrini (2021) describes this directly in terms of horizontal subspaces instead of via
the concept of parallel transport. The description given here (and in Zykoski (2020)) can be recovered from that
one by thinking of each horizontal vector as being tangent to a horizontal curve. Section 11.8 in Kolář et al (1993)
– which is essentially repeated in section 19.8 in Michor (2008) – describes it in a more elegant (but more obtuse)
way. Other formulations are given in theorem 3.8 in de los Ŕıos (2020) and theorem 46 in Haydys (2019).

33Chapter 8 defined parallel transport.
34Chapter 5 defined the notation [·, ·].
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13 Different ways to describe a Lie algebra

Every Lie group G has a corresponding Lie algebra. This chapter reviews a few
different ways of thinking about the corresponding Lie algebra. All three of them
will be used in this article.

First, here’s a quick review of the concept of the Lie bracket of two vector fields.
A vector field on any smooth manifold M may be defined as a derivation.35 Given
a coordinate system x1, x2, ... in a chart U ⊂M , a vector field (derivation) may be
described within U as a first-order partial derivative operator

∑
k ck ∂/∂xk, with

smooth functions ck(x1, x2, ...) as coefficients. Using this description, the commuta-
tor of two vector fields in U is well-defined and yields another vector field (another
first-order partial derivative operator) in U .36 This commutator is a local version
of the Lie bracket [X, Y ] of two vector fields X, Y , which is defined on the whole
manifold M and always gives another vector field on M , even if the products XY
and Y X are not individually defined.37

A Lie group G is a smooth manifold, so the Lie bracket of vector fields on G is
defined. A Lie group is also a group, and for any given h ∈ G, the map G̃ → G̃
defined by g 7→ gh (for all g ∈ G̃) is a diffeomorphism of the manifold G̃. I’m
writing G̃ instead of G here to emphasize that the definition of this diffeomorphism
doesn’t involve the product of elements of G̃ with each other. It only involves
the right action of G on G̃, just like the fiber of a principal bundle.38 A vector
field X on G̃ is called right-invariant if h∗X = X for all h ∈ G, where h∗X
is the pushforward of X by the diffeomorphism defined by g 7→ gh. In words: a
right-invariant vector field on G̃ is preserved by the right action of G on G̃.

Now the Lie algebra of G̃ may be defined as the set of right-invariant vector
fields on G̃, together with the Lie bracket (viewed as an operation that ingests any
two such vector fields and returns another one).39 This is one way to describe the

35Article 09894
36Lee (2013), proposition 8.26
37Lee (2013), lemma 8.25
38Chapter 4
39Nakahara (1990), definition 5.48
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Lie algebra associated with a Lie group G.
The Lie algebra may also be described using only vectors tangent to a given

point of G, such as the point that serves as the identity element of G, instead of
using vector fields defined everywhere on G. In this view, each element of the Lie
algebra is an individual tangent vector at that point. The Lie bracket of two vector
fields that was defined above is defined only for vector fields, not for individual
tangent vectors, but the Lie bracket between individual vector fields may be defined
in a different way (not reviewed here).40 Then the previous way of thinking about
the Lie algebra may be recovered from this one by using the fact that each tangent
vector has a unique extension to a right-invariant vector field on all of G.

In the physics literature (and in this article), the Lie group G is usually a matrix
group, using ordinary matrix multiplication as the group operation. In this case,
any vector tangent to G at the identity element is tangent to a curve of the form
g(t) = e`t for some matrix `,41,42 and the matrix ` may be used to represent the
vector tangent to this curve at t = 0. Then the Lie bracket of ` and `′ is just the
commutator [`, `′] ≡ ``′ − `′`, where ``′ and `′` are ordinary matrix products.

Altogether, this gives three different ways of thinking about elements of a Lie
algebra:

• An element of the Lie algebra of G is a right-invariant vector field on G (or
on G̃).

• An element of the Lie algebra of G is an individual vector tangent to G.

• If G is a matrix group, then a vector tangent to G (an element of the Lie
algebra) may be described as a matrix.

The rest of this article switches freely between these three perspectives.

40Fulton and Harris (1991), section 8.1
41Article 18505 defines e`t when ` is a matrix.
42Example: if G is the group of N × N unitary matrices, then ` is an N × N antihermitian matrix. Another

example: if G is the group of N ×N orthogonal matrices, then ` is an N ×N antisymmetric matrix.

17
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14 Connection one-form: definition

This chapter introduces a useful way of representing a principal connection on a
principal bundle.

In a principal bundle, the fiber is almost a Lie group G, so a vertical vector (a
vector tangent to the fiber) at any given point of E corresponds to an element of
Lie(G). Using this correspondence, any vertical vector field may be converted to a
Lie-algebra-valued field in a natural way (and conversely). In particular, since each
` ∈ Lie(G) may be viewed as a right-invariant vector field on G, each ` naturally
defines a vertical vector field X` on E called the fundamental vector field for `.43

Among vertical vector fields, the fundamental vector fields are special because each
fundamental vector field corresponds to the same element of Lie(G) everywhere on
E.

In a principal bundle, the fiber is a Lie group G, so each vertical subspace VxE
is a copy of the Lie algebra Lie(G) of G. Given a connection on a principal bundle,
a Lie-algebra-valued one-form ω on the total space E called the connection one-
form is defined like this:44,45

ω(X) =

{
` if X is the fundamental vector field for ` ∈ Lie(G),

0 if X is horizontal.
(5)

This implies that ω(X) = 0 if and only if X is horizontal, so the connection one-
form is another way of encoding a connection on a principal bundle – an alternative
to using the tensor field of type

(
1
1

)
described in chapter 10.

To represent a principal connection on a principal G-bundle, the connection
one-form ω must satisfy an additional condition.46 Chapter 15 will show how to
express that condition when G is a matrix group.

43Figueroa-O’Farrill (2006a), section 1.3.1
44Figueroa-O’Farrill (2006a), section 1.3.2
45For a generic vector field X tangent to E, the output ω(X) is a function from E to Lie(G). When the input

X is a fundamental vector field, the output ω(X) is a constant function: it assigns the same ` to every point of the
total space E.

46Chapter 11

18
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15 Connection one-forms and the right action

Consider a principal G-bundle with total space E. Each element g ∈ G defines
a diffeomorphism δ : E → E by δ(x) = xg. Given a connection one-form ω, its
pullback by δ gives another connection one-form δ∗ω. Suppose that G is a matrix
group, so that elements of G and Lie(G) may be multiplied with each other. If G is
a matrix group and ω is a principal connection, then the new connection one-form
is47,48,49

δ∗ω = g−1ωg. (6)

Conversely, if a connection one-form on a principal bundle satisfies the condition
(6), then it is a principal connection.50

To deduce that a principal connection satisfies (6), start with the fact that δ∗ω
is defined by

(δ∗ω)(X) ≡ ω(δ∗X) (7)

for all vector fields X, where δ∗X is the pushforward of X by δ. Consider a single
point in E, and let v be the vector that X assigns to that point. This vector may
be characterized as the tangent vector to a curve γ in E at the point γ(0), like this:

(vf)(γ(0)) =
d

dt
f(γ(t))

∣∣∣∣
t=0

(8)

for all functions f : E → R. To determine the effect of the new connection one-
form δ∗ω using equation (7), we need to consider the vector v′ ≡ δ∗v, which is
characterized by an equation like (8) but with γ(t)g in place of γ(t):

(v′f)(γ(0)) =
d

dt
f(γ(t)g)

∣∣∣∣
t=0

(9)

47Figueroa-O’Farrill (2010a), lemma 5.1; Tu (2017), proposition 27.13; Nakahara (1990) (10.3b’)
48On the right-hand side of (6), the output of ω at each point of E is an element of Lie(G), and sandwiching that

element of Lie(G) between g−1 and g gives another element of Lie(G), which is the output of δ∗ω at that point of E.
49This result will be used in chapter 19 to derive the effect of a gauge transformation on a connection ω, even

though the map δ defined here is not necessarily a gauge transformation (chapter 18).
50Proof: if a vector field X is horizontal, then ω(X) = 0, which implies g−1ω(X)g = 0, and then (6) gives

0 = (δ∗ω)(X), which says that δ∗X is horizontal (using the definition (7)).
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If we write v′ as a sum of its vertical and horizontal components (with horizontal
defined by the connection ω), then only the vertical component affects the output
of ω.51 The vector v involves only on the first derivative of f(γ(t)) at t = 0, so we
can choose the curve γ to have the form

γ(t) = γH(t) exp(`t) (10)

where γH(t) is a horizontal curve and ` ∈ Lie(G), so that exp(`t) is an element of
G for each t ∈ R. Then the vertical component of the slope of the curve at t = 0
is specified by `. Equation (10) implies

γ(t)g = γH(t) exp(`t)g = γH(t)g exp(g−1`gt),

so the vertical component of v′ corresponds to `g ≡ g−1`g ∈ Lie(G). Use this in
equation (9) to get

(v′f)(γ(0)) =
d

dt
f
(
γH(0)g exp(`gt)

)∣∣∣∣
t=0

+
d

dt
f
(
γH(t)g

)∣∣∣∣
t=0

=
d

dt
f
(
γ(0)g exp(`gt)

)∣∣∣∣
t=0

+
d

dt
f
(
γH(t)g

)∣∣∣∣
t=0

. (11)

The first and second terms on the right-hand side correspond to the vertical and
horizontal components of v′. Only the vertical component contributes to ω(v′), so
(11) implies

ω(v′) = g−1`g = g−1ω(v)g.

Combine this with (7) to get (6).

51Equation (5)
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16 Three ways to represent a connection

In the literature, the name connection may refer to any of these closely related
concepts:

• a choice of horizontal subspaces as described in chapter 6,

• a tensor field Φ of the type described in chapter 10,

• a Lie-algebra-valued one-form ω of the type described in chapter 14.

The first two concepts make sense on any fiber bundle, but the third one is specific
to principal bundles.52 In the physics literature, the name connection one-form
typically refers to the third concept, and it always will in the rest of this article.

An advantage of the Lie-algebra-valued version ω is that its exterior derivative
is defined. It’s defined because the values of ω all belong to the same vector space
(the Lie algebra), so ω may be written as

∑
k `kωk where `k are constant elements

of the Lie algebra and ωk are scalar-valued one-forms. The vertical-vector-valued
version Φ can’t be written that way, because the values don’t all belong to one
vector space.53

Chapter 21 will introduce something called a local potential, which may be
viewed as yet another way of encoding a connection.54

52The distinction between Φ and ω is clearly acknowledged in Koszul (1960), section 3.3, and in Kolář et al (1993),
section 11.1

53This might be why Cohen (2023) page 61 says, “Even though spaces of forms with values in a bundle [like the
tangent bundle of the total space] are easy to define, there is no canonical analogue of the exterior derivative.”

54Figueroa-O’Farrill (2017), section 5.2.4

21



cphysics.org article 76708 2024-03-08

17 Gauge transformations

Consider a principal G-bundle with total space E, base space M , and bundle
projection p : E →M . A gauge transformation is a diffeomorphism δ : E → E
from the total space to itself with these properties:55

• It is G-equivariant: δ(xg) = δ(x)g for all x ∈ E and g ∈ G.

• It doesn’t affect the base space: p(δ(x)) = p(x) for all x ∈ E.

Given any function h : E → G that satisfies

h(xg) = g−1h(x)g (12)

for all x ∈ E and g ∈ G, the transformation

δ(x) = xh(x) (13)

clearly satisfies the two conditions listed above,56 so this qualifies as a gauge trans-
formation. Any gauge transformation may be written this way.57

The name gauge transformation may also refer to other closely related things.
It may refer to a change in the choice of local trivialization, or to the relationship
between local trivializations in overlapping patches (a transition function), both
of which may be described using a local version of a gauge transformation in the
sense defined above.58 A local version of a gauge transformation may also be used
to implement a change in the choice of local section.59 This will be explained in
chapter 22.

55Husemoller (1966), chapter 7, definition 1.1; Kolář et al (1993), definition 10.14; Cohen (2023), definition 4.5 in
section 4.3; Maxim (2018), remark 1.10

56Equations (12) and (13) imply the first condition. Equations (13) and (1) imply the second condition.
57Neeb (2010), proposition 1.6.7
58Article 70621.
59Choosing a local section in the principal bundle is related to choosing a local trivialization in an associated vector

bundle (article 70621).
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18 Gauge transformations and the left action

If the group G is abelian, then the condition (12) reduces to h(xg) = h(x). In this
case, any transformation of the form δ(x) = xh, with h independent of x, qualifies
as a gauge transformation.

In contrast, if the group G is nonabelian and h does not commute with every-
thing in G, then δ(x) = xh does not qualify as a gauge transformation because
it violates the G-equivariance requirement: δ(xg) = xgh 6= xhg = δ(x)g for some
g ∈ G. This shows that right-multiplication by a fixed element of G is typically
not a gauge transformation. The next paragraph shows that left multiplication by
a fixed element of G is a gauge transformation, at least locally.

Each point in a principal bundle has a neighborhood that admits a local trivi-
alization: it is equivalent U ×G where U is the corresponding neighborhood in the
base space. In this neighborhood, instead of treating the fiber as G̃ (which is only
almost a Lie group), we can treat it as the Lie group G. Then, in addition to the
right action of G that is built into the definition of any principal bundle,60 a left
action of G on the fiber is also defined. The left action commutes with the right
action, so for any g0 ∈ G, the transformation defined by

δ(u, f) = (u, g0f) for (u, f) ∈ U ×G (14)

is G-equivariant (δ(xg) = δ(x)g). This shows that, locally, left-multiplication by a
fixed element of G is an example of a gauge transformation.

If we take the function h in equation (13) to be h(u, f) = f−1g0f for all u ∈
U , then it automatically satisfies the condition (12), and equation (13) becomes
equation (14):

δ(u, f) = (u, f)h(u, f) = (u, f)f−1g0f = (u, ff−1g0f) = (u, g0f).

60Chapter 4
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19 Gauge transformations and connections

Let γ be a horizontal curve in the total space E of a principal bundle. In other
words, γ is a horizontal lift of a curve p(γ) in the base space.61 Horizontal can
defined by a connection one-form ω.62 A gauge transformation δ : E → E, as
defined in chapter 17, changes the curve γ in the total space without changing the
curve p(γ) in the base space. The new curve δγ is horizontal with respect to a new
connection one-form δ∗ω characterized by the condition that the new horizontal
subspaces are annihilated by the new connection one-form.63 This new connection
one-form is the pullback64 of the original connection one-form ω by δ. The gauge
transformation δ preserves the vertical subspaces65 but may change the horizontal
subspaces.

Chapter (20) will derive an expression for the new connection one-form δ∗ω
in terms of ω and the function h that implements the gauge transformation in
equation (13), assuming that G is a matrix group. The result is66

δ∗ω = h−1ωh+ h∗θ, (15)

where θ is the Maurer-Cartan form on G, whose input is a vector field on G and
whose output is the corresponding Lie-algebra-valued field on G.67,68 Its pullback
h∗θ by the map h : E → G gives a Lie-algebra-valued one-form on E.

61Chapter 7
62Chapter 14
63Equation (5)
64Chapter 9
65Figueroa-O’Farrill (2006a), text above exercise 1.5
66This is similar to proposition 1.8 in de los Ŕıos (2020), but that proposition describes the effect of a gauge

transformation on the local potential that will be introduced in chapter 21. The derivation is essentially the same,
because a local potential is ω(σ∗X) where σ is a local section and X is a vector field on the base space, and any
vector tangent to E may be written as a linear combination of vectors of the form σ∗X by using various local sections
and various choices of X.

67Section 2.1 in Collinucci and Wijns (2006) defines the Maurer-Cartan form more carefully and explains how to
justify an alternative notation for it that is common in the physics literature.

68The natural relationship between tangent vectors on G and elements of Lie(G) was mentioned in chapter 14.
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20 Derivation of (15)

This chapter outlines the derivation of equation (15).
The new connection one-form ω′ ≡ δ∗ω is defined in terms of the original one-

form ω by the condition69

ω′(X) = ω(δ∗X),

where δ∗X is the pushforward of the vector field X, so we can study the relationship
between ω and ω′ by studying the effect of the pushforward on vectors tangent to
E. To describe such a vector, let γ be a curve in E, not necessarily horizontal,
described as a map from the interval [−1, 1] of real numbers to E, and consider the
vector v that is tangent to γ at γ(0), so

(vf)(γ(0)) =
d

dt
f(γ(t))

∣∣∣∣
t=0

(16)

for all functions f : E → R. Define

g(t) ≡ h
(
γ(t)

)
(17)

where h implements the gauge transformation as in equation (13). Then the gauge-
transformed curve is

γ′(t) = γ(t)g(t), (18)

so the pushforward v′ of v is given by

(v′f)
(
γ′(0)

)
=

d

dt
f
(
γ(t)g(t)

)∣∣∣∣
t=0

=
d

dt
f
(
γ(t)g(0)

)∣∣∣∣
t=0

+
d

dt
f
(
γ(0)g(t)

)∣∣∣∣
t=0

(19)

In equation (19), the first step used equation (18), and the second step used a
familiar property of ordinary derivatives. We can write v′ as the sum of two terms,

v′ = v′1 + v′2,

69Equation (4)
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corresponding to the two terms on the last line of equation (19). The term v′1 would
be the same as the original vector v except that the curve to which the vector is
tangent is modified by right-multiplication by g(0). This implies70

ω(v′1) = g(0)−1ω(v)g(0) at the point where t = 0. (20)

Using γ′(0) = γ(0)g(0), the term v′2 may be written

d

dt
f
(
γ(0)g(t)

)∣∣∣∣
t=0

=
d

dt
f
(
γ′(0)g(0)−1g(t)

)∣∣∣∣
t=0

. (21)

The curve γ′(0)g(0)−1g(t) lies within the fiber through γ′(0), so this shows that v′2
is tangent to the fiber and therefore corresponds to an element of Lie(G), which
may be written

g(0)−1 d

dt
g(t)

∣∣∣∣
t=0

(22)

when G is a matrix group. Equation (5) says that ω(v′2) is the element of Lie(G)
corresponding to the vertical vector v′2, but so is the quantity (22), so ω(v′2) is equal
to (22). Equation (17) says that g(t) is the composition of the maps γ : R → E
and h : E → G, and v is tangent to γ at t = 0, so the quantity (22) may also be
written as θ(h∗v), where θ is the Maurer-Cartan form.71 Equation (4) says that
this is the same as (h∗θ)(v), so

ω(v′2) = (h∗θ)(v). (23)

Use this together with (20) on the last line of (19) to get

ω′(v) ≡ ω(v′) = g(0)−1ω(v)g(0) + (h∗θ)(v).

The fact that this holds for all v gives the result (15).

70Equation (6)
71Chapter 19
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21 The concept of a local potential

A (Lie algebra valued) connection one-form lives in the total space E of a principal
bundle. In physics, a gauge field is usually described instead as living in the base
space M , which represents spacetime. To define this, choose an open set U ⊂ M
over which a local section σ may be defined. (If the bundle is trivial, then we can
take U to be all of M .) A local section σ is72 a smooth map from U to E with
p(σ(u)) = u for all u ∈ U . Its pullback73 σ∗ is a map from one-forms on E to one-
forms on U . A connection one-form ω on a principal G-bundle is a Lie(G)-valued
one-form on the total space E. Applying the pullback σ∗ to ω gives a Lie(G)-valued
one-form on U called a local potential,74,75 traditionally denoted A:

A ≡ σ∗ω. (24)

To relate this to the way a local potential is usually written in the physics literature,
let76 (x1, x2, ..., xK) be a coordinate system on the chart U , so that x(m) are the
coordinates of a point m ∈ U , and let ∂k denote the partial derivative with respect
to the kth coordinate xk. The local potential A is a one-form on U , so its input
is a vector field on U , such as one of the partial derivatives ∂k.

77 The quantities
Ak = A(∂k) are Lie(G)-valued functions on U called the components of the local
potential in the given coordinate system. The value of Ak at a point m ∈ U may
be denoted Ak(m). For each m and each index k, Ak(m) is an element of Lie(G).78

72Article 70621
73Chapter 9
74Nakahara (1990), section 10.1.3; Figueroa-O’Farrill (2017), section 5.2.4
75The output of a connection tensor on E can be described as either a vertical vector field or as a Lie-algebra-valued

field (chapters 10 and 14), but the output of a local potential on M can only be described as a Lie-algebra-valued
field because the “vertical” direction is undefined for the base space M : the base space doesn’t have any fibers (Kolář
et al (1993), beginning of section 11.1; and Mazzoni (2018), text above equation (1.2.1.3)).

76The superscript k on xk is an index, not an exponent.
77Partial derivative with respect to coordinates are vector fields (article 09894).
78When G is a matrix group, an element of Lie(G) is naturally represented as an antisymmetric matrix, and that’s

the convention I’m using here. Using symmetric matrices (instead of antisymmetric) is more convenient in some
contexts, and article 03838 enforces that convention by inserting a factor of i into the definition (24).
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22 Gauge transformations and local sections

Consider a principal G-bundle with total space E, base space M , and bundle
projection p. The principal bundle may not have any global sections, but it does
have local sections. A local section is a map from a chart U ⊂M to the total space
E. This chapter shows that any two local sections over the same chart are related
to each other by a local version of a gauge transformation – local in the sense that
it only needs to be defined in p−1(U), the part of E over that chart.

Consider a diffeomorphism δ from p−1(U) ⊂ E to itself, satisfying these condi-
tions:

• δ(xg) = δ(x)g for all x ∈ p−1(U) and all g ∈ G

• p(δ(x)) = p(x).

I’m calling this a gauge transformation because these are just like the conditions
for a gauge transformation in chapter 17, but here they only need to be defined for
the part of E over the chart U .

For any point m of the base space M , the right action of G on the fiber p−1(m)
is free and transitive.79 This implies that if σ is any local section over a chart
U ⊂ M that admits a local section, then each point in p−1(U) may be written as
σ(m)g in exactly one way, with m ∈ U and g ∈ G. Now consider two local sections
σ and σ̃, and define a gauge transformation δ like this:

• The effect of δ on points in the section σ is defined by δ
(
σ(m)

)
≡ σ̃(m).

• The effect of δ on points in the shifted section σg is defined by δ
(
σ(m)g

)
≡

σ̃(m)g.

This defines δ on all points in p−1(U), and it satisfies the required conditions by
construction. This shows that any two given local sections over the same chart are
related to each other by a local version of a gauge transformation.

79Article 70621
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23 Gauge transformations and local potentials

The definition (24) of the local potential A depends both on a connection ω and on
a local section σ defined on a chart U . Choosing a different local section σ̃ over the
same chart gives a different local potential corresponding to the same connection.
As far as the local potential is concerned, chapter 22 showed that keeping the same
connection and changing the section is equivalent to keeping the same section and
using a (locally defined) gauge transformation to change the connection.80

Chapter 24 will use this equivalence to derive how a change of local section
affects the local potential. This chapter summarizes the result. Consider the local
potentials A ≡ σ∗ω and Ã ≡ σ̃∗ω defined by two local sections σ and σ̃. The
relationship between the two local sections may be written σ̃(u) = σ(u)g(u) with
g(u) ∈ G for each u ∈ U . The goal is to express Ã in terms of A and g(u). When
G is a matrix group, as it usually is in physics, the result may be written81,82

Ã = g−1Ag + g−1dg. (25)

More explicitly,

Ã(X)(u) =
(
g(u)

)−1
A(X)(u)g(u) +

(
g(u)

)−1
dg(u)

for all points u ∈ U and all vector fields X on U . The notation A(X)(u) means
“evaluate the one-form A on the vector field X to get a Lie-algebra-valued field on
U , and then evaluate that field at the point u.” The product is the usual matrix
product.83 The one-form dg is defined by treating each component of the matrix
as a scalar field.84

80Trautman (1979), end of section 2
81Nakahara (1990), equation (10.9); Isham (1999), equation (6.1.25); de los Ŕıos (2020), text before proposition

1.10
82If g were replaced by g−1, then this would become Ã = gAg−1 − (dg)g−1, as in Figueroa-O’Farrill (2006a).
83Example: A(X)(u) is an element of Lie(G), and g(u) is an element of G, so if G is a matrix group (as assumed

here), then A(X)(u)g(u) is the ordinary product of two matrices.
84Article 09894 defines the one-form dφ corresponding to a scalar field φ.
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24 Derivation of equation (25)

This chapter outlines the derivation of equation (25). The strategy will be to
combine the equivalence that was described in chapter 22 with equation (15), which
describes the effect of a gauge transformation on a connection.85

Let δ be a locally-defined gauge transformation that relates the two local sec-
tions, as in chapter 22, so

δ
(
σ(u)

)
= σ̃(u) for all u ∈ U. (26)

Express δ in terms of a function h : E → G, as in equation (13):

δ(x) = xh(x) for all x ∈ E. (27)

Combine (26) and (27) to get

σ̃(u) = σ(u)g(u) (28)

with
g(u) = h

(
σ(u)

)
. (29)

To relate the local potentials A ≡ σ∗ω and Ã ≡ σ̃∗ω to each other, start with

δ∗ω = h−1ωh+ h∗θ (30)

(this is equation (15)) and apply the pullback σ∗ to both sides. According to
equation (26), the left-hand side becomes

σ∗δ∗ω = σ̃∗ω = Ã,

so equation (30) becomes
Ã = σ∗(h−1ωh+ h∗θ). (31)

85A faster approach is to apply ω to lemma 10.6 in Nakahara (1990), but the approach used here has the benefit
of relating the transformation of the local potential (which is a one-form on a single chart in the base space) to the
transformation of the whole connection (which is a one-form on the total space).
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The first term on the right-hand side is

σ∗(h−1ωh) = g−1(σ∗ω)g = g−1Ag (32)

with the function g : U → G defined by (29). According to equation (29), the
second term on the right-hand side of (31) is

σ∗h∗θ = g∗θ. (33)

Use (32) and (33) in (31) to get

Ã = g−1Ag + g∗θ.

The one-form g∗θ takes a vector field on U , uses g to push it forward to a vector
field on G, and then uses the Maurer-Cartan one-form θ to convert it to the cor-
responding Lie(G)-valued function. When G is a matrix group, the net effect may
be written as86

g∗θ = g−1dg,

where dg is the differential of the function g : U → G.87 This gives the final result
(25).

86de los Ŕıos (2020), text before proposition 1.10
87Article 09894 defines the differential of a scalar function. When g is a matrix whose components gab are functions,

then dg is defined to be the matrix with components dgab.
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25 Parallel transport and local potentials

Consider a principal G-bundle with total space E, base space M , and bundle
projection p : E →M . Let γ be a curve in M that is parameterized by 0 ≤ t ≤ 1,
starting at γ(0). We can lift the curve γ into the total space in various ways,
including these:

• If γ is contained in a single chart U ⊂ M and σ : U → E is a local section,
then we can lift the curve γ to the curve γσ given by γσ(t) ≡ σ(γ(t)).

• If we choose a connection ω (a definition of horizontal), then we can lift γ to
a curve γω that starts at the same point σ(γ(0)) as before but is horizontal
everywhere.

For each value of t, the points γσ(t) and γω(t) are in the same fiber, so they are
related to each other by

γω(t) = γσ(t)g(t) (34)

with g(t) ∈ G. If we choose the horizontal lift γω to start at the point σ(γ(0)), as
indicated above, then g(0) = 1.

The local potential A ≡ σ∗ω, depends both on the connection ω that was used
to define γω and on the local section σ that was used to define γσ, so we might
expect that the relationship (34) between the two curves may be expressed in terms
of A. Such a relationship may be derived by combining equation (34) with the fact
that the connection satisfies ω(v) = 0 for every vector v tangent to the horizontal
curve γω.88 This leads to a differential equation for g(t) involving A. If G is a
matrix group, then the differential equation may be written89

d

dt
g(t) = −A

(
γ̇(t)

)
g(t), (35)

88Equation (5)
89Nakahara (1990), equation (10.13b); and Figueroa-O’Farrill (2010b), equation (95)
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where γ̇(t) is the “velocity vector” tangent to the curve γ at t, and the product in
the second term is the matrix product.90 Given the local potential A, we can think
of (35) as a differential equation to be solved for g(t).

The result (35) can be understood intuitively. The local potential A is the
vertical component of the section’s tangent vector, so it measures the rate at which
the section deviates from being horizontal along the given curve. The output of
the local potential A expresses this vertical component as an element of Lie(G), so
integrating this deviation along the curve gives the group element that moves the
curve’s endpoint from the section to where it would be if the curve were horizontal,
which is the inverse91 of the group element g in equation (34). The differential
equation (35) may be viewed as a way of expressing this intuition.

If the quantity A(γ̇(t)) in equation (35) were constant (independent of t), then
the solution of (35) could be written as g(t) = exp(−At)g(0). Intuitively, any curve
may be subdivided into pieces that are small enough to be approximately constant,
so the general solution of (35) may be written approximately as

g(t) ≈ exp(−AN ε) · · · exp(−A2ε) exp(−A1ε)g(0) (36)

with An ≡ A(γ̇(nε)) for some small increment ε � 1. When the group G is
abelian, the quantities An all commute with each other, and then (36) may be
written exp(−ε

∑
nAn)g(0). This doesn’t work when the group G is not abelian,

but the product (36) is still often abbreviated as

g(t) =

(
P exp

(
−
∫ t

0

ds A
(
γ̇(s)

)))
g(0), (37)

where the prefix P stands for path-ordered, a reminder that the exponential of
the “sum” (integral) should be interpreted as the N → ∞ limit of a product of
exponentials, one for each term in the “sum,” multiplied in sequential order along
the path (curve).

90For each value of t, A(γ̇(t)) is the matrix representing an element of Lie(G), and g(t) is a matrix representing
an element of G.

91This accounts for the sign in equation (35).
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26 Parallel transport on associated bundles

Consider a principal G-bundle (E,M, p) an associated vector bundle (Ê,M, p̂) with

fiber V . According to equation (3), each point of Ê may be represented in many
different ways. Given a chart U ⊂ M , we can use a local section σ : U → E to
specify a unique representative of each point of p̂−1(U) ⊂ Ê, namely92

[σ(m), v] (38)

with m ∈ U and v ∈ V .
Now let ω be a connection on the principal bundle, and define the curves γσ and

γω as in chapter 25. Both of these curves in E project to the same curve γ in M ,
but one stays on the section σ and the other stays horizontal. Step 2 in chapter 12
says that in the associated vector bundle, the function [γω(t), v] describes parallel
transport along the curve γ. To express this in the representation (38), use equation
(34) and then (3) to get

[γω(t), v] =
[
σ
(
γ(t)

)
g(t), v

]
=
[
σ
(
γ(t)

)
, ρ
(
g(t)

)
v
]
. (39)

The right-hand side again describes parallel transport along γ, now expressed using
the representation (38).

If desired, equation (37) may be used to write the right-hand side of (39) in
terms of the local potential A ≡ σ∗ω.

92Previous sections use the letter m for a generic point in the base space M and used the letter u for a point in
a particular chart U ⊂ M . Here, the letter m is used for a point of U , because u looks too much like v – the letter
that is being used for an element of the vector space V .
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27 Gauge transformations and associated bundles

Consider two sections related by σ̃(m) = σ(m)g(m). As stated at the beginning
of chapter 23, keeping the same connection and changing the section is equivalent
to keeping the same section and using a (locally defined) gauge transformation to
change the connection. Equation (3) gives[

σ̃(m), v
]

=
[
σ(m)g(m), v

]
=
[
σ(m), ρ

(
g(m)

)
v
]

The function g(m) here is the same as in equation (25).
Example: if G = U(1), then g(m) = eiθ(m). This gives ρ(g(m)) = einθ(m) for

some integer n that characterizes the representation ρ of U(1), and equation (25)
becomes Ã = A+ dθ.
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28 Holonomy

Consider a principal G-bundle with total space E, base space M , and bundle
projection p : E → M . Suppose that a connection ω (a definition of horizontal)
has been chosen. Let γω be a horizontal curve in E, and let γ ≡ p(γω) be its
projection to the base space M . Even if γω starts and ends on the same fiber (so
that its projection γ is a closed curve in M), it might not start and end at the same
point in that fiber. In other words, a horizontal lift of a closed curve in M is not
necessarily a closed curve in E.93

Suppose that the curve γω is parameterized by 0 ≤ t ≤ 1, starting at t = 0 and
ending at t = 1. Suppose that the initial point x ≡ γω(0) and final point x′ ≡ γω(1)
are in the same fiber, so p(x′) = p(x). This implies x′ = xh for some h ∈ G. The
group element h depends on the connection ω and on the curve γ in M . For a
given x ∈ E, the group consisting of these hs for all curves that start at x and end
on the same fiber is called the holonomy group at x,94 and the group element h
for an individual curve is sometimes called a holonomy.95

The group element h doesn’t depend on any local section, but if the correspond-
ing curve γ in M is contained within a single chart U ⊂ M , then we can choose
a local section σ and use the approach in chapter 25 to express h in terms of the
function g(t) that was defined there. Equation (34) implies that the holonomy h is

h = (g(0))−1g(1), (40)

because γσ(1) = γσ(0). The function g(t) defined in chapter 25 depends on the
local section σ, but the combination (40) does not.96

93For this reason (McCarthy (2019), text below definition 2.1.25), horizontal sections typically don’t exist: in a
typical fiber bundle with a typical connection, every section has some tangent vectors that are not horizontal.

94Collinucci and Wijns (2006), text below equation (51)
95Sengupta (2007), text above equation (5)
96To check this, choose another local section σ′ and define the function β : U → G by σ = σ′β. Then equation

(34) may be written either as γω(t) = σ(γ(t))g(t) or as γω(t) = σ′(γ(t))g′(t) with g′(t) = β(γ(t))g(t). Now use
β(γ(0)) = β(γ(1)) to get (g′(0))−1g′(1) = (g(0))−1g(1), which shows that the holonomy is independent of the local
section.
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29 Holonomy and the Lie bracket

This chapter explains how the Lie bracket97,98 may be used to formulate an in-
finitesimal version of holonomy. For motivation, start with these observations:

• Even if a loop γ in the base space is closed, a horizontal lift of γ into the total
space (with horizontal defined by a given connection) might not be closed.

• Even if [X, Y ] = 0 for two given vector fieldsX, Y in the base space, horizontal
lifts XH and YH of X and Y into the total space might have a nonzero Lie
bracket: [XH , YH ] 6= 0.

These two facts are related to each other. The relationship uses the concept of the
flow of a vector field, which is introduced in the next paragraph.99

Given a smooth manifold, let ϕ(t) be a one-parameter group of diffeomorphisms
from the manifold to itself, one for each real number t, with ϕ(0) the trivial (iden-
tity) diffeomorphism that doesn’t do anything. For any given point x in the man-
ifold, the function x(t) ≡ ϕ(t)x describes a curve starting at x. The “velocity”
vectors tangent to these curves constitute a vector field Xϕ on the manifold. The
family ϕ(t) of diffeomorphisms is called the flow of Xϕ. Conversely, given any
vector field X on the manifold, each point x in the manifold has a neighborhood
in which a corresponding local flow ϕX(t) exists.100,101

Now let X and Y be vector fields in the base space M , and consider a neighbor-
hood U ⊂M in which corresponding local flows ϕX and ϕY exist. The Lie bracket
[X, Y ] of the vector fields is zero if and only if the flows ϕX and ϕY commute with

97A derivation of this relationship is also outlined in Clarke and Santoro (2012), section 3.4.1.
98Chapter 13 reviewed the Lie bracket concept.
99This is introduced more carefully in Lee (2013), chapter 9, page 214.

100Karshon (2011), first page
101A vector field X is called complete if we can take this neighborhood to be the whole manifold (Gualtieri (2012),

definition 4.9). If the manifold is compact, then every smooth vector field is complete (Gualtieri (2012), theorem
4.10).
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each other:102

[X, Y ] = 0 ⇔ ϕX(t)ϕY (t) = ϕY (t)ϕX(t).

If the flows commute with each other, then

ϕ−1
Y (t)ϕ−1

X (t)ϕY (t)ϕX(t)x = x

for each point x ∈ U . This implies that the piecewise curve with segments

ϕY (t)x 0 ≤ t ≤ ε

ϕY (t)ϕY (ε)x 0 ≤ t ≤ ε

ϕ−1
X (t)ϕY (ε)ϕY (ε)x 0 ≤ t ≤ ε

ϕ−1
Y (t)ϕ−1

X (ε)ϕY (ε)ϕY (ε)x 0 ≤ t ≤ ε

is a closed loop. This closed loop shrinks to a point as ε → 0. In this way, the
condition [X, Y ] = 0 at a given point is related to an infinitesimal closed loop with
tangent vectors in X and Y .

Now let XH and YH be horizontal lifts of X and Y . The condition [X, Y ] = 0
doesn’t imply that [XH , YH ] is zero (the horizontal lift of a closed curve is not
necessarily closed), but it does imply that [XH , YH ] is vertical.103 To prove this,
use the fact that the pushforward of the Lie bracket of two vectors fields is equal
to the Lie bracket of their pushforwards.104 In particular,

p∗[XH , YH ] = [p∗XH , p∗YH ]

where p is the bundle projection. The right-hand side is zero because p∗XH = X,
p∗YH = Y , and [X, Y ] = 0. This implies that the left-hand side is zero, which says
that [XH , YH ] is vertical, as claimed.

102Lee (2013), theorem 9.44; Gualtieri (2012), theorem 4.16
103Clarke and Santoro (2012), text above corollary 2.4.8
104Lee (2013), corollary 8.31
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In a principal G-bundle, a vertical vector corresponds to an element of the Lie
algebra Lie(G), which is like an infinitesimal version of an element of G. When
[X, Y ] = 0, this says that [XH , YH ] assigns an element of Lie(G) to each point of the
total space. This is formalized by the curvature two-form that will be introduced
in chapter 30.

Altogether, at any given point in the total space, [XH , YH ] assigns a vertical
vector to that point (if [X, Y ] = 0 in the base space), and the corresponding
element of Lie(G) is an infinitesimal version of the group element that represents
the holonomy around the closed curve in the base space that was described above.
This loose statement is made precise by the Ambrose-Singer theorem, which
says that the identity component105 of the holonomy group of a point is generated
by the elements of Lie(G) that the curvature two-form assigns to that point, for all
possible horizontal vector fields XH and YH .106

105The identity component of a Lie group is its largest connected subgroup.
106Ambrose and Singer (1953), theorem 2. What those authors call the null holonomy group is the same as the

identity component of the holonomy group (Figueroa-O’Farrill (2010b), end of section 7.1).
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30 The curvature of a connection

Given a Lie(G)-valued connection one-form ω on a principal bundle with total space
E. The curvature Ω of ω is a Lie(G)-valued two-form on E. It is defined by107

Ω(X, Y ) = (dω)(XH , YH) (41)

for all vector fields X, Y on E, where XH and YH denote their horizontal compo-
nents and dω is the exterior derivative of ω. The identity

(dω)(X, Y ) = Xω(Y )− Y ω(X)− ω
(
[X, Y ]

)
holds for any one-form ω.108 Use this together with (5) in (41) to get

Ω(X, Y ) = −ω
(
[XH , YH ]

)
, (42)

which explains the significance of the curvature two-form more intuitively: the
curvature detects the vertical component of the Lie bracket of horizontal vectors.109

The definition (41) turns out to imply110,111

Ω(X, Y ) = (dω)(X, Y ) +
[
ω(X), ω(Y )

]
.

This may be written more concisely as

Ω = dω +
1

2
[ω, ω], (43)

where [α, β] is defined for one-forms α and β by112

[α, β](X, Y ) = [α(X), β(Y )]− [α(Y ), β(X)].

107Figueroa-O’Farrill (2006b), section 2.1.2
108Nakahara (1990), equation (5.70); Tu (2011), beginning of section 20
109Nakahara (1990), section 10.3.3
110Figueroa-O’Farrill (2006b), proposition 2.1; Collinucci and Wijns (2006), section 2.4, theorem 7
111de los Ŕıos (2020) uses this as the definition (definition 2.3) and then derives (41) as a result (corollary 2.6).
112de los Ŕıos (2020), text below definition 2.1
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31 The field strength

Let ω be a connection on a principal bundle, let Ω be its curvature, and let σ
be a local section. The pullback σ∗Ω of the curvature is often called the field
strength.113 If X, Y are vector fields on the base space and σ∗X and σ∗Y are their
pushforwards, then σ∗Ω is the two-form on the base space M , defined by114

(σ∗Ω)(X, Y ) ≡ Ω(σ∗X, σ∗Y ). (44)

Pullbacks commute with exterior differentiation,115 so if we write A ≡ σ∗ω for the
local potential, then equation (43) implies

(σ∗Ω)(X, Y ) = (dA)(X, Y ) +
[
A(X), A(Y )

]
. (45)

If we choose a coordinate system on the chart over which the section σ is defined,
then the partial derivative ∂k with respect to the kth coordinate is a vector field
on the base space, and the components of A and σ∗Ω in this coordinate system
are defined by Ak ≡ A(∂k) and (σ∗Ω)jk ≡ (σ∗Ω)(∂j, ∂k). Equation (45) implies

(σ∗Ω)jk = ∂jAk − ∂kAj + [Aj, Ak],

which is the usual expression for the field strength in the physics literature.116

The curvature Ω is defined everywhere on the total space E, but the field
strength σ∗Ω is defined on the base space, and only on the chart U ⊂M where σ is
defined. Chapter 32 will deduce how the field strength is affected when the section
is changed. If the new section is written as σg for some function g : U → G, then
the result is

(σg)∗Ω = g−1(σ∗Ω)g. (46)

113Nakahara (1990), section 10.3.4
114Chapter 9
115Tu (2011), proposition 19.5
116The components of the field strength on the left-hand side are usually denoted Fjk, but this article uses the

letter F for the fiber instead.
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32 Section-dependence of the field strength

This chapter outlines a relatively intuitive way to deduce the result (46),117 starting
with equation (42).

Let X, Y be vector fields on the base space M , and let (σ∗X)H and (σ∗Y )H
be the horizontal components of the pushforwards σ∗X and σ∗Y with respect to a
local section σ. Use equation (44) and then (42) to get

(σ∗Ω)(X, Y ) ≡ Ω(σ∗X, σ∗Y ) = −ω
([

(σ∗X)H , (σ∗Y )H
])
. (47)

At each point m in the chart U where σ is defined, the vector in X at m has
a unique horizontal lift to the point σ(m) in the total space. At this point, the
horizontal lift is the same as the vector (σ∗X)H , because the difference between
σ∗X and the horizontal lift of X is a vertical vector.118

Now consider the effect of replacing the section σ with σg for some g : U → G,
and use the abbreviation

[XH , YH ]σ ≡
[
(σ∗X)H , (σ∗Y )H

]
.

As emphasized above, the vector in X at m has a unique horizontal lift to the
point σ(m) in the total space, so if g(m) = 1 for some m ∈ U , then [XH , YH ]σg =
[XH , YH ]σ at σ(m). In words: the vector [XH , YH ]σ at σ(m) doesn’t depend on the
slope of the section σ through the point σ(m). It only depends on the point σ(m)
itself.119 For this reason, the effect of the change σ → σg is just like equation (6)
even though the g here may vary over the chart U . This gives

ω
(
[XH , YH ]σg

)
= g−1ω

(
[XH , YH ]σ

)
g,

and using this in equation (47) gives the result (46).
117The same result can be derived in various ways. Other approaches include page 273 in section 30.2 of Tu (2017),

and the text above equation (83) in Collinucci and Wijns (2006).
118To see this, use the fact that the bundle projection pushes both σ∗X and the horizontal lift of X back to the

same vector X in the base manifold.
119Contrast this to equations (15) and (25), where a vector’s pushforward is not projected onto its horizontal

component, so those results do depend on the slope of the function (h or σ) by which the vector is pushed forward.
That’s why those equations have an extra term that is absent in the result (46).
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33 The abelian case

Typically, when G is a nonabelian group, the field strength σ∗Ω is defined only
in the chart where the local section σ is defined. Where two charts overlap, with
local sections σ and σ′, respectively, the corresponding field strengths are related
by equation (46) with g defined by σ′ = σg. If the bundle is nontrivial, then at
least one of these transformations must involve g 6= 1, so a single field-strength
two-form cannot be defined everywhere on the base space.

When G is an abelian group, equation (46) says that the field strength σ∗Ω is
independent of the local section σ. It still differs from Ω, because Ω is a two-form
on the total space E whereas σ∗Ω is a two-form on the base space M , but σ∗Ω is
independent of σ (when G is abelian).120 As a result, the field strength is defined
everywhere on the base space (when G is abelian), just like Ω is defined everywhere
on the total space, even though the local potential is still defined only in charts.121

When G is abelian, the second term on the right-hand side of (45) is zero
because all elements of Lie(G) commute with each other. Then the field strength
is just dA, the exterior differential of the local potential A. In this case, we can
use Stokes’s theorem122 to write the flux

∫
Σ dA through a given surface Σ as an

integral
∮
∂ΣA around the boundary ∂Σ of that surface. This assumes that the

surface Σ is contained within a part of the base space that is small enough to
admit a local section, so that the local potential A is defined everywhere on Σ. If
G is abelian, then we can define the integral of the field strength over any surface
Σ in the base space, because the field strength is defined everywhere even though
A is not. In particular, if the principal bundle is nontrivial, then the integral of the
field strength over a closed surface Σ may be nonzero, which would not be possible
if the field strength were equal to dA with A defined everywhere on that surface.
Article 03838 describes a classic example of this phenomenon in detail.

120Bertlmann (1996), equation (2.509)
121The local potential still depends on the local section, because the second term on the right-hand side of equation

(25) is nonzero even when G is abelian.
122Article 09894
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