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Linear Operators on a Hilbert Space
Randy S

Abstract The general principles of quantum theory are expressed
in terms of observables (measurable things), which are represented
by linear operators on a Hilbert space. Hilbert spaces are intro-
duced in article 90771. Each closed subspace of a Hilbert space has
an associated projection operator, a special kind of linear operator.
In quantum theory, projection operators are used to represent pos-
sible outcomes of a measurement. This article reviews some basic
definitions and constructions associated with linear operators, with
emphasis on projection operators.
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1 Linear operators

Let H be a Hilbert space over the field C of complex numbers.1 An operator A
on H is something that replaces each vector |a〉 in H with another (possibly same)
vector A|a〉 in H. An operator A is called linear if

A
(
|a〉+ |b〉

)
= A|a〉+ A|b〉 A

(
z |a〉

)
= z
(
A|a〉

)
for all vectors |a〉 and |b〉 and all complex numbers z. The inner product of |a〉 and
A|b〉 is a complex number denoted

〈a|A|b〉.

Convention:

For the rest of this article, “operator”
means linear operator.

Two operators have special names:

• The identity operator 1 is the (unique) operator satisfying 1|a〉 = |a〉 for
all vectors |a〉. This article uses same symbol 1 for two different things: the
unit complex number, and the identity operator.

• The zero operator 0 is the (unique) operator satisfying 0|a〉 = 0 for all
vectors |a〉. This article uses same symbol 0 for three different things: the
zero complex number, the zero vector, and the zero operator.

1Hilbert space is introduced in article 90771. All Hilbert spaces in this article are over C. Elements of a Hilbert
space will be called vectors.
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2 The domain of definition

Recall2 that the norm of a vector |a〉 is defined by∥∥ |a〉∥∥ ≡√〈a|a〉.
An operator A is called bounded3 if a finite real number r exists such that∥∥A|a〉∥∥ ≤ r

∥∥ |a〉∥∥
for all vectors |a〉.

This article considers only operators that are defined on the whole Hilbert space.
That’s an important thing to keep in mind when reading some of the definitions
and assertions, so I’ll highlight it:

This article considers only operators that
are defined on the whole Hilbert space.

Every such operator is bounded. Conversely, if an operator is defined on a subset
of the Hilbert space and is bounded with respect to all vectors |a〉 in that subset,
then the operator can be defined on the whole Hilbert space.4

Using unbounded operators is often convenient. An unbounded operator can
only be defined part of the Hilbert space.5 This article doesn’t consider unbounded
operators.6

2Article 90771
3Debnath and Mikusinski (2005), section 4.2, page 146
4Debnath and Mikusinski (2005), section 4.11, page 202. If the operator was originally defined on a dense subset

of the Hilbert space, then its extension to the whole Hilbert space is unique (Debnath and Mikusinski (2005), section
4.11, page 202).

5Debnath and Mikusinski (2005) uses the sneaky terminology “defined in a Hilbert space” for an operator that
is not necessarily defined on the whole Hilbert space (section 4.11, pages 202)

6The general principles of quantum theory can be expressed using only bounded operators, even though unbounded
operators are often used as a tool for constructing specific models that satisfy those general principles.
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3 The adjoint of an operator

Every complex number z has a complex conjugate z∗. Similarly, every operator A
has an adjoint A∗, which is defined using the inner product. The adjoint of an
operator A is the unique operator A∗ that satisfies7

〈a|A∗|b〉 = 〈b|A|a〉∗ (1)

for all vectors |a〉 and |b〉. Notice that the order of the vectors is reversed on the
right-hand side. The asterisk on the right-hand side is the ordinary complex con-
jugate. This definition implies that the adjoint reverses the order of multplication:

(AB)∗ = B∗A∗. (2)

To prove this, let |A∗a〉 and |Bb〉 denote the vectors defined by A∗|a〉 and B|b〉,
respectively. Then

〈b|(AB)∗|a〉 = 〈a|AB|b〉∗ = 〈a|A|Bb〉∗ = 〈Bb|A∗|a〉 = 〈Bb|A∗a〉
= 〈A∗a|Bb〉∗ = 〈A∗a|B|b〉∗ = 〈b|B∗|A∗a〉 = 〈b|B∗A∗|a〉.

This is true for all vectors, so it implies (2).
Using A∗ to denote the adjoint of A is standard in the math literature,8 because

the adjoint is a natural generalization of complex conjugation. In the physics
literature, the adjoint of A is commonly denoted A† instead. Section 5 explains
why.

7Debnath and Mikusinski (2005), definition 4.4.1. This definition assumes that the operator is defined on the
whole Hilbert space. Debnath and Mikusinski (2005), definition 4.11.5 gives a more general definition that can be
used for operators that are only defined on a dense subset of the Hilbert space.

8Debnath and Mikusinski (2005), definition 4.4.1
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4 Example: finite-dimensional Hilbert space

Consider an N -dimensional Hilbert space H, with finite N , and let |ak〉 with k ∈
{1, 2, ..., N} be a list of orthonormal vectors. Each (linear) operator A on H can be
represented as an N×N matrix of complex numbers, with components Ajk defined
by

Ajk ≡ 〈aj|A|ak〉.
Then, for any vector |a〉 =

∑
k zk|ak〉,

A|a〉 =
∑
j

|aj〉 〈aj|A|a〉 =
∑
j,k

|aj〉Ajkzk =
∑
j

wj|aj〉

with wj ≡
∑

k Ajkzk. The vector |a〉 can be represented by its list of coefficients
zk, and if these are regarded as the components of an N × 1 matrix z, then the
effect of the operator A can be written as a matrix product: w = Az, where now
A denotes the matrix representing the original operator A.
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5 Two different notations for the adjoint

In the matrix representation described in the previous section, the adjoint of an
operator is the hermitian conjugate of the matrix. If the adjoint of A is denoted A∗,
which is the standard notation in the mathematical literature, then components of
the matrix representing the adjoint of A are

(A∗)jk = (Akj)
∗. (3)

Notice that the subscripts on the right-hand side are reversed. This conflicts with
another standard notation: when A is a matrix, the notation A∗ often refers in-
stead to the matrix whose components are the complex conjugates of the original
components, without transposing the matrix:

(A∗)jk = (Ajk)
∗. (4)

To avoid this conflict, the adjoint of an operator A is typically denoted by a different
symbol in the physics literature, namely the symbol A†.

On the other hand, especially in the context of quantum field theory, we often
want to uses matrices for a different purpose: instead of using a matrix to represent
an individual operator (like in the previous section), we often consider a matrix M
whose individual components are operators, and we often want to consider the
matrix M ∗ whose components are the adjoints of those operators, without taking
a transpose. In that case, using A∗ to denote the adjoint of an operator A is more
convenient than using A†.

No single notation is optimal in all contexts. Different notations have different
advantages. In this article, the adjoint of an operator A is denoted A∗.
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6 Operators with special names

Some kinds of operators have special names:

• An operator A is called self-adjoint9 if A∗ = A. If A is self-adjoint, then
〈a|A|a〉 is a real number for every vector |a〉.

• An operator P is called a projection operator10 if it is self-adjoint and if
applying it twice is the same as applying it once: P ∗ = P = P 2.

• An operator A is called positive if 〈a|A|a〉 ≥ 0 for every vector |a〉. Equiv-
alently,11 an operator A is called positive if A = B∗B for some operator
B.

• An operator A is called strictly positive or positive definite12 if 〈a|A|a〉 >
0 for every non-zero vector |a〉.

• An operator U is called unitary if U ∗U = UU ∗ = 1. Unitary operators pre-
serve inner products: If |a′〉 = U |a〉 and |b′〉 = U |b〉, then 〈a′|b′〉 = 〈a|b〉. If U
is a unitary operator on a Hilbert spaceH, thenH → UH is an automorphism
(article 90771)

• An operator N is called normal13 if it commutes with its adjoint: N ∗N =
NN ∗. All of the operators named in this section are normal. Most operators
are not.

9Debnath and Mikusinski (2005), definition 4.4.3. In physics, a self-adjoint operator is often called hermitian,
but sometimes that word is reserved for a self-adjoint matrix (Debnath and Mikusinski (2005), example 4.4.4).

10 This language is standard in the physics literature and is also commonly used in the math literature (Murphy
(1990), section 2.1, page 36). In the math literature, this is sometimes called an orthogonal projection operator
(Debnath and Mikusinski (2005), definition 4.7.1) so that the name projection operator can be used for any idem-
potent operator – that is, for any operator that equals its own square, whether or not it is self-adjoint (Debnath
and Mikusinski (2005), definition 4.7.5). Kadison and Ringrose (1997) says, “In the context of Hilbert space theory,
projection refers to an orthogonal projection unless there is an explicit statement to the contrary” (from section 2.5,
page 110).

11Debnath and Mikusinski (2005) definition 4.6.4 and theorems 4.6.6 and 4.6.14
12Debnath and Mikusinski (2005) definition 4.6.15
13Debnath and Mikusinski (2005), definition 4.5.7
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7 The inverse of an operator

An operator A is called invertible if an operator B exists such that AB = BA = 1.
If such an operator B exists, then it is unique.14 It is called the inverse of A,
denoted A−1. Most operators are not invertible.

Here’s an equivalent definition:15 an operator A is invertible if AH = H and if
A|a〉 6= 0 for all |a〉 6= 0. Section 9 shows examples of operators that satisfy the
second condition but not the first condition, so the second condition by itself is not
sufficient.

Remember that this article only considers operators that are defined on the
whole Hilbert space. Debnath and Mikusinski (2005) uses a more general definition
of invertible to accommodate operators that are not necessarily defined on the whole
Hilbert space.16

14To prove that A cannot have more than one inverse, suppose that B and C are two inverses of A, so that AB = 1
and CA = 1. Multiply the first equation on the left by C to get CAB = C, and multiply the second equation on the
right by B to get CAB = B. This shows that B and C are both equal to CAB, so they are equal to each other.

15The equivalence is proven on page 287 below definition 10.18 in Axler (2021).
16Debnath and Mikusinski (2005), definition 4.5.1. That’s why page 164 in that book says “the inverse of a

bounded operator is not necessarily bounded.” Even though the definition of an operator can be extended to the
whole Hilbert space if the operator is bounded for all vectors in its original domain, the extension is not necessarily
invertible even if the original (unextended) operator is invertible according to the more general definition in that
book.
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8 Spectrum and eigenvalues

The spectrum of A is the set of all complex numbers λ for which the operator
A− λ fails to be invertible.17 Examples:

• If λ is in the spectrum of a projection operator, then λ is either 0 or 1.18

• If λ is in the spectrum of a self-adjoint operator, then λ is a real number.19

• If λ is in the spectrum of a unitary operator, then |λ| = 1.20

If |a〉 is a nonzero vector satisfying A|a〉 ∝ |a〉, then |a〉 is called an eigenvector of
A, and the proportionality factor is called the eigenvalue. In a finite-dimensional
Hilbert space, the spectrum of A is the set of eigenvalues of A. In an infinite-
dimensional Hilbert space, the specturm of A may include some numbers that are
not eigenvalues of A. Section 9 shows an example.

Beware that much of the physics literature uses the word eigenvalue for any
element of the spectrum, even though only a true eigenvalue has a corresponding
eigenvector within the Hilbert space. This dialect is a common source of easily-
preventable confusion in quantum physics.

17Axler (2021), definition 10.32. The expression A − λ is understood to mean A − λ1, where 1 is the identity
operator.

18Proof: if λ2 6= λ, then P − λ has an inverse, namely
(
(1− λ)−1P − 1

)
/λ.

19Axler (2021), theorem 10.49
20Axler (2021), theorem 10.62
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9 Example: a spectrum with no eigenvalues

Consider the Hilbert space H of square-integrable complex-valued functions of a
single real variable x. Write f(x) for such a function, and write |f〉 ∈ H for the
vector that it represents.21 Define an operator A by

A|f〉 = |g〉 with g(x) =
x√

1 + x2
f(x).

This example highlights the distinction between the eigenvalues of an operator and
the spectrum of an operator:

• Fact 1: A does not have any eigenvalues. In other words, (A − λ)|f〉 6= 0
whenever |f〉 6= 0, for any complex number λ.

• Fact 2: The spectrum of A includes all real numbers λ with |λ| < 1.

To prove Fact 1, suppose (x/
√

1 + x2)f(x) = λf(x) for all x. This implies that
f(x) = 0 everywhere except at x = x0 ≡ λ/

√
1− λ2. Even if |λ| < 1 so that such a

value of x exists, the function still has zero norm: the integral of |f(x)|2 is zero.22

Such a function represents the zero vector, but eigenvectors must be nonzero, so A
does not have any eigenvectors (or eigenvalues).

To prove Fact 2, define x0 as before. Then (x/
√

1 + x2) − λ goes to zero as
x → x0. Functions representing elements of H must be square-integrable, so if
|g〉 = A|f〉, then g(x) must go to zero fast enough (modulo a function with zero
norm, as explained in article 90771) to be consistent with the square-integrability
of f(x). Many functions that represent vectors in H don’t go to zero at all as
x→ x0, much less fast enough, so (A−λ)H does not include all vectors in H. The
definition of invertibility requires (A− λ)H = H, so A− λ cannot be invertible.

21Article 90771 describes this construction in more detail.
22The physics literature often considers “functions” like the Dirac delta “function” δ(x − x0), which is zero

everywhere except at x = x0 but still satisfies
∫
dx δ(x− x0) = 1. Despite its popular name, this is not a function.

(Mathematicians call it a distribution.) It has a legitimate definition (inside integrals) and useful applications, but
it’s not a function, and it does not represent any vector in the Hilbert space.
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10 Operator algebra

If A and B are two operators, then their sum A+B is another operator, and their
product AB is another operator, defined like this:23

(A+B)|ψ〉 = A |ψ〉+B |ψ〉 (AB)|ψ〉 = A
(
B |ψ〉

)
.

If z is a complex number and A is an operator, then their product zA is defined by

(zA)|ψ〉 = z
(
A|ψ〉

)
.

Equation (1) implies (zA)∗ = z∗A∗. The product of the identity operator with a
complex number z is usually written as just z, because the meaning is usually clear
from the context. The product (−1)A is abbreviated −A, and the sum A+ (−B)
is abbreviated A−B.

Any collection of operators that is self-contained with respect to linear combi-
nations and products is called an algebra. If it is also self-contained with respect
to adjoints (so that A∗ belongs to the algebra whenever A does), then it is called
∗-algebra (pronounced star algebra). One example of a ∗-algebra is the one con-
sisting of all (linear) operators on a given Hilbert space.

This section introduced the concepts using operators that act on a Hilbert space,
but the general definitions of algebra and ∗-algebra are expressed using abstract
operators that don’t necessarily “operate on” anything. Even if we are ultimately
interested in a representation of the algebra in terms of operators on a Hilbert
space, sometimes the abstract approach is a better place to start. Murphy (1990)
gives a good introduction to the abstract approach.24

23The expression A
(
B |ψ〉

)
means first apply B to |ψ〉, and then apply A to the result.

24Here, I’m using the word abstract to mean that the algebra is defined and studied using only its intrinsic
properties, without representing its elements as operators on a Hilbert space. This can also be called the algebra-
first approach.
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11 Isomorphism of operator algebras

Two algebras are called isomorphic to each other if they are the same as far as
their algebraic structure is concerned, even if they are represented differently. More
precisely:

• A homomorphism25 σ is a map from one algebra A1 to another algebra A2

such that

σ(A+B) = (σA) + (σB) σ(zA) = z(σA)

σ(AB) = (σA)(σB)

for all operators A,B ∈ A1.

• A bijective26 homomorphism is called an isomorphism.

• A homomorphism from one ∗-algebra A1 to another ∗-algebra A2 is called a
∗-homomorphism σ if it also satisfies27

σ(A∗) = (σA)∗

for all operators A ∈ A1.

• A bijective ∗-homomorphism is called a ∗-isomorphism. In a context where
the adjoint is clearly one of the structures that we intend to preserve, the
word isomorphism may be used as an abbreviation for ∗-isomorphism.28

• An (∗-)isomorphism from a ∗-algebra to itself is called an (∗-)automorphism.

The homomorphisms defined above (and their iso- and auto- specializations) are
specifically linear homomorphisms. Linear is implied unless specified otherwise.

25Murphy (1990), section 1.1, page 5
26A homomorphism σ is called bijective if another homomorphism σ−1 exists for which the compositions σσ−1

and σ−1σ are both the identity morphism.
27Murphy (1990), section 2.1, page 36
28This usage of the word isomorphism is consistent with its usage in category theory.
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12 Antilinear and anti-isomorphism

These definitions are also useful:

• An antilinear homomorphism is like a homomorphism except that the re-
quirement σ(zA) = z(σA) is replaced by

σ(zA) = z∗(σA). (5)

• An antihomomorphism is like a homomorphism except that it reverses the
order of multiplication:

σ(AB) = (σB)(σA).

A bijective antihomomorphism is called an anti-automorphism.

Examples:

• If U is a unitary operator, then the map that replaces every operator A with
U ∗AU is a linear automorphism.

• The map that replaces every operator A with its adjoint A∗ is an antilinear
anti-automorphism.

• To construct an example of an antilinear automorphism (one that doesn’t
reverse the order of multiplication), let Ω be a set of linearly independent
operators in terms of which all other operators can be expressed using linear
combinations and products. Define σ(A) = A whenever A ∈ Ω, and define σ
on other operators using σ(A + B) = (σA) + (σB) and σ(AB) = σ(A)σ(B)
and (5).

In quantum field theory, the CPT theorem says that a relativistic model in flat
spacetime always has a special type of symmetry called CPT symmetry, which
is an antilinear automorphism.29

29The CPT theorem for four-dimensional spacetime is studied in Streater and Wightman (1980) and Greenberg
(2003). Witten (2015) and appendix A in Freed and Hopkins (2021) give a more general perspective.
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13 von Neumann algebras

Two operators A,B are said to commute with each other if AB = BA. The
quantity

[A,B] ≡ AB −BA
is called the commutator of A and B. It is zero if and only if A and B commute
with each other. Most operators do not commute with each other.

Let H be a Hilbert space, and let Ω be any set of operators30 on H. Notation:

• Let Ω′ denote the commutant of Ω. This is set of all operators that commute
with everything in Ω.

• Let Ω′′ denote the double commutant of Ω. This is the set of all operators
that commute with everything in Ω′. Clearly Ω ⊂ Ω′′.

A von Neumann algebra M is31 a set of operators that is self-contained with
respect to adjoints (so that A∗ ∈M whenever A ∈M) and that is equal to its own
double commutant: M =M′′. This implies that a von Neumann algebra really is
an algebra (section 10), as its name indicates.

If a set Ω of operators is self-contained with respect to adjoints, then M ≡ Ω′

is a von Neumann algebra.32 To prove this, we need to show that M = M′′. We
already recognized above thatM⊂M′′, so we just need to show thatM includes
all of M′′. Suppose A ∈ M′′, so that A commutes with everything in M′. This
implies that A commutes with everything in Ω (because Ω ⊂ Ω′′), so A ∈ Ω′. This
can also be written A ∈M, which is what we wanted to show.33

If a set Ω of operators is self-contained with respect to adjoints, then Ω′′ is
called the von Neumann algebra generated by Ω. The fact that Ω′′ really is a von
Neumann algebra follows from Ω′′ = (Ω′′)′′, which can be proved just like before.

30Recall that in this article, operator means linear operator.
31The definition is often expressed differently (referring to a topology), but the definition shown here is equivalent,

thanks to the famous double commutant theorem (Fillmore (1996), section 4.3, page 60).
32Example: if Ω = {1}, then Ω′ is the algebra of all operators on the Hilbert space. This is the simplest type of

von Neumann algebra.
33Fewster and Rejzner (2019), section 6, exercise 29 on page 27
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14 Projection operators and subspaces

Recall (section 6) that a projection operator satisfies P ∗ = P = P 2. Projection
operators play a special role in quantum theory: each of the possible outcomes of
a measurement is represented by a projection operator.34 The rest of this article is
focused on projection operators.

Recall35 that a closed subspace ofH is a subset ofH that qualifies as a Hilbert
space all by itself. For any projection operator P on H, let PH denote the set of
all vectors of the form P |a〉 with |a〉 ∈ H. Closed subspaces are closely related to
projection operators:

• PH is a closed subspace of H. To prove this, use the fact that PH is orthog-
onal to (1−P )H, combined with the fact that the orthogonal complement of
any subset of H is a closed subspace.35

• Every closed subspace of H is equal to PH for some projection operator P .
To prove this, recall35 that if S is a closed subspace of H, then every vector
in H can be uniquely written as the sum of a vector in S and a vector in S⊥.
For any vector |a〉, define P |a〉 to be the component of |a〉 in S. Then P is
clearly a projection operator, and S = PH.

34This is an idealization. Real measurement have limited resolution, and their possible outcomes can’t always
be described by a finite list of crisply-defined possibilities. In principle, quantum theory can describe such realistic
measurements by regarding the measurement of interest as a physical process that can be probed later using other
(idealized) measurements. This doesn’t require using positive operator valued measures (POVMs), even
though using POVMs can be convenient in practice.

35 Article 90771
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15 Relationships between projection operators

Projection operators P and Q are called orthogonal to each other if PQ = 0. In
this case,

• P and Q commute with each other.36

• Every vector in PH is orthogonal to every vector in QH.

• P +Q is a projection operator.

The projection operator 1 − P is called the (orthogonal) complement of P .
Clearly, P and 1− P are orthogonal to each other.

A projection operator P is called a subprojection of a projection operator Q
if PQ = P . If P is a subprojection of Q, then:

• P and Q commute with each other.36

• PH ⊂ QH.

• Q− P is a projection operator orthogonal to P .

If P1, P2, ... is any list of mutually orthogonal projection operators on a Hilbert
space H, then the partial sums Qn ≡ P1 + P2 + · · · + Pn are projection operators
satisfying QjH < QkH whenever j < k. The next section refers to Q1, Q2, ... as a
nested sequence of projection operators. The original projection operators can be
recovered from the Qns using Pn = Qn −Qn−1 with Q0 ≡ 0.

A set of mutually orthogonal subspaces of a separable Hilbert space must be
countable. This follows from the definition of separable (article 90771). In contrast,
a sequence of nested subspaces37 can be uncountable,38 even if the Hilbert space is
separable. The next section expresses this in terms of projection operators.

36 More generally, if PQ is self-adjoint, then [P,Q] = 0. Proof: QP = Q∗P ∗ = (PQ)∗ = PQ.
37This is called a nest of subspaces (Arias and Farmer (1992)).
38 Regarding the application of the word sequence to an uncountable set, see https://math.stackexchange.com/

questions/724486/
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16 Spectral measure

A nested sequence of projection operators (countable or not) is sometimes called a
resolution of the identity.39 This is closely related to40 the concept of a spectral
measure. To define this, let X be any set, such as the set R of real numbers. A
σ-algebra (pronounced sigma algebra) is a collection S of subsets s ⊂ X with
these properties:41

• S includes the empty set ∅.

• If s ∈ S, then the complement of s (denoted X \s) is also in S. In particular,
X itself is an element of S.

• If s1, s2, ... are all in S, then their union is also in S.

A spectral measure is a collection of projection operators P (s), one for each
s ∈ S, with these properties:42

• P (∅) = 0 and P (X) = 1.

• If s1, s2 ∈ S, then P (s1 ∩ s2) = P (s1)P (s2).

• If s1, s2, ... is a sequence of pairwise disjoint sets from S, then

P (s1 ∪ s2 ∪ · · · ) = P (s1) + P (s2) + · · · .

The spectral theorem associates a spectral measure with any normal operator.43

The adjective spectral in these names alludes to the operator’s spectrum (section
8).

39https://encyclopediaofmath.org/wiki/Resolution_of_the_identity
40von Neumann (1955), section II-7, page 119. Murphy (1990), in the text below theorem 2.5.6, uses the term

resolution of the identity for the spectral measure associated with a specified normal operator via the spectral
theorem. If the normal operator is self-adjoint, so that its spectrum is real, then this coincides with the concept of
a nested sequence (possibly continuous) of projection operators.

41Axler (2021), definition 2.23
42Conway (2000), definition 9.1
43Murphy (1990), theorem 2.5.6
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17 Inferring orthogonality from a sum

If P1, P2, P3, ... are projection operators whose sum

Q ≡ P1 + P2 + P3 + · · · (6)

is also a projection operator, then the projection operators Pn must be orthogonal
to each other.

To prove this,44 start with the fact that if P is any projection operator and |a〉
is any vector, then45

〈a|a〉 ≥ 〈a|P |a〉 ≥ 0. (7)

Use this to get46

〈a|a〉 ≥ 〈a|Q|a〉 =
∑
n

〈a|Pn|a〉 ≥ 〈a|P1|a〉+ 〈a|P2|a〉,

which holds for any vector |a〉. Altogether,

〈a|a〉 ≥ 〈a|P1|a〉+ 〈a|P2|a〉.

Set |a〉 = P1|b〉 to see that the preceding inequality implies

〈a|a〉 ≥ 〈a|a〉+ 〈c|c〉

with |c〉 = P2P1|b〉. This inequality implies |c〉 = 0, and since this is true for all |b〉,
this implies P2P1 = 0, as claimed.

44Akhiezer and Glazman (1993), section 32, theorem 2
45Proof: 〈a|a〉 = 〈a|P |a〉+ 〈a|(1− P )|a〉 = 〈b|b〉+ 〈c|c〉 with |b〉 = P |a〉 and |c〉 = (1− P )|a〉. Use the inequalities
〈b|b〉 ≥ 0 and 〈c|c〉 ≥ 0 to get (7).

46This assumes that the sum has more than one term. If it doesn’t, then the theorem is trivial.
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18 Packaging projection operators: finite case

Let A be an operator of the form

A = z1P1 + z2P2 + z3P3 + · · ·+ zNPN (8)

where the zn are distinct complex numbers and the Pn are projection operators
satisfying ∑

n

Pn = 1. (9)

Section 17 showed that the condition (9) implies

PjPk = 0 if j 6= k. (10)

This section proves that the double commutant A′′ ≡ {A}′′ consists of all linear
combinations of the projection operators Pn. More elegantly:

A′′ = {P1, ..., PN}′′. (11)

In particular, this shows that the set of projection operators Pn is uniquely deter-
mined by the single normal47 operator (8). This is a convenient way of packaging
a set of projection operators that sum to 1.48,49

To prove (11), let Ω denote the set of all operators that can be expressed as
polynomials in A. Any operator that commutes with A clearly also commutes with
any power of A, so A′ = Ω′, which in turn implies A′′ = Ω′′. Since Ω ⊂ Ω′′, this
implies that A′′ includes all polynomials in A. The remaining tasks are to prove
that each of the projection operators Pn can be expressed as a polynomial in A, and
that A′′ doesn’t include any operators that can’t be written as a linear combination
of the Pns.

47Recall that an operator is called normal if it commutes with its adjoint. Equation (10) implies that (8) is normal.
48This is a special case of the spectral theorem (section 16).
49We can also recover the coefficients zn in (8) as the proportionality factors in the identities APn ∝ Pn.
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To prove that each of the projection operators Pn can be expressed as a poly-
nomial in A, consider the polynomial

An ≡
∏
k 6=n

(A− zk).

The orthogonality condition (10) implies APn = znPn, which can also be written
(A− zn)Pn = 0. This implies

AnPk = 0 if k 6= n.

Use this to get

An = An

∑
k

Pk = AnPn =

∏
k 6=n

(zn − zk)

Pn.

The condition that the coefficients zn all be distinct implies that the quantity in
large parentheses is non-zero, so this shows that Pn is proportional to An, which is
a polynomial in A. This implies Pn ∈ A′′.50

To prove that A′′ contains only linear combinations of the Pns, let H denote the
Hilbert space, and recall that the subspace PnH is a Hilbert space all by itself. Let
B be any operator that maps each of these subspaces to itself (does not mix them
with each other). This implies that B commutes with all of the Pns and therefore
with A, so B ∈ A′. Now suppose C ∈ A′′, which means that C must commute with
all B ∈ A′. In other words, C must commute with every operator that does not
mix the subspaces PnH with each other. This includes every operator on any one
of the Hilbert spaces PnH that acts as the identity operator on the other Hilbert
spaces PkH. The operator C must commute with every operator on a Hilbert space
PnH, so C must be proportional to the identity operator on each of the subspaces
PnH. This implies that C is a linear combination of the Pns.

50Corollary: if A and B are both linear combinations of (possibly different) projection operators that sum to 1,
and if A and B commute with each other, then their associated projection operators also commute with each other.
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19 Packaging projection operators: general case

The previous section showed how a single normal operator can be used to package
a finite list of mutually orthogonal projection operators. If the Hilbert space is
finite-dimensional, then every normal operator has this form.51 If the Hilbert space
is not finite-dimensional, then A′′ might not be generated by any countable (much
less finite) list of projection operators, but the set of projection operators in A′′

still has nice properties.
Let π(A) denote the set of all projection operators in A′′, also called the spec-

tral projections52 for A. Nice properties of π(A) include:

• π(A) always includes the trivial projection operators 0 and 1.

• A′′ is an algebra, so if P and Q are both in π(A), then so is their product and
their complements, and if PQ = 0 (so that P + Q is a projection operator),
then so is their sum P +Q.

• All operators in A′′ commute with A and with each other.53 In particular, all
of the projection operators in A′′ commute with each other.

• If A and B commute with each other, then everything in A′′ commutes with
everything in B′′.54 In particular, the spectral projection operators of A and
B commute with each other.

• Any von Neumann algebraM is generated by its projection operators. More
explicitly,52 M = π(M)′′. In particular, A′′ = π(A)′′.

51Equivalently: every matrix that commutes with its adjoint is diagonalizable (Murphy (1990), theorem 2.4.4)
52 Törnquist and Lupino (2012), exercise 2.12
53Proof: if B ∈ A′′, then B commutes with everything in A′ (by definition of A′′). But A ∈ A′, so this implies

[B,A] = 0. That implies B ∈ A′, which implies A′′ ⊂ B′, so everything in A′′ commutes with B.
54Proof: suppose C ∈ A′′. Then C commutes with everything in A′. We assumed B ∈ A′, so [C,B] = 0, so C ∈ B′,

so B′′ ⊂ C ′, which says that everything in B′′ commutes with C.
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