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Treating Space as a Lattice
Randy S

Abstract Many introductions to quantum field theory (QFT) rely
on perturbation theory – the art of using small-parameter expansions
to approximate an exact expression – without ever clearly defining
the exact expression in the first place. Everything in QFT makes
more sense, both mathematically and physically, when we start with a
nonperturbative definition instead. The only known nonperturbative
constructions of many models involve at least temporarily replacing
continuous space or spacetime with a discrete lattice. (This is clearly
artificial, but that doesn’t matter if the model isn’t meant to be a
Theory of Everything anyway.) This article introduces some basic
concepts and conventions that several other articles in this series will
use when defining QFTs on a spatial lattice.
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1 Introduction

We usually model space as a continuum. This mathematical idealization is con-
sistent with all direct experimental evidence. However, in quantum field theory
(QFT), the only known mathematically rigorous construction of most models in-
volve at least temporarily treating space (or spacetime) as a discrete lattice. The
definition of a derivative is a good analogy:

df(x)

dx
≡ lim

x′→x

f(x′)− f(x)

x′ − x
. (1)

In this definition, the ratio must be computed using finite differences before taking
the limit. Otherwise, the result would be nonsense:

limx′→x

(
f(x′)− f(x)

)
limx′→x

(
x′ − x

) =
0

0
.

The situation in QFT is similar: if we try to take the continuum limit too early in
the process of calculating something, the result is undefined. We must wait until
the end of the calculation to take the continuum limit, if ever.1 In practice, taking
the continuum limit is not even really necessary. Choosing the lattice scale to be
much finer than the finest experimentally resolvable scale is sufficient.

A model defined on a lattice can only approximately respect translational and
rotational symmetries. The deviation from exact symmetry can be negligible on a
sufficiently fine lattice (article 21916), but the lattice still tends to make calculations
awkward. Most of the awkwardness can be avoided in practice, because we can
do most of the calculation using continuum notation and continuum techniques,
resorting to the the lattice formulation only for those steps whose mathematical
meaning would be truly unclear without it. This article introduces some basic
notation and conventions for the simplest type of spatial lattice, emphasizing the
relationships to their continuous-space cousins.

1 Some lattice QFTs don’t have nontrivial continuum limits.
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2 The (hyper)cubic lattice

Let D denote the number of spatial dimensions. Continuous space can be ap-
proximated by a D-dimensional (hyper)cubic lattice. Other lattices can also be
used,2 but the (hyper)cubic lattice is intuitive and generalizes easily to any number
of dimensions. For the rest of this article, the word lattice means (hyper)cubic
lattice.

Let K denote the number of sites along each axis, so the total number of sites
is KD. Each site has 2D nearest neighbors. Let ε denote the lattice spacing, the
distance between nearest neighbors. The overall linear size of the lattice will be
denoted

L ≡ εK.

To approximate practically continuous space of practically infinite volume, we can
use values like3

K = 10200 000 000 ε = 10−100 000 000 meter L = 10100 000 000 meters.

Each site is labelled by a list x = (x1, ..., xD) of D coordinates, each of which is an
integer multiple of ε.

The math is cleanest if we take the lattice to be periodic, which means that
each component of x is defined modulo L. Then the lattice has no boundary
even though it is finite: it wraps back on itself in each of the D dimensions, so
each sites on one edge of the lattice has a nearest neighbor on the opposite edge.
This wrapping doesn’t cause any artifacts as long as we only consider applications
involving regions of size � L, which may always be arranged by taking L to be
sufficiently large.

An unordered pair of nearest-neighbor sites is called a link. A set of four nearest
neighbors forming a square is called a plaquette. In a periodic lattice, the total
number of links is KD×D, and the total number of plaquettes is KD×D(D−1)/2.

2 We can even use a so-called random lattice, which isn’t really a lattice in the usual sense of the word, but it
is a way of discretizing space.

3 Computers can’t handle numbers like this, but that’s irrelevant here. Here, the motive for using a lattice is to
provide mathematically unambiguous nonperturbative constructions of QFTs, not to do computer calculations.
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3 Integrals on the lattice

Let x denote a point in space, and let f(x) be a function of x. The lattice version
of the integral over all space is

∫
dDx f(x)→ εD

∑
x

f(x). (2)

The function

δD(x′ − x) ≡
{

1/εD if x = x′

0 otherwise
(3)

becomes ill-defined (as an ordinary function)4 when ε→ 0, This situation is related
to the difficulties of defining QFTs directly in continuous space. With finite ε, it’s
an ordinary function. It has the useful property

εD
∑
x

δD(x′ − x)f(x) = f(x′),

whose continuous-space cousin is∫
dDx δD(x′ − x)f(x) = f(x′).

4 It can still be defined as a generalized function, also called a distribution.
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4 Gradients on the lattice

Let e1, e2, ..., eD be basis vectors for the lattice, each with magnitude ε. Two
lattice versions of the gradient will be useful:5

∇kf(x) ≡ f(x + ek)− f(x)

ε
∇̃kf(x) ≡ f(x)− f(x− ek)

ε
. (4)

They both reduce to the usual gradient in the continuum limit. On a periodic
lattice, they are related by this integration-by-parts identity:

εD
∑
x

(
∇f(x)

)
g(x) = −εD

∑
x

f(x)∇̃g(x). (5)

Another lattice version of the gradient is

∇+ ∇̃
2

.

This one goes into itself under integration-by-parts (again on a periodic lattice):

εD
∑
x

(
∇+ ∇̃

2
f(x)

)
g(x) = −εD

∑
x

f(x)
∇+ ∇̃

2
g(x).

These identities are valid even if f(x) and g(x) are operators that don’t commute
with each other, as are the rest of the identities in this article.

The gradient ∇ defined by (4) satisfies this version of the product rule:

∇k(fg) = (∇kf)g + f(∇kg) + ε(∇kf)(∇kg).

The continuum limit deals with functions that vary only very gradually compared
to the lattice scale, in which case the last term is negligible compared to the first
two terms (if they’re nonzero).

In infinite space, the identity ∇kx
j = δkj would be valid. On a finite lattice, it

is valid only in the bulk of space, not at the boundaries.

5 The components of x± ej are defined modulo L because the lattice is periodic.
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5 The laplacian on the lattice

A lattice version of the laplacian ∇2 is

∇2f(x) ≡
∑
k

f(x + ek) + f(x− ek)− 2f(x)

ε2
. (6)

Use (5) to see that this satisfies

εD
∑
x

(
∇f(x)

)
·
(
∇g(x)

)
= −εD

∑
x

f(x)∇2g(x)

when the gradient ∇ is defined by the first of equations (4).
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6 Fourier transforms on the lattice, part 1

The discrete Fourier transform is useful for constructing eigenfunctions of the spa-
tial translation operators. Given any function f(x), define its Fourier transform
by6

f(p) ≡ εD
∑
x

e−ip·x/~f(x) (7)

where the argument p has D components, each of which takes values

2π~
L
× n

with the integer n in the range

− K

2
< n ≤ K

2
. (8)

The quantity p · x/~ is always an integer multiple of 2π/K. The factors of ~ are
included for future convenience. The vectors p will be called momentum vectors,7

even though they may only be indirectly related (if at all) to the conserved quantity
that is also called momentum.

6 In the physics literature, a function and its Fourier transform are often denoted by the same symbol with
different arguments. I’m using that convention here. Remember that these are different functions, not just the same
function evaluated at a different argument.

7 Aside from the units-conversion factor ~, they are also called wave vectors, and their components are called
wavenumbers.
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7 Integrals over momenta

The lattice version of the integral over all momenta8 is

1

LD

∑
p

· · · . (9)

On a finite lattice, the sum has a finite number of terms – the same as the number
of lattice sites, because of (8). If we take the continuum limit (ε → 0) with L
fixed, then the “integral” over momenta is still a sum (9), but now with an infinite
number of terms. In contrast, if we take the infinite-volume (L→∞) limit with ε
fixed, then (9) becomes ∫

BZ

dDp

(2π~)D
· · · ,

where the subscript BZ means that the integral is restricted to the Brillouin zone
defined by

|pn| <
π~
ε

for each component pn of p. If we take both ε→ 0 and L→∞, then (9) becomes∫
dDp

(2π~)D
· · · ,

where now the integral is over all real values of each component pn of p.

8 Momenta is the plural form of momentum.
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8 Fourier transforms on the lattice, part 2

As before, use the letter x for a quantity whose components are integer multiples
of ε, and use the letter p for a quantity whose components are integer multiples of
2π~/L. Then these identities hold:

1

LD

∑
p

eip·(x
′−x)/~ = δ(x′ − x)

εD
∑
x

ei(p
′−p)·x/~ = (2π~)Dδ(p′ − p) (10)

with δ(x′ − x) defined by (3) and δ(p′ − p) defined by

(2π~)Dδ(p′ − p) ≡
{
LD if p = p′

0 otherwise.
(11)

The functions δ(x′− x) and δ(p′−p) are normalized differently, even though they
are denoted by the same symbol. This notational compromise is used to match the
standard notation when ε→ 0 and L→∞. In particular,∫

dDx δ(x′ − x) = 1

∫
dDp

(2π~)D
(2π~)Dδ(p′ − p) = 1.

Use the identities (10) to confirm that equation (7) is equivalent to the inverse
relationship

f(x) =
1

LD

∑
p

eip·x/~f(p). (12)

Again, the functions f(x) and f(p) are distinguished from each other by the letters
used for their arguments (footnote 6). This convention is especially efficient when
working with several different functions and their Fourier transforms.
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9 The low-momentum approximation

As before, let f(p) denote the Fourier transform of f(x), defined by equation (7).
The fourier transform of ∇f(x) is ∇(p)f(p), where ∇(p) is the list of D functions
defined by

∇n(p) ≡
exp

(
ip · en/~

)
− 1

ε
=

exp
(
ipnε/~

)
− 1

ε
. (13)

Similarly, the Fourier transform of ∇̃f(x) is−∇∗(p)f(p), and the Fourier transform
of the function ∇2f(x) defined by (6) is −|∇(p)|2f(p). Use (13) to get

|∇(p)|2 =
∑
n

2− 2 cos(pnε/~)

ε2
=
∑
n

(
2 sin(pnε/2~)

ε

)2

.

The approximations

∇(p) ≈ i

~
p |∇(p)|2 ≈ p2

~2

are good whenever the components pn of p are restricted to the range

|pn| �
~
ε
. (14)

In practice, taking a continuum limit is not strictly necessary, as long as the lattice
spacing ε is much less than any physically significant scale. In many cases, we
may enforce this condition by restricting the theory’s applications to quantities
involving only small momenta, where small is defined by the condition (14). If
larger momenta are needed, we can make the lattice spacing smaller so that this
condition is still satisfied.
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