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Why the Fact that Nature Violates
Bell Inequalities is So Important

Randy S

Abstract Quantum theory is the foundation for our current understanding
of nature. When people first begin to learn quantum theory, they tend to
question its necessity, wondering if the same phenomena could be explained
using something that feels more like common sense. Such questions are
healthy as long as we pay close attention to the experimental facts.

Part of what we might have called common sense leads to an inequality
called the CHSH bound. This article explains how this inequality is derived
and then describes a class of experiments in which the CHSH bound is
violated. For people whose goal is to understand how nature works, this is
one of the most important phenomena ever observed, because it shows in a
relatively direct way that part of what we might have called common sense
cannot be correct.
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1 Preview of the phenomenon

Physics revolves around what we observe, both through everyday experience and
through careful experiments. Some observations are especially important because
they challenge assumptions that most other observations don’t seem to challenge.
This article reviews one of those especially important observations.

An observable is something that can be measured. This article is about a
phenomenon that involves the simplest type of observable, one whose measurement
has only two possible outcomes. This is called a dichotomic observable (from the
word “dichotomy”). We could label the two possible outcomes “yes” and “no,” or
“up” and “down,” or whatever. To make the math easy, let’s label them +1 and
−1.

Suppose we have four dichotomic observables, A,B,C,D. Suppose that we can
measure either A or C, and at the same time we can also measure either B or D,
maybe in a different location. If we measure A and B, we get two numbers, both
with magnitude | ± 1| = 1. We we multiply these two numbers together, the result
is either +1 or −1. Let 〈AB〉 denote the value of this product, averaged over many
trials.1 This average is a number between −1 and +1.

In the real world, even if we do our best to prepare the system the same way
in every trial and independently of which two observables will be measured, the
quantity

Ω(A,B,C,D) ≡ 〈AB〉+ 〈CB〉+ 〈CD〉 − 〈AD〉 (1)

can be as large as 2
√

2 ≈ 2.8. This remains true even after an enormous number
of trials, so that statistical errors are negligible.

Sections 9-11 review a class of experiments in which this phenomenon has been
demonstrated. Sections 2-5 explain why the phenomenon is important.

1We might do our best to prepare the system the same way in every trial, but we still consider the average because
the measurement outcomes might vary for reasons that are beyond our control.
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2 Why the phenomenon is important

The phenomenon described in section 1 is important because it isn’t compatible
with certain assumptions about the way nature works – assumptions that might
seem like common sense. In particular, it violates the CHSH bound.2,3 Section
3 presents an easy derivation of the CHSH bound, and section 4 presents another
derivation that assumes even less. The fact that the CHSH bound is violated in the
real world tells us that the assumptions that go into the CHSH bound, as sensible
as they may seem, cannot all be correct.

The derivations in sections 3 and 4 assume that observables have well-defined
values whether or not we actually measure them. Quantum theory does not assume
this. Unlike the assumptions we made above, quantum theory is consistent with
the fact that the CHSH bound can be violated in the real world. This article isn’t
about quantum theory, though. The important message here is simply that the
assumptions leading to the CHSH bound are not consistent with reality.

2The name is derived from the initials of the authors of Clauser et al (1969).
3The CHSH bound is an example of a Bell inequality (Aspect (2002)). Bell inequalities are reviewed in Brunner

et al (2014).
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3 An easy derivation of the CHSH bound

Suppose we have four dichotomic observables, A,B,C,D. For each observable,
label its two possible outcomes +1 and −1. In any given trial, let a, b, c, d denote
the outcomes that would be obtained when A,B,C,D is measured. Each of the
numbers a, b, c, d is either +1 or −1. The numbers a, b, c, d may vary from one trial
to the next, but we’re assuming that in any given trial, each of them is either +1
or −1. The fact that a, b, c, d all have magnitude 1 implies that the quantity

(a+ c)b+ (c− a)d (2)

is always either +2 or −2. The individual numbers a, b, c, d may vary from one
trial to the next, but this particular combination is always either +2 or −2. The
average of a bunch of numbers in that range is another number in that range, so
if we repeat the experiment many times, the average of the quantity (2) will be
between +2 and −2. In symbols,

−2 ≤
〈
(A+ C)B + (C − A)D

〉
≤ 2.

The average is linear, so we can also write this as

− 2 ≤ 〈AB〉+ 〈CB〉+ 〈CD〉 − 〈AD〉 ≤ 2. (3)

This inequality (3) is called the CHSH bound.
In the real world, the CHSH bound can be violated (section 1). The arithmetic

shown above is correct, so the problem must be in the assumptions. We explicitly
assumed that all four observables have definite values in every trial whether or not
we measure them, and we implicitly assumed that the act of measurement reveals
those values with perfect accuracy. The next section shows that the CHSH bound
still holds even if we relax the perfect-accuracy assumption.
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4 A more general derivation of the CHSH bound

This section shows that the CHSH bound still holds even if the measurements are
not perfectly accurate.4

Let S denote everything about the pre-measurement state of the system except
any information that anticipates which observables we will measure. The outcome
of a measurement depends on S, and it may also be affected by the act of mea-
surement itself – maybe because the measurement is not perfectly accurate, or
even because the measurement inadvertently changes the value of the thing being
measured.

Our procedure for preparing the system (which we repeat at the beginning of
each trial) might not produce the same state S every time, because S might involve
microscopic details over which we have no control. To accommodate this, let PS

denote the proportion of trials in which our procedure produces the state S. By
definition of “proportion,” we have ∑

S

PS = 1, (4)

where the sum is over all of the states that our procedure might produce.
Even for a given pre-measurement state S, the outcome of a measurement of the

observable A may still vary from one trial to the next, because the measurement
might not be perfectly accurate and might even change the value of the thing being
measured. To accommodate this, let 〈A〉S denote the average of the outcomes of
an A-measurement when the pre-measurement state is S. Each individual outcome
is either −1 or +1, so the average 〈A〉S is a number between −1 and +1. Similarly,
let 〈AB〉S denote the average of the product of the outcomes of the A and B
measurements when the pre-measurement state is S.

Suppose, however, that the act of measuring A or C does not affect the outcome
of any measurement of B or D, or conversely. This seems especially reasonable if

4This is also derived in section 9.33 in Aspect (2002) and in the text surrounding equation (4) in Brunner et al
(2014).
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the location in which A or C is measured is far away from the location in which B
or D is measured at the same time. This implies

〈AB〉S = 〈A〉S 〈B〉S, (5)

and likewise for the other compatible pairs (CB, CD, and AD). Using this nota-
tion, the quantity (1) may be written

Ω(A,B,C,D) =
∑
S

ΩS(A,B,C,D)PS (6)

with
ΩS(A,B,C,D) ≡ 〈AB〉S + 〈CB〉S + 〈CD〉S − 〈AD〉S. (7)

Equation (5) implies

ΩS(A,B,C,D) = 〈A〉S〈B〉S + 〈C〉S〈B〉S + 〈C〉S〈D〉S − 〈A〉S〈D〉S. (8)

Each of the quantities

a ≡ 〈A〉S b ≡ 〈B〉S c ≡ 〈C〉S d ≡ 〈D〉S

is a number between −1 and +1, and section 5 shows that this implies

− 2 ≤ (a+ c)b+ (c− a)d ≤ 2. (9)

Use this in (8) to get
− 2 ≤ ΩS(A,B,C,D) ≤ 2. (10)

Use this together with equations (6) and (4) to get the CHSH bound (3).
The assumptions used in this derivation are sometimes called Bell locality,5

maybe modulo some philosophical nuances that are beside the point here. The
point is that any derivation of the CHSH bound involves one or more assumptions
that must be incorrect, because the CHSH bound can be violated in the real world.

5https://plato.stanford.edu/entries/bell-theorem
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5 Derivation of (9)

This section derives a lemma that was used in the derivation in section 4. The
lemma says that if a, b, c, d are four numbers, each between −1 and +1, then the
inequality (9) holds. We already deduced this in the case where the four numbers
are each equal to either −1 or +1. Here, we will see that the inequality still holds
if the four numbers are anywhere in the interval between −1 and +1.

To derive this, we will start with two relatively obvious inequalities. The in-
equality

|x+ y| ≤ |x|+ |y| (11)

obviously holds for any two real numbers x, y, and the inequality

|w|+ |z| ≤ max
(
|w + z|, |w − z|

)
(12)

obviously holds for any two real numbers w, z. Now define

x ≡ (a+ c)b y ≡ (c− a)d

and
w ≡ a+ c z ≡ c− a.

With these definitions, the general inequality (11) combined with the conditions
|b| ≤ 1 and |d| ≤ 1 implies ∣∣∣x+ y

∣∣∣ ≤ |w|+ |z|, (13)

and the general inequality (12) combined with the conditions |a| ≤ 1 and |c| ≤ 1
implies

|w|+ |z| ≤ 2. (14)

Combine the inequalities (13) and (14) to get∣∣∣(a+ c)b+ (c− a)d
∣∣∣ ≤ 2,

which clearly implies (9). This completes the derivation.
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6 Polarizing filters

The phenomenon previewd in section 1 involves dichotomic observables. A mea-
surement of such an observable has only two possible outcomes. One example of
a dichotomic observable is the polarization of a single photon. This section in-
troduces the concept of polarization, and sections 7-8 introduce some basic facts
about single-photon polarization measurements. These will be used in section 9 to
explain how violations of the CHSH bound can be observed.

Polarizing sunglasses are transparent to light that has one linear polarization
and are opaque to light that has the orthogonal linear polarization.6 You can verify
this by removing one of the lenses from a pair of polarizing sunglasses and holding
it in front of the other lens. The amount of light that passes through the second
lens depends on how it is rotated with respect to the first lens.

In more detail: Each lens is a polarizing filter. Light emerging from such a
filter is linearly polarized. When two filters are applied in sequence, the intensity
of the light emerging from the second filter depends on how it is oriented relative to
the first filter. Ideally, when the angle between the two filters is θ, the second filter
reduces the intensity of the light by a factor of cos2 θ, which is a number between
0 and 1. This is illustrated here, with each filter drawn as a cylinder, and using a
dashed line to indicate the orientation of the polarization that passes through:
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series-name-goes-here, article 00000 (DRAFT) DATE UNKNOWN

cos2 θ
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1

6https://www.polarization.com/water/water.html
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7 Polarizing filters applied to single photons

Now consider what happens when the intensity of the incoming light is reduced so
much that individual photons pass through the system one-at-a-time. Empirically,
a photon that passes through the second filter has the same energy as it did before
it entered the second filter. Either the whole photon passes through, or it none of
it passes through.7

• If θ = 0, then all of the photons that pass through the first filter will also
pass through the second filter.8

• If θ = π/2, then none of the photons pass through the second filter: all of
the photons are blocked.8

• For a generic angle θ, some of the photons that pass through the first filter
also pass through the second filter, and some do not.

For a generic angle θ, nobody knows how to predict which of the individual photons
will pass through the second filter, but we can predict the average number of
photons that pass through the second filter. On average, the number of photons
that pass through the second filter is cos2 θ times the number that entered it, where
θ is the angle defined in the preceding diagram. We don’t know how to predict the
fate of an individual photon, but do know the distribution.

7The fact that low-intensity light is detected in the form of discrete bursts of energy (called “photons”) was one
of the first discoveries that led to the development of quantum theory. The experiment described in section 9 takes
advantage of this fundamental property of light.

8 This is an idealization, assuming perfect filters. This article uses such idealizations to simplify the discussion.
Eliminating the idealizations would not change the conclusions in any conceptually significant way.
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8 Polarizing beamsplitter

If we don’t detect a photon at the output of the second filter, then how do we know
that a photon entered the second filter at all? To address this, we can replace
the second filter by a polarizing beamsplitter. A polarizing beamsplitter is
transparent to all of the light that enters it,9 but it separates the incoming light
into two distinct outgoing beams. The relative intensities of the outgoing beams
depend on the angle θ. This is illustrated below, using a thin cylinder for the filter
and a thicker cylinder for the beamsplitter:10series-name-goes-here, article 00000 (DRAFT) DATE UNKNOWN

cos2 θ

sin2 θ

θ

2

Now consider what happens when photons pass through this arrangement one-at-a-
time. Downstream, single-photon detectors (not shown in the diagram) count the
number of photons emerging from each output. Ideally, ignoring background noise
and inefficiencies, each photon is detected either by one detector or by the other –
never by both, and never by neither. For a generic value of θ, nobody knows how
to predict which photon will be detected at which output, but we can still predict
the averages. As illustrated in the diagram, the average numbers are cos2 θ and
sin2 θ, respectively, times the number of photons that enter the beamsplitter. The
identity cos2 θ+ sin2 θ = 1 says that none of the photons are blocked: every photon
that enters the beamsplitter is detected at one of the two outputs.11

9This is an idealization.
10A real birefringent crystal doesn’t look like this. I’m drawing it this way so I can indicate it’s orientation more

clearly.
11Again, this is an idealization.
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9 How to observe violations of the CHSH bound

This section describes a type of experiment that has been done many times by
many different researchers.12 For simplicity, the description presented here will be
schematic. The experiment produces paired photons in a special kind of state,
using a process called parametric down-conversion.13 The two photons in each pair
travel to two different stations, as illustrated here:series-name-goes-here, article 00000 (DRAFT) DATE UNKNOWN

Source

+1

−1

θ

+1

−1

φ

3

The two stations may be far away from each other. At each station, that pho-
ton passes through a polarizing beamsplitter with single-photon detectors at each
output. The orientations of the two polarizing beamsplitters are indicated in the
diagram by the angles θ and φ. The integers +1 and −1 are used to label the two

12Some examples are cited in section 11.
13This happens naturally when a laser of the right frequency is sent through the right kind of crystal (Kwiat et al

(1995), Couteau (2018), Dehlinger and Mitchell (2002a), Dehlinger and Mitchell (2002b))
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outputs of each polarizing beamsplitter. Each time a pair of photons is detected,
one at each station, there are four possible combinations of outcomes:

Outcome at one station Outcome at other station
+1 +1
−1 −1
+1 −1
−1 +1

The distribution of outcomes is shown in this table:

Outcomes Relative frequency

+1 and +1 1
2 cos2(θ − φ)

−1 and −1 1
2 cos2(θ − φ)

+1 and −1 1
2 sin2(θ − φ)

−1 and +1 1
2 sin2(θ − φ)

This distribtion violates the CHSH bound (3). To confirm this, consider two differ-
ent choices for θ, denoted θA and θC . In any given trial, we may use either one of
these settings for θ, but not both. Also consider two different choices for φ, denoted
φB and φD. In any given trial, we may use either one of these settings for φ, but
not both. Choose these four angles so that they are related as shown here:series-name-goes-here, article 00000 (DRAFT) DATE UNKNOWN

φD

θC

φB

θA

π/8

π/8

π/8

4
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The same arrangement may be described in equations like this:

θA − φB = π/8 φB − θC = π/8

θC − φD = π/8 θA − φD = 3π/8.

For a particular pair of settings, say θA and φB, the product of the outcomes is
either +1 or −1. The experiment generates many photon-pairs, one pair at a time,
using the same process each time. The results are used to compute 〈AB〉, the
average value of the product of outcomes when the settings are θA and φB, and
similarly for the other pairs of settings. By doing this for different combinations of
the settings, we get four averages: 〈AB〉, 〈CB〉, 〈CD〉, and 〈AD〉. The distribution
tabulated on the previous page implies

〈AB〉 = cos2(θA − φB)− sin2(θA − φB)

〈CB〉 = cos2(θC − φB)− sin2(θC − φB)

〈CD〉 = cos2(θC − φD)− sin2(θC − φD)

〈AD〉 = cos2(θA − φD)− sin2(θA − φD).

For the special angles that were specified above, the identities

cos2
(π

8

)
− sin2

(π
8

)
=

1√
2

cos2

(
3π

8

)
− sin2

(
3π

8

)
=
−1√

2

imply

〈AB〉+ 〈CB〉+ 〈CD〉 − 〈AD〉 = 2
√

2 , (15)

which violates the CHSH bound, as claimed.14

This description is idealized, of course. The imperfections of real experiments
prevent the result from being exactly 2

√
2, but well-designed experiments come

close. Section 11 cites some real examples.
14Section 9.4.2 in Aspect (2002) shows that this is the maximum possible violation for the distribution shown on

the previous page.
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10 The no-signaling condition

The experimental results described in section 9 violate the CHSH bound, but they
still satisfy the no-signaling condition, which says that we cannot transmit infor-
mation faster than the speed of light.15 To see that this distribution satisfies the
no-signaling condition, use the identity

1

2
cos2(θ − φ) +

1

2
sin2(θ − φ) =

1

2

to see that the distribution of outcomes of a polarization-measurement of the first
photon is independent of the angle that is used when measuring the polarization of
the second photon, and conversely. In other words, we cannot infer the angle of the
second beamsplitter just from the distribution of outcomes at the first beamsplitter,
or conversely. The phenomenon described in section 9 is profound, but it cannot
be used to achieve faster-than-light communication.

15Relativistic quantum field theory includes a postulate called microlocality, or Einstein causality, or causal
locality, or sometimes just plain causality or locality. (References are listed in article 21916.) Don’t confuse this
with Bell locality (see section 4), a condition which is not satisfied in quantum field theory or in the real world. The
microcausality postulate enforces the no-signaling condition for realistic observables, but it doesn’t quite achieve that
goal for some not-so-realistic observables (article 41818).
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11 Real experiments

Section 9 described a typical experiment whose results violate the CHSH bound,
but that description was idealized. Section 9.9.4 in Aspect (2002) reviews one of
the first experiments, reporting 2.697 ± 0.015 for the measured magnitude of (1).
Here are some other examples of reported results:

Measured magnitude of (1) Reference
2.6900± 0.0066 Kwiat et al (1995)
2.7007± 0.0029 Kwiat et al (1999)
2.73 ± 0.02 Weihs et al (1998)
2.25 ± 0.03 Rowe et al (2001)
2.307 ± 0.035 Dehlinger and Mitchell (2002a)
2.56 ± 0.04 Salart et al (2008)
2.0732± 0.0003 Ansmann et al (2009)

All of these results violate the CHSH bound by a large margin, and some of them
approach the maximum value allowed by quantum theory, which is16 2

√
2 ≈ 2.8.

16This is Tsirelson’s bound (also spelled Cirelson’s bound). Derivations of this bound are shown in Cirelson
(1980), Cabello (2002), and section 2 of Maldacena (2015).
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12 The obsession with closing loopholes

Compared to experiments that demonstrate other phenomena, a disproportionately
large amount of effort that has gone into closing “loopholes” in experiments like
these. Examples:

• The experiment reported in Weihs et al (1998) used “sufficient physical dis-
tance between the measurment stations, ... ultra-fast and random setting of
the analyzers, and ... completely independent data registration.”

• The experiment reported in Salart et al (2008) used receiving stations sepa-
rated by 18 kilometers, and the photon detections at each station triggered
the displacement of a macroscopic mass in less than the time it would take
for light to travel from one station to the other.

• The experiments reported in Rowe et al (2001) and Ansmann et al (2009)
were designed to eliminate the “detection loophole.”

Regarding the extensive efforts to close loopholes in such experiments, page 95 in
Clauser (2002) says this:

...it is logically possible that in such an experiment the two differ-
ent particle detectors, located on opposite sides of one’s laboratory, are
conspiratorially communicating with each other, with the specific mo-
tive of defeating the experimental test. ...if all experimentalists were
similarly paranoid, then experimental physics, in general, would seem
to be a pointless endeavor.

Whether or not one thinks that closing loopholes in these experiments is worth any
extraordinary effort, the fact that such extraordinary efforts have been made is a
testament to the phenomenon’s importance. It is important because it rules out a
broad class of non-quantum theories.
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