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Principal Bundles
and Associated Vector Bundles

Randy S

Abstract The concept of a gauge field in classical physics is based on
the mathematical concept of a principal bundle. Some other classical
fields that interact with gauge fields are based on the concept of vector
bundles that are associated with the principal bundle. This article
introduces principal bundles and vector bundles as specializations of
the general concept of a fiber bundle. This is a prerequisite for article
76708, which explains how these things relate to the concept of a gauge
field.
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1 Motivation

Roughly, a fiber bundle consists of a manifold M called the base space with a copy
of another manifold F called the fiber attached to each point of M , in a way that
varies smoothly throughout M . In classical field theory, fields are often described
as functions on a smooth manifold M representing space or spacetime. When the
manifold M has nontrivial topology, a different kind of description is sometimes
required. The concept of a fiber bundle provides the foundation for this different
kind of description.

In a vector bundle, the fiber is a vector space V . For some types of classical
fields, a configuration of the field may be described as a smooth section of a vector
bundle,1 with spacetime as the base space M and with V as the fiber.2 If the fiber
bundle is trivial (equivalent to a cartesian product M × V ), then a section is the
same as a V -valued function of M . More generally, that equivalence holds only
locally, not globally (not everywhere on M).

In a principal bundle, the fiber is almost3 a Lie group G. This type of fiber
bundle is the mathematical foundation for the concept of a classical gauge field, but
a gange field is not a section.4 A gauge field corresponds instead to a connection on
a principal bundle. Interactions between gauge fields and other types of fields may
be described using associated vector bundles – vector bundles that are associated
to the principal bundle in a particular way.

This article introduces fiber bundles, vector bundles, principal bundles, sections,
and associated vector bundles. A separate article (article 76708) will introduce the
concept of a connection.

1Most articles in this series use the word section for a numbered part of the article. This article uses the word
chapter instead, like Taubes (2011) does, reserving the word section for the mathematical concept previewed here.

2In this article, the name vector field is reserved for a section of a manifold’s tangent bundle, as in Tu (2017)
and in most of the physics literature. Tangent bundles are important examples vector bundles, but many vector
bundles are not tangent bundles. Example: a classical spinor field is a section of a vector bundle that isn’t a tangent
bundle, so it won’t be called a vector field. In a generic vector bundle, the number of dimensions of the fiber V may
be unrelated to the number of dimensions of the base space M .

3Chapter 13 will explain what almost means here.
4A nontrivial principal bundle doesn’t even have any (global) sections.
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2 Some notation

M = the base space

E = the total space

p = the bundle projection

U = a chart (neighborhood of a point in M)

τ = the inverse of a local trivialization

τk = the inverse of a local trivialization for a chart Uk
τj→k = transition function from Uj to Uk
σ = a section

m or u = a point in M or in a chart U ⊂M

x = a point in E

X, Y = tangent vector fields on M or E (specified in the text)

Notation for a principal bundle and an associated vector bundle:

G = the structure group

V = a vector space

ρ = a linear representation of G on V

E = the total space of the principal bundle

Ê = the total space of the associated vector bundle

p = the principal bundle projection

p̂ = the associated vector bundle projection

τ or τk = the inverse of a local trivialization of the principal bundle

τ̂ or τ̂k = the inverse of a local trivialization of the associated vector bundle

τj→k = transition function for the principal bundle

τ̂j→k = transition function for the associated vector bundle
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3 The concept of a fiber bundle

Intuitively, a (smooth) fiber bundle consists of two independent smooth manifolds,
M and F , whose dimensions are not necessarily the same, and a third smooth
manifold E made by attaching a copy of F to each point of M in a way that varies
smoothly throughout M . The cartesian product E = M × F is a trivial example,
but nontrivial examples also exist. This chapter reviews the full definition.

A (smooth) fiber bundle (E,M, p) consists of three pieces of data:5

• A smooth manifold E called the total space,

• A smooth manifold M called the base space,

• A smooth map p : E →M called the (bundle) projection.

Those data must satisfy these conditions:6

• The fibers p−1(m) ⊂ E are all diffeomorphic7 to each other, for all m ∈M .

• Each point m ∈M has a neighborhood U whose inverse image p−1(U) ⊂ E is
diffeomorphic to U ×F , where the manifold F is diffeomorphic to each fiber.
More specifically, a diffeomorphism τ from U × F to p−1(U) exists with this
property: p(τ(u, f)) = u for all (u, f) ∈ U × F .

The name local trivialization traditionally refers to the inverse τ−1 of such a
map, but working with τ instead of τ−1 will be more convenient in this article.
To be consistent with standard terminology, τ will be called an inverse local
trivialization.

A fiber bundle may be called F -bundle over M to indicate that each fiber is
diffeomorphic to F and that the base space is M .

5Distinguishing between data and conditions can help clarify a definition. Freed and Hopkins (2016) use this
device to help clarify a particular detail in quantum field theory (they call them structure and conditions).

6Kolář et al (1993), definition 9.1, and Cohen (2023), definition 2.1
7This means that they are equivalent to each other as smooth manifolds (article 93875).
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4 Generalizations not considered in this article

The definition that was given in chapter 3 is general enough for many purposes,
but sometimes it is generalized further:

• Sometimes smoothness is not required, and then the words diffeomorphic and
diffeomorphism in chapter 3 would be replaced by homeomorphic and homeo-
morphism.8 This article considers only smooth fiber bundles,9 as in Trautman
(1979). The word smooth will usually be omitted from now on, but all man-
ifolds in this article are understood to be smooth (not just topological), and
all maps are understood to be diffeomorphisms (not just homeomorphisms).

• Sometimes the definition is generalized so that the existence of local trivial-
izations is not required,10,11 and then a fiber bundle that does satisfy that
extra condition is called a locally trivial fiber bundle.12

• The definition can be generalized to a more general class of topological spaces,
not restricted to finite-dimensional manifolds.13 This generalization is impor-
tant in physics.14

8Article 93875 reviews the definitions of those words.
9The usual definition of smooth implies paracompact (https://math.stackexchange.com/questions/98105),

so a smooth fiber bundle is automatically numerable in the sense defined in Mitchell (2011), section 12 (also https:

//ncatlab.org/nlab/show/numerable+fiber+bundle).
10One example of this generalization is described in Cohen (2023), chapter 2, pages 20-21. Another is described

in https://mathoverflow.net/questions/248116/.
11https://math.stackexchange.com/questions/4583674 helps explain why the existence of local trivializions

is usually required.
12Husemoller (1966), chapter 4, definition 6.2
13I didn’t carefully check which of the results reviewed in this article would still hold in such a generalization.

Remark 3.7 in Wendl (2007b) and one of remarks 10.4 in Kolář et al (1993) issue warnings about this, one of which
will be highlighted in footnote 60 in chapter 18. Michor (1991), Michor (2016), and Wendl (2007a) provide more
background for infinite-dimensional cases.

14Example: it is important in the study of ’t Hooft anomalies.
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5 Equivalence of two fiber bundles

Consider two fiber bundles (E,M, p) and (E ′,M, p′) with the same base space.
They are called equivalent to each other if a diffeomorphism δ : E → E ′ exists
that satisfies these conditions:15

• δ maps each individual fiber of the first bundle to some individual fiber of
the second bundle,

• p′(δ(x)) = p(x) for all x ∈ E. In words: δ doesn’t do anything to the base
space M .

The definition of equivalence does not refer to local trivializations. That’s why
the definition shown in chapter 3 treats the existence of local trivializations as a
condition that the projection p must satisfy16 instead of treating local trivializations
as part of the data that must be specified.

This definition of equivalence may be generalized to isomorphism, in which the
base spaces are merely diffeomorphic to each other instead of equal to each other,17

but that generalization won’t be needed in this article.

15Nakahara (1990), sections 9.2.3-9.2.4
16Examples of other authors who use this philosophy include Lee (2013) (pages 249-250 and 268 in chapter 10)

and Wendl (2007a) (definitions 2.8, 2.74, and 2.87).
17Cohen (2023), definition 2.2; Maxim (2018), definition 1.9; Neeb (2024), definition 1.3.1
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6 Trivial bundles

Given any two manifolds M and F , we can make a fiber bundle by taking the
total space to be E = M × F and taking the bundle projection p to be the usual
projection onto the product’s first factor, M . A fiber bundle is called trivial if it’s
equivalent to one like this. Here are a few examples of trivial fiber bundles:

• Take E = M , and take p(x) = x for all points x. In this example, the fiber
is a single point.

• Every bundle with a contractible base space is trivial.18 This implies that
every fiber bundle over M = Rn (which is the usual model of n-dimensional
flat spacetime) is trivial.19

• Here’s an example of a trivial fiber bundle with a non-contractible base space:
Take E to be the torus S1 × S1 (the cartesian product of two circles), and
define p(m, f) = m. In this example, the fiber is a circle, and the base space
is also a circle.

18Cohen (2023), corollary 4.6; Maxim (2018), corollary 1.18; Nakahara (1990), corollary 9.5
19Nontrivial fiber bundles are still important in physics, because physics often considers spaces or spacetimes that

are not contractible.

9



cphysics.org article 70621 2025-04-20

7 Examples of nontrivial bundles

Here are two easy examples of nontrivial fiber bundles:

• Think of a circle as the set of complex numbers z with magnitude |z| = 1.
Take the total space E to be a circle, take the base space M to be a circle,
too, and define the bundle projection by p(z) = zn for some positive integer
n. Then the fiber is a set of n points. When n ≥ 2, this bundle is nontrivial.20

• For another example,21 take the total space E to be the Klein bottle, which
is the two-dimensional manifold consisting of points (m, f) with 0 ≤ m ≤ 2π
and 0 ≤ f ≤ 2π and with its would-be boundary segments glued together by
the equivalence relations (m, 2π) ∼ (m, 0) and (2π, f) ∼ (0, 2π − f). Define
the bundle projection by p(m, f) = (m, 0). Then the fiber is a circle, and
so is the base space. Using the language introduced at the end of chapter 3,
we can call this a circle bundle over a circle. Chapter 6 mentioned another
example of a circle bundle over a circle, but that one was a trivial bundle and
this one is not.

20Chapter 10 will study the case n = 2 in more detail.
21Figueroa-O’Farrill (2006), example 1.1
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8 Constructing a fiber bundle from trivial patches

According to the definition in chapter 3, a fiber bundle must be locally trivial – it
must look locally (but maybe not globally) like the cartesian product of M and F .
We can turn this into a method for constructing fiber bundles from trivial patches.

Start with the two manifolds, a base space M and a fiber F , and let U1, U2, U3, ...
be a covering of M by open sets, each called a chart. A total space E may be
constructed from the trivial patches Ek ≡ Uk × F , as explained below.

To motivate the idea, suppose that we already have a fiber bundle p : E → M
as defined in chapter 3, and let τk be the inverse local trivialization that maps
Uk × F to the corresponding part of E. If Uj and Uk overlap, then for each point
u ∈ Uj ∩ Uk, we can define a transition function τj→k(u) : F → F by the
condition22

τ−1
k (τj(u, f)) =

(
u, τj→k(u)f

)
. (1)

Equation (1) clearly implies

τj→j(u) = 1 for all u ∈ Uj, (2)

τk→`(u)τj→k(u)f = τj→`(u)f for all u ∈ Uj ∩ Uk ∩ U`. (3)

Conversely, suppose we start with the patches Ek ≡ Uk ×F and a set of transition
functions τj→k : Uj ∩Uk → G where G is a Lie group of diffeomorphisms of F , and
suppose that these functions τj→k satisfy the conditions (3). Then we can define
a fiber bundle like this: convert the disjoint union of the patches Ek to a single
manifold E by equating (u, f) ∈ Ej with

(
u, τj→k(u)f

)
∈ Ek for u ∈ Uj ∩ Uk,

and define a projection p : E → M by taking p(u, f) = u whenever (u, f) ∈ Ek.
Intuitively: the transition functions τj→k describe how the fibers over points of
Uj × F should be matched with the fibers over points of Uk × F where Uj and Uk
overlap. The result turns out to be a fiber bundle as defined in chapter 3.23,24

22Notation: the result of applying the diffeomorphism τj→k(u) to f ∈ F is written τj→k(u)f ∈ F .
23Nakahara (1990), section 9.2.2; Kolář et al (1993), above lemma 9.2; Sengupta (2007), text around equation 1
24This is sometimes called the fiber bundle reconstruction theorem. Some sources use this to define the

concept of a fiber bundle.

11



cphysics.org article 70621 2025-04-20

9 Transition functions for a trivial bundle

A fiber bundle is trivial if and only if the transition functions τj→k may all be
written25

τj→k(u) = φ−1
j (u)φk(u) (4)

for smooth maps φj : Uj → G, where G is the same Lie group of diffeomorphisms
of F to which the transition functions are restricted (section 8). To prove the if
part, define τ̃j by

τ̃j(u, f) ≡ τj
(
u, φj(u)f

)
(5)

for all j, where τj is an inverse local trivialization. Then

τ̃−1
k

(
τ̃j(u, f)

)
= τ̃−1

k

(
τj
(
u, φj(u)f

))
(equation (5))

= τ−1
k

(
τj
(
u, φ−1

k (u)φj(u)f
))

(equation (5))

=
(
u, τj→k(u)φ−1

k (u)φj(u)f
)

(equation (1))

= (u, f). (equation (4))

This shows that if (4) holds, then we can construct new local trivializations τ̃ that
make all of the transition functions equal to the identity function, which implies
that the bundle is trivial. To prove the only if part, use the fact that if τj→k(u) = 1,
then (4) is satisfied by choosing φj(u) = 1 for all j and all u ∈ Uj.

Equation (1) does not imply (4).26 Equation (1) can be used to define transition
functions for any fiber bundle, not just for trivial bundles. Chapter 10 will describe
an example of a nontrivial bundle with transition functions given by equation (1).

25Bertlmann (1996), page 99
26Each map φj in equation (4) must be defined throughout the corresponding chart Uj . Requiring φj to be smooth

throughout Uj restricts the possible behaviors of φj in Uj ∩ Uk.
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10 Example of a patchwise construction

This chapter uses the approach in chapter 8 to construct one of the fiber bundles
that was described in chapter 7: the total space E is the set of complex numbers
z with magnitude |z| = 1, the base space is M is also the set of complex numbers
with magnitude 1, and the bundle projection is defined by p(z) = z2 so that the
fiber is a pair of points. This will be called the z2 bundle. This example shows
how to construct the z2 bundle using only two charts, U1 and U2, both contractible.
Since M is a circle, the intersection U1 ∩ U2 necessarily has two parts that aren’t
connected to each other, and one of this example’s messages is that the construction
still works even though U1 ∩ U2 is not connected.

Let M be the set of complex numbers w with magnitude |w| = 1, which is the
unit circle in the complex plane. Any such w may be written w = wR + iwI with
wR = cos θ, wI = sin θ, and θ ∈ R. Four such points around the unit circle are are
labelled here:

article

Four points

wI

wR

w = (1 + i)/
√

2

w = (1 − i)/
√

2

w = (−1 + i)/
√

2

w = (−1 − i)/
√

2

© 2018-2023 Randy S
For noncommercial use only

1

The unit circle may be covered with two charts. This example will use use one
chart U1 defined by wR > −1/

√
2 and another chart U2 defined by wR < 1/

√
2, as

shown here:

article

Charts

U1 U2 U1 ∩ U2

2
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The intersection U1 ∩ U2 consists of two separate regions: the upper region wI >
1/
√

2, and the lower region wI < −1/
√

2.
Using these two charts, we can construct a fiber bundle whose base space M is

the unit circle. Take the fiber to be F = {1,−1}, and take the transition function
to be

τ1→2(w)f =

{
f in the upper region,

−f in the lower region.
(6)

Using the recipe described in chapter 8, the total space E is constructed by equating
(w, f) ∈ U1 × F with (w, τ1→2(w)f) ∈ U2 × F and taking the projection to be
p(w, f) = w.

The goal is to demonstrate that the resulting fiber bundle is equivalent to the
z2 bundle that was described in the first paragraph of this chapter. To demonstrate
this, use these properties of the z2 bundle:

• U1 may be described as −3π/4 < θ < 3π/4, and then the function τ1 :
U1 × F → E defined by τ1(e

iθ,±1) = ±eiθ/2 is a local trivialization for U1.

• U2 may be described as π/4 < θ < 7π/4. and then the function τ2 : U2×F →
E defined by τ2(e

iθ,±1) = ±eiθ/2 is a local trivialization for U2.

• In the upper region, these local trivializations satisfy τ1(e
iθ,±1) = τ2(e

iθ,±1),
because the range of θ in this region is π/4 < θ < 3π/4 for both τ1 and τ2.

• In the lower region, the local trivializations satisfy τ1(e
iθ,±1) = τ2(e

iθ,∓1)
instead, because the range of θ in this region is 5π/4 < θ < 7π/4 when
the local trivialization τ1 is used but is −3π/4 < θ < −π/4 when the local
trivialization τ2 is used.27

This shows that the transition function (6) may be written as in (1), so the fiber
bundle constructed above from two patches is the same as the z2 bundle that was
described in the first paragraph.

27These two intervals of θ both describe the same part of the unit circle (the lower region), but the definitions
τ1 and τ2 refer to the square root eiθ/2 of eiθ, and this square root depends on how that part of the unit circle is
described in terms of θ. The two square roots differ by the factor ei2π/2 = eiπ = −1.
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11 The concept of a vector bundle

A vector bundle is a fiber bundle whose fiber is a vector space V and whose local
trivializations are linear transformations at each point of the base space.28 Here
are a few examples:

• Trivial vector bundles: If M is any smooth manifold and V is any vector
space, then their cartesian product M × V is the total space of a trivial29

vector bundle with projection defined by p(m, v) = m for all m ∈ M and
v ∈ V .

• The Möbius bundle: Consider the two-dimensional manifold E consisting
of pairs (θ, v) modulo the equivalence relation (θ + 2π, v) ∼ (θ,−v) with
θ, v ∈ R. In words, E is a Möbius band with infinite width (no boundary).
The projection defined by p(θ, v) = eiθ makes it a vector bundle with fiber R
(regarded as a one-dimensional vector space) and base space S1, where the
circle S1 is regarded as the set of complex numbers with magnitude 1. This
vector bundle is nontrivial.30

• Tangent bundles: If M is a smooth n-dimensional manifold, then it has
an n-dimensional space of tangent vectors at each point m ∈ M . The 2n-
dimensional smooth manifold TM whose points are these tangent vectors31

is the total space of the tangent bundle with base space M . The fiber over
a point m ∈ M is the n-dimensional space of tangent vectors at m, and the
bundle projection p projects each tangent vector to the point of M to which
it is tangent.

28Tu (2017), definition 7.1
29Trivial was defined in chapter 6.
30If v is restricted to the two values {−1, 1} instead of ranging over all of R, then the Möbius bundle reduces to

the z2 bundle. Chapter 10 described a patchwise construction of the z2 bundle, and chapter 20 will use a patchwise
construction of the Möbius bundle to illustrate another important insight.

31In this definition, the tangent spaces at different points of M are disjoint: by definition, they do not share any
vectors with each other, not even if M is Rn.
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12 Nontriviality of the tangent bundle of S2

A tangent bundle may or may not be trivial. The tangent bundle with base space
Sn−1 is trivial if and only if n ∈ {1, 2, 4, 8}.32 This chapter uses geometric intuition
to demonstrate that the tangent bundle of S2 is nontrivial (not isomorphic to
S2 × R2).

To demonstrate this, think of S2 as the surface of the unit sphere in three-
dimensional euclidean space so that the length of each vector is defined, and con-
sider the unit tangent bundle of S2, which is what’s left of the tangent bundle
after discarding all vectors whose lengths are not equal to 1. At each point of S2,
the set of unit tangent vectors at that point is a circle, S1, so if the unit tangent
bundle were trivial, then its total space would be diffeomorphic to S2 × S1. This
chapter will show that:33

• The total space E of the unit tangent bundle of S2 is diffeomorphic to SO(3),
the Lie group of orientation-preserving rotations.

• SO(3) is diffeomorphic to the three-dimensional real projective space RP3.

This shows that E is not diffeomorphic to S2 × S1, so the unit tangent bundle of
S2 must be nontrivial. This implies that the full tangent bundle is nontrivial, too.

To show that E is diffeomorphic to SO(3), start with the fact that E may be
regarded as the set of all possible ordered pairs of mutually orthogonal unit vectors:
the first vector in the pair may be used to specify a point m ∈ S2 (because S2 may
be viewed as the set of unit vectors in three-dimensional euclidean space), and
then the second vector in the pair may be used to specify a tangent direction at m.
Given any one ordered pair of mutually orthogonal unit vectors, any other ordered
pair may be obtained from it by a unique orientation-preserving rotation34 about
the origin. This shows that E is diffeomorphic to SO(3).

32Milnor (1958), theorem 2 (reviewed in Hatcher (2001), section 4.B, page 428), combined with the fact that “a
manifold is called parallelizable if its tangent bundle is trivial” (Cohen (2023), end of section 3.2.2, page 40).

33The argument used in this chapter is essentially the proof of lemma 1 in Klingenberg and Sasaki (1975).
34An orientation-preserving rotation is a composition of an even number of reflections, not an individual reflection.
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To show that SO(3) is diffeomorphic to RP 3, recall that RP 3 is defined to be
the set of lines through the origin of four-dimensional euclidean space, each line
representing a single point of RP 3. This may also be described as one hemisphere
of the unit sphere S3 with opposite points on the hemisphere’s boundary (which is
diffeomorphic to S2) identified, because each line through the origin either inter-
sects that hemisphere in exactly one point or else intersects its boundary in two
points. One hemisphere of S3 is diffeomorphic to a three-dimensional ball, so RP 3

is diffeomorphic to a three-dimensional ball with opposite points on its boundary
identified. Now, take this ball to have radius π. For each point x in this ball, define
a corresponding orientation-preserving rotation like this:

• The rotation axis is the line through x.

• The magnitude of the rotation angle is the distance from the origin to x.

• The rotation is clockwise when looking from the origin toward the point x.

This correspondence is consistent with the fact that opposite points of the ball’s
boundary are identified, because the effect of clockwise and counter-clockwise ro-
tations are identical when the rotation angle is π, so this establishes a smooth
one-to-one correspondence between points of RP 3 and orientation-preserving rota-
tions. In other words, RP 3 is diffeomorphic to SO(3).

17
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13 The fiber of a principal bundle

Chapter 14 will introduce a special kind of fiber bundle called a principal bundle.
This chapter explains something about the nature of a principal bundle’s fiber.

The fiber of a principal bundle is almost a Lie group, in this sense: the fiber is
diffeomorphic to a Lie group G as a smooth manifold,35 and multiplication by any
element of G gives the same diffeomorphism of the fiber that it does of G, but we
never multiply elements of the fiber by each other, so the fiber doesn’t have any
distinguished identity element like a group would have.36,37 As a reminder of this,
the fiber will be denoted G̃, where G is the Lie group that the fiber would become
if we designated one of its elements to serve as the identity element.

More formally, G̃ may be described as a smooth manifold with a free and
transitive right G-action.38 A right action of G on G̃ is a map from G̃×G to G̃,
called multiplication and denoted (f, g) 7→ fg with f ∈ G̃ and g ∈ G, satisfying
these conditions:

(fg)g′ = f(gg′) fI = f

where g, g′ ∈ G, and I is the identity element of G. The action is called free if
every non-identity element of G moves every point of G̃ (in other words, fg 6= f
for all f and for all g except the identity element). The action is called transitive
if, for every pair f, f ′ ∈ G̃, a group element g ∈ G exists for which fg = f ′. A
smooth manifold G̃ with a free and transitive right G-action must be diffeomorphic
to G.39,40

35A Lie group has the structure of a smooth manifold and the structure of a group. Introductions to Lie groups
include chapter 7 in Lee (2013), appendix A in Harlow and Ooguri (2021), and definition 4.1 in Isham (1999).

36Wendl (2007a), text below proposition 2.88; McCarthy (2019), text above proposition 1.3.4
37If the principal bundle is nontrivial, then the fiber cannot have any such distinguished element, at least not one

that varies smoothly throughout M (chapter 19).
38Wendl (2007a), text below definition 2.87
39Wendl (2007a), text above definition 2.87
40G̃ is a G-torsor, also called a principal homogeneous space for G (https://en.wikipedia.org/wiki/

Principal_homogeneous_space).
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14 The concept of a principal bundle

Compared to the general definition of fiber bundle in chapter 3, the definition of
principal G-bundle involves two additional pieces of data and a few additional
conditions. The additional data are:

• A Lie group G called the structure group,41,42

• A smooth map E × G → E called the (right) action43 of G on the total
space E. The image of (x, g) under this map will be denoted xg.

The additional conditions are:44

• The bundle projection p satisfies p(xg) = p(x) for all g ∈ G and all x ∈ E, so
the fibers over different points of M aren’t mixed with each other by x 7→ xg.

• The fiber is G̃, as defined in chapter 13.

• The group G acts on G̃ as described in chapter 13, and the inverse local
trivializations satisfy the additional condition45

τ(u, f)g = τ(u, fg) (7)

for all g ∈ G, with f and u defined as in chapter 3. In words: the maps τ are
G-equivariant46 in the second argument.

Two principal bundles are equivalent as principal bundles if they are equivalent
as fiber bundles and if the diffeomorphism δ in that equivalence (chapter 5) is
G-equivariant:47 δ(x)g = δ(xg).

41Isham (1999), section 5.2.1
42The name structure group is also used for something else (chapter 15).
43Chapter 18 will clarify the role of the left action.
44Mitchell (2011); Cohen (2023), definition 2.5
45Sengupta (2007), page 2
46Tu (2017), section 27.1
47Wendl (2007a), definition 2.89
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15 Two meanings of “structure group”

The name structure group is used for two related-but-different things. Chapter 14
mentioned one of them. This chapter acknowledges the other one and clarifies their
relationship.

When a fiber bundle is constructed as described in chapter 8, the term structure
group sometimes refers to any group to which the transition functions belong.48

Examples:

• A trivial bundle can be constructed using transition functions that are all
equal to 1, in which case we could say that the structure group (denoted G in
section 8) has only one element, even if the trivial bundle is a principal bundle
whose structure group G as defined in section 14 has more than one element.
This shows that the two meanings of structure group are not equivalent.

• Again, a trivial bundle can be constructed using transition functions that are
all equal to 1, but the same trivial bundle may also be constructed using
transition functions that are not equal to 1. This shows that the group
generated by the transition functions is not an intrinsic property of the fiber
bundle.

Even though the two same-named concepts are different, they are related. Their
relationship is the subject of a proposition in Kobayashi and Nomizu (1963).49

Roughly, that proposition says that if two principal bundles have the same base
space but the first one has a smaller structure group (as defined in chapter 14), then
the first bundle can be imbedded50 in the second bundle if and only if the second
bundle can be constructed (as described in chapter 8) using transition functions
that all belong to the smaller structure group (as defined in chapter 14).

48Cohen (2023), section 2.1.3
49Kobayashi and Nomizu (1963), chapter 1, proposition 5.3
50This is defined in the paragraph before the proposition.
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16 Examples of principal bundles

Article 03838 describes a nontrivial principal bundle called the Hopf bundle or
the Hopf fibration. The structure group is U(1), which is topologically a circle,
the total space is S3, and the base space is S2. The Hopf bundle is one of the
few fiber bundles in which the fiber, the total space, and the base space are all
spheres.51,52

For an example of a nontrivial principal bundle with a nonabelian structure
group, consider the set of ordered triple of complex numbers: (z1, z2, z3). If we think
of this as a space with six real dimensions, then the condition |z1|2 + |z2|2 + |z3|2 = 1
defines a sphere S5. The group SU(3) acts on these triples as a group of linear
transformations that preserve that condition and that have determinant 1. Given
any point of S5, the subgroup of SU(3) that leaves that point fixed is isomorphic
to SU(2).53 We can define a projection p : SU(3) → S5 by taking p(x) to be the
unique54 point of S5 that is not affected by the given element x of SU(3). This
defines a principal bundle with structure group SU(2), total space SU(3), and base
space S5.55

51Hatcher (2001), section 4.B, page 428
52The unit tangent bundle of S2 also has a circle as its fiber, but its total space is not a sphere: the total space of

the unit tangent bundle of S2 is RP 3, which may be constructed from S3 by identifying antipodal points with each
other (chapter 12).

53To see this, consider the point (z1, z2, z3) = (1, 0, 0).
54To see that each element of SU(3) leaves a unique point of S5 fixed, consider all elements of SU(3) that leave

the point (1, 0, 0) fixed, and observe that none of them leaves any other point fixed.
55More information about this fiber bundle is given in https://mathoverflow.net/questions/145482/ and

https://mathoverflow.net/questions/69352/
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17 The role of the left action

The inverse local trivializations introduced in chapter 3 are maps τ from U × G̃ to
p−1(U). The cartesian product U × G̃ is a trivial bundle, so we can alternatively
think of the maps τ as maps from U×G to p−1(U) by choosing an arbitrary element
of G̃ to serve as the identity element.56

Now let Uj and Uk be two overlapping charts, at let τj and τk be corresponding
inverse local trivializations. Equation (1) defines a transition function τj→k by the
condition

τj(u, f) = τk
(
u, τj→k(u)f

)
(8)

for all f ∈ G and u ∈ Uj ∩ Uk, and then the (right) G-equivariance condition (7)
implies that the transition functions are also (right) G-equivariant:

τj→k(u)(fg) =
(
τj→k(u)f

)
g.

A right G-equivariant function from G to itself is necessarily equivalent to left
multiplication by an element of G,57 so the effect of the diffeomorphism τj→k(u)
may be written58

τj→k(u)f = hj→k(u)f, (9)

with hj→k(u) ∈ G. The right-hand side is the product of two elements of G.
This shows that when a principal bundle is constructed patchwise as described

in chapter 8, the transition functions use a left action of G on the locally-trivialized
patches. This left action doesn’t interfere with the right action, because the left
and right actions commute with each other.59

56For any fiber bundle, choosing a local trivialization always involves making arbitrary choices.
57Tu (2017), lemma 27.7. Proof: let β be a function from G to G satisfying the right G-equivariance condition

β(fg) = β(f)g. The quantity β(g) may also be written β(Ig), where I is the identity element of the group, so the
right G-equivariance condition implies β(g) = β(I)g. This shows that applying the function β to G is the same as
multiplying on the left by β(I) ∈ G.

58Tu (2017), equation (27.2)
59Proof: group multiplication is associative, so (g1f)g2 = g1(fg2) with g1, f, g2 ∈ G. This says that multiplying f

first by g1 on the left and then by g2 on the right is the same as multiplying f first by g2 on the right and then by
g1 on the left.
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18 How to construct a principal bundle

A principal bundle is a special kind of fiber bundle, so the approach described in
chapter 8 may be used to construct examples of principal bundles.60 To enforce
the additional conditions that principal bundles must satisfy (chapter 14), the
transition functions must also satisfy an additional condition. Consistency with
equations (1) and (7) requires

τj→k(u)(fg) =
(
τj→k(u)f

)
g

for all f ∈ Fx,j and all g ∈ G. In words: the effect of the diffeomorphism τj→k(u)
on the fiber should commute with the right action of the group G on the fiber. In
fancier words: the transition functions should be G-equivariant.

60Definitions 10.1-10.2 in Kolář et al (1993) use a patchwise construction like this as the definition of principal
bundle, and one of remarks 10.4 in Kolář et al (1993) suggests that this makes it applicable to infinite-dimensional
cases (footnote 13 in chapter 4). This might be one disadvantage the philosophy that was mentioned in footnote 16
in chapter 5.
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19 The concept of a section

Let (E,M, p) be a fiber bundle. A cross section or just section61 is a smooth
map σ : M → E such that p(σ(m)) = m for all m ∈M . Here are a few basic facts
about sections:

• Every vector bundle has a section.62

• A vector bundle whose fiber is a one-dimensional vector space63 is called a line
bundle. Any section σ of a nontrivial line bundle must be zero somewhere.64

• More generally, a vector bundle with n-dimensional fiber is trivial if and only
if it has n sections that are linearly independent everywhere.65

• A principal bundle has a section if and only if the principal bundle is trivial.66

The definition of section requires that it be defined everywhere on M . Sometimes,
the name global section is used to emphasize this.

The concept of a local section, a smooth map from a chart U ⊂ M to E, is
also useful.67 Some fiber bundles don’t have any (global) sections, but every fiber
bundle has local sections. The first example in chapter 7 doesn’t have any global
sections when n = 2, because no matter which of the two possible values we choose
for σ(m) at one point m ∈M , the requirement for σ to be smooth everywhere must
be violated somewhere. On the other hand, if we consider a chart U that includes
all of M except one point, then (exactly two) local sections over U do exist.

61This is why this article uses the word chapter for parts of the article (footnote 1 in chapter 1).
62Example: take σ(m) = 0 for all m ∈M , where 0 is the zero vector in the fiber. This is always a smooth section,

thanks to the requirement that the local trivializations of a vector bundle should be linear transformations at each
point of the base space (chapter 11).

63The vector space may be one-dimensional over R or C. If the field of coefficients is C, then a line bundle is
sometimes called a complex line bundle, but it is often just called a line bundle.

64Wendl (2007a), exercise 2.13
65Collinucci and Wijns (2006), section 1.4, theorem 1
66Husemoller (1966), chapter 4, corollary 8.3
67A special case of this concept is defined in Steenrod (1951), section 7.4, page 30.
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20 Sections compared to fiber-valued functions

A section of a trivial fiber bundle M × F is the same thing as a smooth function
from the base space M to the fiber F : given a function σ(m) = (m, f) ∈ M × F ,
projecting σ(m) onto its second factor f gives a function from M to F .

In contrast, a nontrivial fiber bundle does not have a projection onto the fiber.
A section is always a smooth68 function from the base space to the total space, but
it cannot always be viewed as a smooth function from the base space to the fiber.
This is illustrated below using the Möbius bundle that was described in chapter
11.

The base space M of the Möbius bundle is a circle S1, which may be parameter-
ized by eiθ with θ ∈ R. The fiber F is R. Define two charts U1 and U2 as in chapter
10. For this example, the Möbius bundle will be constructed from two patches,
U1 × F and U2 × F . These two patches are sewn together using the transition
function

τ1→2(m)f =

{
f for m in the upper region,

−f for m in the lower region,
(10)

where upper region and lower region refer to the two parts of U1 ∩ U2 that were
highlighted in chapter 10. Here, f can be any real number, because the fiber is R.
To construct a fiber bundle from this data, convert the disjoint union of the patches
U1× F and U2× F to a single manifold E by equating each (m, f) in U1× F with(
m, τ1→2(m)f

)
in U2 × F whenever m ∈ U1 ∩ U2. After defining bundle projection

as in chapter 8, this gives the Möbius bundle that was introduced in chapter 11.
A section σ of the Möbius bundle may be specified using a pair of functions,

σ1 : U1 → F and σ2 : U2 → F , that satisfy the consistency condition

σ2(m) = τ1→2(m)σ1(m) (11)

for all m ∈ U1 ∩ U2. If the functions σ1 and σ2 are smooth, then this gives a
smooth section σ of the Möbius bundle. The question is whether this section may

68Chapter 4.
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be described as a smooth F -valued function of the whole base space. It could if
σ2(m) = σ1(m) for all m ∈ U1 ∩ U2, but for this to be compatible with (11), we
must have σ1(m) = σ2(m) = 0 wherever τ1→2(m) 6= 1. We can devise sections
that do satisfy this condition, but most sections don’t, so most sections cannot be
described as a single smooth F -valued function of all m ∈M .

One example of a smooth section on this bundle is the one defined by

σ1(e
iθ) = sin(θ/2) for − 3π/4 < θ < 3π/4, (12)

σ2(e
iθ) = sin(θ/2) for π/4 < θ < 7π/4. (13)

This pair of functions satisfies the condition (11) with τ1→2 given by (10). This is
illustrated in figure 1 on the next page. Explicitly:

• The upper region (where τ1→2 = 1) is π/4 < θ < 3π/4, so σ1 and σ2 are equal
to each other in that region.

• The lower region (where τ1→2 = −1) can be described either as −3π/4 < θ <
−π/4 or as 5π/4 < θ < 7π/4, so σ1 and σ2 are each other’s negatives in that
region because sin((θ + 2π)/2) = − sin(θ/2).

The functions σ1 and σ2 are not equal to each other everywhere in U1 ∩U2, so this
section does not correspond to any single smooth F -valued function everywhere on
M ,69 even though it does define a smooth section (a smooth E-valued function)
everywhere on M .

69We could contrive a F -valued function everywhere on M by arbitrarily choosing which points m ∈ U1∩U2 should
use σ1 and which ones should use σ2, but the resulting function would not be smooth everywhere.
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Figure 1 – The top graph shows the function σ1 defined by equation (12). Similarly, the middle
graph shows the function σ2 defined by equation (13). The bottom graph shows σ1 and σ2
overlaid. The dashed lines indicate the part of U1 ∩ U2 in which the transition function equals
−1. This confirms that σ1 = σ2 where their domains overlap each other, so they define a single
smooth global section, as claimed in the text.
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21 Vector bundles associated to a principal bundle:
preview

The proposition reviewed at the end of chapter 15 implies that a principal G-
bundle may be constructed patchwise using transition functions that all belong to
G. If a principal G-bundle over a base space M is constructed using transition
functions τj→k, and if we choose a representation ρ of the group G as a group of
linear transformations of a vector space V , then we can use ρ(τj→k) as transition
functions to construct a vector bundle with the same base space M but whose fiber
is V instead of G̃. This vector bundle is said to be associated with the principal
bundle, because they can both be constructed using the “same” transition functions
– same except that the vector bundle uses ρ(τj→k) instead of τj→k.70

If a principal G-bundle is trivial, then any associated vector bundle is also
trivial,71 but the converse depends on the representation. Examples:

• If the principal bundle is nontrivial and the representation of G is isomorphic
to G itself, then the associated vector bundle is nontrivial.72

• If the representation is trivial (that is, if ρ(g) = 1 for all g ∈ G), then the
associated vector bundle is trivial even if the principal bundle is not.73

Chapter 22 will define the associated vector bundle more directly, without re-
lying on the idea of assembling the bundle from patches using transition functions,
and chapter 25 will explain how the more direct definition relates to the one that
was previewed here.

70Figueroa-O’Farrill (2006), section 1.4
71Tu (2017), text above proposition 31.1
72Nakahara (1990), definition 10.2
73Tu (2017), text below lemma 31.4
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22 Vector bundles associated to a principal bundle

Let p : E → M be a principal G-bundle, and let V be a vector space (over R or
C) on which a linear representation ρ of G acts, so that ρ(g) : V → V is a linear
transformation for each g ∈ G. This chapter uses that data to define an associated
vector bundle. Unlike the preview in chapter 21, this definition given here does
not rely on a patchwise construction.

Consider the cartesian product E × V . Each element of E × V is an ordered
pair (x, v) with x ∈ E and v ∈ V . Let ∼ be the equivalence relation defined by
declaring (xg, ρ(g−1)v) to be equivalent to (x, v) for every g ∈ G. Let [x, v] denote
the equivalence class that includes (x, v), so

[xg, ρ(g−1)v] = [x, v]. (14)

The total space of the associated vector bundle is the quotient74 Ê ≡ (E × V )/∼,

also denoted Ê = E ×ρ V . The bundle projection p̂ : Ê →M is defined by

p̂
(
[x, v]

)
= p(x).

This is consistent with the equivalence relation, because

p̂
([
xg, ρ(g−1)v

])
= p(xg) = p(x) = p̂

(
[x, v]

)
.

The fiber has the structure of a vector space: within the fiber over the point m ∈M ,
addition and scalar multiplication are defined by [x, v1] + [x, v2] ≡ [x, v1 + v2] and
c[x, v] ≡ [x, cv] for any x ∈ E with p(x) = m, where c is a scalar (in R or C).75

Altogether, this defines a vector bundle with base space M and fiber V .76

74Tu (2017), section 31.1; Abbassi and Lakrini (2021), section 1; and Haydys (2019), definition 31. As a simple
check, let nM , nG, and nV be the number of dimensions of M , G, and V , respectively. Then the number of dimensions
of E×V is nM +nG+nV , and the number of dimensions of (E×V )/ ∼ is nM +nV because the equivalence relation
removes G parameters. The number nM +nV matches the number of dimensions of a vector bundle with base space
M and fiber V .

75These definitions are consistent with the equivalence relation because ρ is a linear representation.
76Michor (2008), theorem 18.7; and Figueroa-O’Farrill (2006), section 1.4
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23 Local trivializations for an associated bundle

This chapter explains how to construct local trivializations for the associated vector
bundle that was defined in chapter 22. The same notation will be used again here.

Let U ⊂ M be a chart for which the principal bundle admits a local section
σ : U → E. We can use this local section to construct a local trivialization
τ̂ : U × V → Ê for the corresponding part of the associated vector bundle, like
this:77

τ̂(m, v) ≡
[
σ(m), v

]
for all m ∈ U. (15)

This construction refers to an arbitrary local section σ. This is natural because
equation (14) says that any given point in the associated vector bundle may be
represented by many different pairs (x, v). Choosing the local section σ is a way of

choosing a single pair
(
σ(m), v

)
to represent each point in the patch τ̂(U×V ) ⊂ Ê.

Chapter 24 will show that the arbitrariness in the choice of σ is equivalent to the
expected arbitrariness in any local trivialization of the associated vector bundle.

77Previous sections use the letter m for a generic point in the base space M and used the letter u for a point in
a particular chart U ⊂ M . Here, the letter m is used for a point of U , because u looks too much like v – the letter
that is being used for an element of the vector space V .
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24 Arbitrariness of the local trivializations

This chapter shows that the arbitrariness in the choice of local section used to
construct the local trivializations (15) matches the expected degree of arbitrariness
in any local trivialization of the vector bundle.

Any other local section σ′(m) of U × G̃ is related to the original one by

σ′(m) = σ(m)g(m) for all m ∈ U, (16)

with g(m) ∈ G. If we construct a corresponding local trivialization τ̂ ′ as in (15),
then

τ̂ ′(m, v) ≡
[
σ′(m), v

]
(like equation (15))

=
[
σ(m)g(m), v

]
(equation (16))

=
[
σ(m), ρ

(
g(m)

)
v
]

(equation (14))

= τ̂
(
m, ρ

(
g(m)

)
v
)

(equation (15)).

This shows that changing which local section we use in equation (15) is equivalent
to applying an m-dependent linear transformation ρ(g(m)) to the vector factor in
U × V , which is exactly the freedom we expect to have when choosing a local
trivializations of the vector bundle.
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25 Transition functions for an associated bundle

This section uses the local trivializations that were described in chapter 23 to
construct transition functions between overlapping patches of the associated vector
bundle.

Consider two charts, Uj and Uk, and corresponding local sections σj : Uj → E
and σk : Uk → E of the principal bundle. For each point m in the intersection
Uj ∩ Uk, let gj→k(m) be the element of G that relates the two local sections:78

σj(m)gj→k(m) = σk(m). (17)

Let τ̂j→k be the transition function between the jth and kth local trivializations τ̂j
and τ̂k of the associated vector bundle, constructed from σj and σk as in chapter
23. According to equation (1), the transition functions should satisfy

τ̂j(m, v) = τ̂k
(
m, τ̂j→k(m)v

)
. (18)

The requirement (18) is satisfied by79

τ̂j→k(m)v = ρ
(
g−1
j→k(m)

)
v. (19)

Proof:

τ̂k
(
m, τ̂j→k(m)v

)
= τ̂k

(
m, ρ

(
g−1
j→k(m)

)
v
)

(equation (19))

=
[
σk(m), ρ

(
g−1
j→k(m)

)
v
]

(equation (15))

=
[
σk(m)g−1

j→k(m), v
]

(equation (14))

=
[
σj(m), v

]
(equation (17))

= τ̂j(m, v) (equation (15)).

78This uses the right action of G on the principal bundle. Contrast this to equation (9), which expresses the
transition function using a left action.

79Text below equation (4) in de los Ŕıos (2020), section 3.2
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26 Recovering the preview in chapter 21

This chapter shows how to relate transition functions ρ(gj→k) of the vector bundle
to the transition functions (9) of the associated principal bundle defined in chapter
22. The fiber G̃ will be treated as the group G, as in chapter 9, so that left and
right actions of G on the fiber are both defined.

Use the same setup that chapter 25 used, and define functions fj : Uj → G and
fk : Uk → G by

τj
(
m, fj(m)

)
= σj(m) τk

(
m, fk(m)

)
= σk(m). (20)

Then, for all m ∈ Uj ∩ Uk,

σk(m) = σj(m)gj→k(m) (equation (17))

= τj
(
m, fj(m)

)
gj→k(m) (equation (20))

= τk
(
m, τj→k(m)fj(m)

)
gj→k(m) (equation (8))

= τk
(
m,hj→k(m)fj(m)

)
gj→k(m) (equation (9))

= τk
(
m,hj→k(m)fj(m)gj→k(m)

)
. (equation (7))

Compare this to the second equation in (20) to deduce

hj→kfj(m)gj→k(m) = fk(m). (21)

We’re treating the fiber G̃ as the group G, so we can take both fj(m) and fk(m)
to be the identity element I of the group. With that special choice, equation (21)
reduces to hj→kgj→k(m) = I, and then the transition functions (19) for the vector
bundle may be written as

τ̂j→k(m)v = ρ(hj→k(m))v. (22)

Given transition functions hj→k for the principal bundle (equation (9)), this shows
that we can construct the associated vector bundle from patches using ρ(hj→k) as
its transition functions, as anticipated in chapter 21.
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