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The Concept of Entropy as the
Foundation for Statistical Mechanics

Randy S

Abstract Statistical mechanics is the microscopic foundation
for thermodynamics. In addition to its practical applications,
it plays a key role in ongoing research about the relationship
between general relativity and quantum physics. This article
gives a concise introduction to statistical mechanics, illustrated
using a simple model that has practical applications.
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1 Introduction

In a macroscopic system made of an enormous number of molecules, we can’t
predict exactly what will happen to all of those molecules. Our knowledge of the
initial conditions is never good enough,1 and even if it were, solving the equations
of motion in perfect detail would be too difficult.

Thankfully, we don’t normally need to know exactly what will happen, and
sometimes we can make useful predictions based on very little information. Suppose
we have some complicated system of molecules about which we know these things:

• We know that its total energy is E.

• We know that its total volume is V .

• We know the number of mutually orthogonal states2 consistent with those
constraints as a function of E and V . I’ll write this number as Ω(E, V ).

Statistical mechanics is the art of relating Ω(E, V ) to the system’s thermody-
namic properties. Practical applications of statistical mechanics start with our
ability to determine the number Ω(E, V ) from a detailed model of the system.
This article introduces the basic ideas of statistical mechanics, illustrated using a
simple example.

By the way, the logic can also be run in reverse: if we don’t already know an
appropriate detailed model, then we can use clues from thermodynamics to infer
things about how the number Ω(E, V ) must depend on E and V . This can give
us valuable information about what a good detailed model must be like. Such
clues played an important role in research about the relationship between general
relativity and quantum physics, where they led to the holographic principle.

1Even a slight error in our knowledge would quickly lead to enormous errors in the prediction, because such
complicated systems tend to be chaotic. A quantitative example is shown in https://physics.stackexchange.

com/q/675735.
2The context is quantum theory, in which a state can be represented by a vector in the Hilbert space. The words

mutually orthogonal here refer to the inner product between the vectors that represent the states. Every state
vector consistent with the given constraints on E, V can be expressed as a quantum superposition of a subset of
those vectors that are all orthogonal to each other in this sense.
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2 When is statistical mechanics useful?

Let H(E, V ) be the set of states that have energy ≤ E and volume ≤ V , and let
Ω(E, V ) denote the number of states in an orthogonal basis for H(E, V ).3 Roughly,
statistical mechanics is useful when these conditions are satisfied:

• Condition 1: The number Ω(E, V ) is finite.4

• Condition 2: Almost all of the states in H(E, V ) “look the same” with
respect to the macroscopic properties of interest. States in this majority are
often called typical. The same condition can be expressed like this: almost
all microstates give the same macrostate. A microstates is a complete spec-
ification of the state’s microscopic details, and a macrostate specifies only
the few macroscopic properties of interest.

• Condition 3: No matter what the microscopic details of the initial state
may be, we have no reason to expect the system to remain in any specific
subset of H(E, V ).

Conditions 2 and 3 mean that we expect the system to end up spending practically
all of its time in typical states, even if it started in a non-typical state. In other
words, the system eventually reaches equilibrium. This article introduces the
ideas using a relatively simple system, the ideal gas, as an example.

3Mnemonic: H is for Hilbert space, and Ω is for orthogonal.
4Article 23206 gives a little more insight into this.
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3 Entropy, temperature, and pressure

The number Ω(E, V ) is finite, but it is typically enormous (section 6). Working
with the natural logarithm of Ω(E, V ) turns out to be convenient, so we will give
this quantity a special name, entropy, and a special symbol:

S(E, V ) = k log Ω(E, V ) (1)

where “log” is the natural logarithm function.5 The definition of entropy includes a
factor of Boltzmann’s constant k for convenience in practical applications, but
it’s nothing but a nuisance in theoretical studies, so we often use natural units
(article 37431) in which k = 1. In this article, I’ll retain the factor of k.

In statistical mechanics, everything else is derived from this one function S(E, V ).
To study a specific system, the first thing we need to do is obtain an explicit ex-
pression for this function. Once we have that, we can define/derive many of the
system’s thermodynamic properties with relative ease. In particular, the tempera-
ture T and pressure p are defined like this:

1

T
≡ ∂S

∂E

p

T
≡ ∂S

∂V
. (2)

The definitions (2) might look unfamiliar, but they are simple. Most of this article
is devoted to checking that they are consistent with the more familiar notions of
temperature and pressure.

5Sometimes this is denoted “ln,” but I prefer the notation “log” because it’s easier to read. Sometimes engineers
use “log” to denote the base-10 logarithm, but that’s rarely used in theoretical physics, and when we do need to use
it we can write it as log10 instead.
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4 Example: the entropy of an ideal gas

An ideal gas is a simple model of a gas. Despite its simplicity, it is a good
approximation for some purposes. The model assumes that the system’s total
energy is just the sum of the kinetic energies p2/2m of the individual molecules,
where p is a molecule’s momentum and m is its mass. The molecules are all
identical, so they all have the same mass m.

Article 23206 deduces that the number of orthogonal states of an ideal gas of
N identical molecules is6

Ω(E, V ) ∝
(m
~2
E
)DN/2

V N (3)

where ~ is Planck’s constant and D is the number of spatial dimensions.7 The
derivation of (3) uses quantum physics (article 23206), and the presence of ~ is a
symptom of this. The proportionality factor depends on the number of molecules
N , but that won’t matter in this article because we will regard N as a fixed quantity
(no molecules enter or leave the given volume).

Use equations (1), (3), and the properties of the function log x to get

S(E, V ) = constant +
DN

2
k logE +Nk log V. (4)

This is the entropy of an ideal gas of N molecules. The constant (E- and V -
independent) term comes from the unwritten proportionality factor in equation (3)
and from the factor m/~2.

6 A molecule with angular momentum L is a fermion if L is an odd integer multiple of ~/2 and is a boson if
L is an even integer multiple of ~/2. Equation (3) assumes that E, V are large enough (or that N is small enough)
so that the difference between the fermion and boson cases is insignificant (article 23206). This is a classical ideal
gas, except for the N -dependent proportionality factor that I’m not showing here anyway.

7Even though D = 3 in the real world, the math is just as easy for D-dimensional space, so we might as well keep
it general.
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5 Temperature and pressure of an ideal gas

The temperature and pressure of an ideal gas are easily computed from the defini-
tions (2), using equation (4) for the entropy. For the temperature T , the definition
(2) gives

kT =
2E

DN
. (5)

This says that temperature of an ideal gas is proportional to the average energy per
molecule – specifically the average kinetic energy per molecule, because all of the
energy of an ideal gas is kinetic. This is consistent with the more familiar physical
concept of temperature.8 Section 11 shows another check that the definition (2) is
consistent with our usual concept of temperature.

For the pressure p, the definition (2) gives

pV = NkT. (6)

This is called the equation of state for an ideal gas.

8In most models of interest, the temperature is an increasing function of E, but exceptions do exist, like the one
described on page 105 in Reif (1965).
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6 Some numbers for perspective

Equations like (3) and (4) are easy to write, but they represent numbers of enormous
magnitude. As an example, consider one gram of nitrogen gas at room temperature
and standard atmospheric pressure.9 The number of molecules in one gram of
nitrogen is N ∼ 2×1022. (The notation “∼” indicates a very rough approximation.)
Section 5 showed how to calculate V and E from this information. Here are the
results: The volume is V ∼ 1 liter, and the energy10 is E ∼ 100 joules. Use these
quantities to get (m

~2
E
)3/2

V ∼ 1068.

After restoring the N -dependent factor that was omitted in equation equation (3),
the number of orthogonal states is

Ω(E, V ) ∼ 1

N !

((m
~2
E
)3/2

V

)N

.

With the help of Stirling’s approximation for N !, we can write this as

Ω(E, V ) ∼ N−1/2

(
e

N

(m
~2
E
)3/2

V

)N

∼ 10−11 × (5× 1046)N

That’s a big number. The number of digits we would need just to write the number
Ω(E, V ) in base 10 is even larger than the number of molecules in the gas! A number
like 101000000 is tiny compared to this.

9Most of the molecules in the atmosphere are nitrogen molecules (N2). One mole (≈ 6 × 1023 molecules) of N2

has a mass of approximately 28 grams.
10This value of E represents the sum of the molecules’ kinetic energies, as assumed by the ideal gas model. It does

not include the energy mc2 that is stored in the mass of each molecule, which would only be relevant in extreme
circumstances where that energy could be accessed and converted to other forms.
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7 Typical states and volume, part 1

Consider an airtight cylinder with two chambers separated from each other by a
removable partition, as illustrated here:

gas vacuum gas

remove partition

A B

Initially, one chamber is filled with gas and the other chamber is empty (vacuum).
What happens when the partition is removed? Let V be the total volume inside
the cylinder.11 When the partition is removed, we expect the gas to quickly fill the
whole volume V with a (lower) uniform density, as shown in the diagram.

Why do we expect the gas to fill the volume V ? The set H(E, V ) of allowed
states includes states in which the density is far from uniform, but:

• Almost all of the states in H(E, V ) have practically uniform density. In other
words, states with uniform density are typical. The next section checks this
for the ideal gas model.

• We don’t expect the gas to favor any special subset of H(E, V ).

These are conditions 2 and 3 in section 2, and this is why we expect the density to
end up being practically uniform.

By the way, just like states with practically uniform density are typical, states
with a particular distribution of molecular velocities are also typical. For a classical
ideal gas (footnote 6), the typical distribution of velocities is called the Maxwell-
Boltzmann distribution.

11Suppose that the total energy E of the gas does not change, which amounts to assuming that the cylinder is
perfectly thermally insulated. The total number N of molecules does not change because the cylinder is airtight.
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8 Typical states and volume, part 2

The previous section asserted that states with practically uniform density are typi-
cal. To check this, write the number of orthogonal states as Ω(E, V,N) to indicate
the number N of molecules explicitly, and consider the product

f(ν) ≡ Ω(ε, ν, n)Ω(E − ε, V − ν,N − n), (7)

which is the number of states for which n of the molecules occupy a part of the
cylinder with volume ν and the remaining molecules occupy the remaining vol-
ume,12 and a given distribution of energy. According to equation (3), the number
(7) is proportional to

f(ν) ∝ νn(V − ν)N−n (8)

with a ν-independent overall factor. For a given value of n, the value of ν that
maximizes this quantity is the one that satisfies df/dν = 0. This condition is
equivalent to d log f/dν = 0, which in turn is equivalent to

n

ν
=
N − n
V − ν

. (9)

This says that the number (7) is maximized when the densities are equal to each
other, in which case they are both equal to N/V .

Now consider all possible values of ν. Almost all states in this ensemble satisfy
the condition n/ν = N/V almost exactly. To see this, write the function (8) as

f(ν) ∝
(
νr(V − ν)1−r)N (10)

with r ≡ n/N . We already determined that the function νr(V −ν)1−r is maximized
by ν = rV , and in (10) this function is raised to the Nth power with N ∼ 1023.
That amplifies the height and narrowness of the peak to an extreme degree (figures
1 and 2 show the trend), so the number of states with other values of ν is negligible
compared to those with v very close to V/N .

12For the quantum version of an ideal gas, we don’t need to (and can’t) specify which molecules, because observables
are tied to regions of space, not to individual molecules. This is traditionally expressed by saying that the molecules
are indistinguishable.
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Figure 1 – Graphs of the function (ω(x))N with N = 1 (top) and N = 10 (bottom), where
ω(x) = xr(1 − x)1−r and r = 1/3. (Compare to equation (10) with x ≡ ν/V .) Figure 2 shows
the graphs for N = 100 and N = 1000. 11



cphysics.org article 66313 2024-05-21

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0 0.2 0.4 0.6 0.8 1.0
x

Figure 2 – Graphs of the function (ω(x))N with N = 100 (top) and N = 1000 (bottom), where
ω(x) = xr(1− x)1−r and r = 1/3. The vertical dashed lines indicate the range of x-values that
contains 99.9% of the area under the curve. 12
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9 Typical states and energy, part 1

Here’s another example of condition 2 in section 2. Consider a system composed of
two subsystems whose individual volumes are fixed but that can exchange energy
with each other. To be specific, consider a cylinder with two gas-filled chambers
A and B separated by a partition. The position of the partition is fixed, so the
volumes on each side are fixed, but the partition conducts heat so that the gas on
one side can exchange energy with the gas on the other side:

gas vacuum gas

remove partition

A B

The number of orthogonal states of the combined system is

f(ε) = ΩA(ε)ΩB(E − ε) (11)

where E is the total energy of the combined system and ε is the energy of subsystem
A. The volume-dependence is not indicated, because the volumes are all fixed.
The subscripts on ΩA,ΩB allow for the fact that the two sides could have different
volumes, different densities, different numbers of molecules, and even different types
of molecules.

The next section shows that for an ideal gas, if the number of molecules is
sufficiently large, then almost all of the states of the combined system have almost
exactly the same value of ε. This is another example of condition 2 in section 2.
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10 Typical states and energy, part 2

Consider an ideal gas. We can use the same approach as in section 8, but now
focusing on the energy instead of on the volume. Let N be the total number of
molecules, so that the numbers of molecules in subsystems A and B are rN and
(1− r)N for some 0 < r < 1. Using equation (3) in (11) gives

f(ε) ∝
(
εr × (E − ε)(1−r)

)ND/2

.

Using the same technique that led to equation (9), we find that the quantity

εr × (E − ε)(1−r) (12)

has a maximum at the value of ε that satisfies

r

ε
=

1− r
E − ε

, (13)

namely ε = rE. After raising (12) to a large power, like DN/2 ∼ 1023, the resulting
function is almost entirely concentrated within a very narrow range of ε-values
about rE. This shows that the number of states witih other values of ε is negligible
compoared to those with ε very close to rE.
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11 Temperature and equilibrium

Our usual intuition about temperature says that two systems that can exchange
energy with each other should end up having the same temperature. Let’s see
how to derive this property from the entropy-based definition of temperature in
equation (2).

As in sections 9-10, consider a system composed of two subsystems whose in-
dividual volumes are both fixed, but their individual energies are not: they can
exchange energy, so that only the total energy is fixed. Suppose that condition 2
in section 2 is satisfied, as demonstrated in the previous section. Almost all of the
microstates have almost exactly one special value of ε, namely the one that max-
imizes the product (11). From this we can infer that the number of microstates
with total energy E is

Ω(E) ∝ ΩA(ε)ΩB(E − ε)
to a good approximation, so the entropy is

S(E) ≈ SA(ε) + SB(E − ε) + constant

to a good approximation. By definition, the typical value ε is the one that maxi-
mizes the summand in (11), so it satisfies the maximization condition

d

dε

(
SA(ε) + SB(E − ε)

)
= 0.

According to the entropy-based definition of temperature, the first of equations
(2), this implies TA = TB. In other words, assuming that condition 2 in section
2 is satisfied (as shown in the previous section), for practically all states of the
combined system, the temperatures of the two subsystems are equal to each other.
This is consistent with the more familiar concept of temperature.
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12 Pressure and equilibrium

Consider two subsystems that can exchange both energy and volume with each
other. To be specific, consider two gas-filled chambers separated from each other
by a partition that conducts heat (so the gases can exchange energy) and that is
freely movable (so the gases can exchange volume), as depicted here:

A B

Our usual intuition about pressure says that in this situation, the two subsystems
should end up having the same temperature and the same pressure.

To derive this from the entropy-based definitions (2), let NA and NB denote
the numbers of molecules in A and B. We’re assuming that the partition is imper-
meable, so these numbers are fixed. We can use the same kind of reasoning as in
sections 8 and 10, now applied to the product

ΩA(ε, ν)ΩB(E − ε, V − ν). (14)

For an ideal gas, this is maximized by

ε = rE ν = rV

with

r =
NA

NA +NB
.

If the number of molecules is sufficiently large, then the function (14) is almost
entirely concentrated within a very narrow range about these special values of ε
and ν. Just like in section 11, this shows that the two subsystems have practically
equal temperatures and pressures for practically all states of the combined system.
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This is an example of condition 2 in section 2. Combining this with condition
3 in section 2, we expect that the two subsystems will end up having the same
temperature and the same pressure. This is consistent with the familiar concept of
pressure.

In this example, we allowed the subsystems to exchange both energy and volume
(instead of only volume) because:

• The definition of pressure in equation (2) also involves the temperature, so
if only volume-exchange were allowed, then both subsystems would end up
having the same p/T , but not necessarily the same T – and therefore not
necessarily the same p.

• In contrast to keeping the volumes of A and B fixed, which we can do just
by making the partition non-movable, finding a way to keep the energies of
A and B fixed (while still allowing them to exchange volume) is trickier. For
an ideal gas, equation (5) says that we could do this by keeping the their
temperatures fixed, but for non-ideal gases the temperature may depend on
both E and V , not just on E.

17
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13 The first law of thermodynamics

If the energy and/or volume are changed by small amounts dE and dV , respectively,
then the corresponding change in entropy is

dS =
∂S

∂E
dE +

∂S

∂V
dV. (15)

This is a mathematical identity. It relies only on the fact that S is a smooth function
of E and V , and on the assumption that E and V are the only variable inputs to
S. (Equation (15) assumes that other inputs, like N , are fixed.) According to the
definitions (2), the same identity may also be written like this:

T dS = dE + p dV. (16)

This is called the First Law of Thermodynamics. It applies whenever the
changes are small.
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14 Heat and work

The first law (16) includes these special cases:

• If dV = 0, then dE = T dS. This way of exchanging energy is called heat.

• If dS = 0, then dE = −p dV . This way of exchanging energy is called work.

More generally, though, T dS isn’t always what we normally call heat, and p dV
isn’t always what we normally call work. To see this, consider a configuration like
the one depicted in section 7, but with lots of very closely spaced partitions instead
of only one, and with no gas between the partitions. Suppose that the system is
completely self-contained, with no outside world to interact with, so dE = 0. Let V
be the volume occupied by the gas.13 Removing the innermost partition (the only
one in contact with the gas) changes the volume by a very small amount dV > 0
if the distance to the next partition is very small. Equation (4) says that this also
gives dS > 0. At least on paper, we can make these changes as small as we like, so
we can use the first law (16). However:

• Even though p dV > 0, we would not normally say that any work is being
done by (or on) the gas in this process.

• Even though T dS > 0 we would not normally say that any heat is going into
the gas in this process.

This shows that T dS isn’t always what we normally call heat, and p dV isn’t always
what we normally call work. The beginning of this section defined heat and work
only for dV = 0 and dS = 0, respectively. They can be defined more generally
when we have a clear separation of different scales (microscopic and macroscopic),
which is often the case in practice, but I won’t try to formalize that here. Instead,
I’ll avoid using the terms heat and work at all, except when dV = 0 and dS = 0
(respectively) where their definitions are straightforward.

13This is different than section 7, where V included the part of the cylinder that was initially not occupied by gas.

19



cphysics.org article 66313 2024-05-21

15 The second law of thermodynamics

The second law of thermodynamics says that the entropy of an isolated system
does not decrease. If we consider the entropy S(E, V ) to be a function of the
constraints that we impose on E and V , then the entropy of an isolated system
cannot change at all – because the system wouldn’t really be isolated if an external
agent changed the imposed values of E and V . However, if we consider the entropy
S(E, V ) to be a function of known constraints on E and V , then the entropy can
increase with time.

To illustrate this, consider the case depicted in section 7. Immediately after the
partition is removed, the imposed constraint on the volume of the gas is the total
volume of the cylinder, but the volume that the gas is known to occupy is smaller,
because the molecules don’t move infinitely fast, so we know that the occupied
volume grows at a finite rate. If V denotes the smallest volume in which we know
the gas must still be contained because we know something about how fast the
molecules move, then the entropy S(E, V ) increases at a finite rate while the gas
is expanding to fill the cylinder. This illustrates the sense in which the entropy of
an isolated system can increase with time.

More generally, the second law is really just a restatement of condition 3 in
section 2. Those conditions say that the system should eventually end up spending
practically all of its time in typical states, but they don’t prevent the system from
starting in a very non-typical state, like the gas in section 7 immediately after
the partition is removed. If the system starts in a non-typical state, then reaching
equilibrium (the condition of spending practically all of its remaining time in typical
states) takes time. If we know enough about the system’s dynamics, then we
may be able to say something about how its macroscopic properties will change
with time. Condition 3 says that the change will always be in the direction of
increasing entropy, which is the second law of thermodynamics. Of course, this is
only a statement about our incomplete knowledge of the system, but this incomplete
knowledge is often enough to make very confident preditions, as emphasized at the
end of sections 8 and 10.

20
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16 Relating pressure to force

The everyday concept of pressure is defined as a force per unit area. Is that
consistent with the entropy-based definition of pressure given by equations (2)?

To check this, consider a cylinder with a partition that can slide along the length
of the cylinder without friction. Suppose that one side is filled with gas and the
other side is empty (vacuum), as depicted here:

gas vacuumvacuum

Suppose that:

• The gas and the partition do not exchange energy with the fixed walls of the
cylinder.

• The gas can exchange energy with the partition, but only through the motion
of the partition’s center-of-mass.

The system consisting of the gas and the partition’s center-of-mass is isolated: it
is neither influencing nor being influenced by anything else. The total energy of an
isolated system is conserved, so if E is the energy in the gas and Ẽ is the kinetic
energy of the partition’s center-of-mass motion, then E + Ẽ is constant in time.
Each collision of a gas molecule with the partition transfers some energy from E to
Ẽ (or conversely, depending on which direction the partition is moving), but their
sum remains constant.

Suppose that the partition moves slowly enough so that the gas is always in
equilibrium – that is, practically always in states that are typical for the current
volume – so that the distinction between the imposed volume and the known volume

21
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(section 15) does not matter. Even though E and V are both changing, the entropy
S(E, V ) of the gas is constant to an excellent approximation. That’s because the
equations of motion governing an isolated quantum system are unitary, which
means that initially-orthogonal states remain orthogonal as time passes.14 Entropy
quantifies the number of orthogonal states, so the total entropy of the system cannot
change. This total entropy includes the entropy of the gas and of the partition’s
center-of-mass states, but the latter is negligible because the partition is treated as
one big elementary object compared to N ∼ 1023 molecules in the gas. Therefore,
the entropy S(E, V ) of the gas itself is constant to an excellent approximation.

We can choose a brief interval of time and apply first law (16) to that interval,
because the changes during that interval are small. Since dS = 0 as explained
above, the first law gives dE + p dV = 0, which can also be written p = −dE/dV .
We can write the change in volume as dV = Adx, where A is the partition’s area
and dx is the change in its position along the length of the cylinder. This gives

p = −dE/dx
A

.

The quantity dE in the numerator is the change in the energy E of the gas. If Ẽ
denotes the kinetic energy of the partition’s center-of-mass motion, then E + Ẽ is
constant because we assumed that no energy is lost into the microscopic details of
the walls or partition. This implies

p =
dẼ/dx

A
.

The quantity F defined by dẼ = F dx is the force applied to the partition, because
work = force × distance. Altogether, this gives p = F/A. The p in this equation is
the entropy-based definition of pressure (equations (2)), so this result confirms that
the entropy-based definition of pressure is consistent with the everyday concept of
pressure: force per unit area.

14Unitary is a stronger condition than reversible.
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