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Scalar Quantum Fields on a
Spacetime Lattice

Randy S

Abstract This article introduces the path integral formulation of
quantum field theory for scalar quantum fields, treating spacetime as
a (very fine) lattice to make the whole construction mathematically
unambiguous. In this formulation, time evolution is expressed in terms
of an action (the integral of a lagrangian) that has a manifestly Lorentz
symmetric continuum limit. This can be viewed as the quantum version
of the action principle. Starting with the path integral formulation, this
article explains how to recover the hamiltonian formulation that was
used in article 52890, including the equal-time commutation relations.
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1 Introduction

Different ways of formulating the same thing can lead to different insights. Article
52890 introduced one way of constructing models in quantum field theory (QFT),
one in which time-evolution is implemented by a hamiltonian. I’ll call that the
hamiltonian formulation. This article introduces of a different approach called
the path integral formulation and explains its relationship to the hamiltonian
formulation. As in article 52890, this article considers only simple models of scalar
quantum fields, but the approach can be extended to other kinds of models, too.

Article 52890 treats space as a (very fine) lattice. This article treats spacetime
as a (very fine) lattice. For that reason, the two formulations are not equivalent to
each other, but they are effectively equivalent to each other for predictions whose
time-resolution is much coarser than the discrete lattice time-increment. That’s
sufficient for applications, because the lattice is artificial anyway.

This article also introduces Wick rotation. Conceptually, Wick rotation con-
verts the signature of the spacetime metric from lorentzian to euclidean, so Lorentz
symmetry in d-dimensional spacetime becomes ordinary rotation symmetry in d-
dimensional euclidean space. This is a different way of encoding the same informa-
tion: the original encoding in lorentzian spacetime can be recovered by un-doing
the transformation. One advantage of the euclidean version is that it makes QFT
resemble classical statistical mechanics, so insights and methods from that subject
area can be used to help improve our understanding of QFT.

Another advantage of the euclidean encoding is that it provides an explicit
expression for vacuum expectation values that doens’t require knowing which el-
ement of the Hilbert space represents the vacuum (lowest-energy) state. For this
reason, the euclidean version is often used as the model’s definition, from which
the lorentzian version is recovered through Wick rotation.1 This article does the
opposite: it uses the lorentzian version as the definition, and then the euclidean
version is introduced as a tool for streamlining calculations.

1For this to work, the euclidean version must satisfy a condition called (Osterwalder-Schrader) reflection
positivity (explained in Montvay and Münster (1997), section 1.3, and in Simmons-Duffin (2016), section 7.1).
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2 Preview

In quantum theory, states can be represented by vectors in a Hilbert space. In the
Schrödinger picture,2 evolution from an initial state-vector |Ψi〉 at time ti to a final
state-vector |Ψf〉 at time tf is implemented by a unitary operator U :

|Ψf〉 = U |Ψi〉. (1)

Article 52890 described one approach to constructing models of a scalar quantum
field, treating space as a (very fine) lattice to make everything mathematically
unambiguous. In that approach, time is still continuous, so the unitary operator
U may be written as U = e−iH ∆t, where H is the hamiltonian and ∆t ≡ tf − ti.

This article introduces a different approach in which both space and time are
discrete. One real variable φ(x), called a field variable, is associated with each
point x in spacetime. If [φ]R denotes the set of all φ(x) with x ∈ R, then equation
(1) can be formulated like this:

Ψf [φ]C ∝
∫

[dφ]A∪B exp
(
iS[φ]A∪B∪C

)
Ψi[φ]A (2)

with these definitions of the sets A,B,C:

A is the set of spacetime points at time ti,

B is the set of spacetime points with times in the range ti < t < tf ,

C is the set of spacetime points at time tf .

The action S is the lattice version of the integral over x of a Lorentz-invariant
lagrangian, so the emergence of Lorentz symmetry at low resolution (compared to
the lattice scale) is more intuitive than in the hamiltonian formulation.

An integral over an enormous number of field variables, like the integral (2), is
often called a path integral.3 Sections 3-7 introduce this approach in more detail,
and sections 10-12 recover the hamiltonian formulation from it.

2Article 22871
3This name made more sense when applied to single-particle quantum mechanics (Feynman (1948)), but now it’s

used more generally (Weinberg (1995)). It’s also called a functional integral (Peskin and Schroeder (1995)).
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3 The lattice and the Hilbert space

Spacetime will be treated as a very fine lattice of indefinite extent along the time
axis and finite extent along each of the spatial axes. This notation will be used:

• The number of spatial dimensions will be denoted D, so that spacetime is
D + 1-dimensional.

• The number of points along each spatial axis will be denoted K, so that the
total number of points at any given time is KD.

• A point in spacetime will be denoted x = (t,x), where t is the time coordinate
and x is the list of spatial coordinates.

A state4 is represented by a complex-valued function Ψ[φ] of the KD field variables
φ(x) associated with all points x in space at a single time. Given two states Ψ1[φ]
and Ψ2[φ], their inner product is

〈Ψ1|Ψ2〉 ≡
∫

[dφ] Ψ∗1[φ]Ψ2[φ] (3)

≡
∫ (∏

x

dφ(x)

)
Ψ∗1[φ]Ψ2[φ].

The integral is over the full range −∞ < φ(x) < ∞ of each of the real variables
φ(x).5 Only functions Ψ[φ] for which 〈Ψ|Ψ〉 is finite can be used to represent
states.6

4The rest of this article uses the word state to mean a state-vector in the Hilbert space.
5This representation of the Hilbert space is the same as the one used in article 52890, but with a different notation:

here, the independent variables are denoted φ.
6Article 03431
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4 The action

For motivation, temporarily let φ(x) denote an ordinary real-valued function of
spacetime, and consider the Lorentz-invariant action functional

S[φ] =

∫
dD+1x

(
ηab
(
∂aφ(x)

)(
∂bφ(x)

)
2

− V
(
φ(x)

))
, (4)

where ηab are the components of the Minkowski metric and V is a real-valued
function of a single real variable. This action could be used to define a model of a
classical scalar field,7 but here we will use it to define a model of a quantum scalar
field instead.8 To do this, we’ll think of the field φ(x) as a collection of independent
real variables, one for each point x in spacetime. To make this unambiguous,
spacetime will be treated as a discrete lattice, one whose extent in the spatial
dimensions is finite, as described in section 3. Then the number of field variables
φ(x) is finite when limited to points x in at any given finite interval of time.

Writing φ̇ for the derivative of φ with respect to the time coordinate and ∇φ
for the gradient of φ with respect to the spatial coordinates, the action (4) may
also be written

S[φ] =

∫
dD+1x

(
φ̇2(x)−

(
∇φ(x)

)2

2
− V

(
φ(x)

))
.

When spacetime is treated as a lattice instead of a continuum, the integrals become
sums: ∫

dD+1x · · · → dt εD
∑
x

· · · , (5)

7Article 49705
8Long-standing tradition refers to the quantum model as a quantization of the classical model with the same

action, as though the logical sequence were action → classical model → quantum model. In hindsight, a more
generally helpful perspective is simply that starting with a Lorentz-invariant action is a good way to construct a
model that has Lorentz symmetry (in the continuum limit), whether it’s classical or quantum. Then the logical
sequence is action → classical on one hand, and action → quantum on the other hand, without any “classical →
quantum” progression at all. And by the way, just because a quantum model starts with the same action as some
classical model doesn’t ensure that the classical model is a good approximation to the quantum one.
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where dt is the lattice spacing in the time direction and ε is the spacing in each
spatial direction. The derivative become finite differences, like this:9

φ̇(t,x) ≡ φ(t+ dt,x)− φ(t,x)

dt
. (6)

An explicit expression for the lattice version of ∇φ won’t be needed in this article.
Altogether, the action in discrete spacetime is

S[φ] ≡
∑
t∈I

(
s1

[
φ(t+ dt), φ(t)

]
+ s0

[
φ(t)

])
(7)

where I is a specified interval of time, and φ(t) is an abbreviation for the collection
of variables φ(t,x) for all x, and10,11

s1[φ
′, φ] ≡

(
εD
∑

x

(
φ′(x)− φ(x)

)2

2 dt

)
(8)

s0[φ] ≡ −dt εD
∑

x

((
∇φ(x)

)2

2
+ V

(
φ(x)

))
.

In these last two equations, φ denotes a set of field variables consisting of one
variable φ(x) per point in space, just like in section 3. Similarly, φ′ denotes another
set of field variables consisting of one variable φ′(x) per point in space. The time
coordinate doesn’t need to be specified in these equations, because it’s specified in
equation (7) instead.

9Many different finite differences reduce to the same derivative in the continuum limit. The choice (6) keeps the
math relatively simple.

10In s1, the overall factor of dt has been cancelled by one of the factors of dt in the denominator of φ̇2.
11The transfer matrix (section 5) could be made more symmetric by splitting the s0 term between the two times

t and t+ dt, like Montvay and Münster (1997) does in equation (1.186), but that would make the equations longer
without adding to any insight to the topics in this article. (It can help when studying reflection positivity [footnote
1 in section 1], as in Montvay and Münster (1997).)
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5 The time-evolution equation

Section 2 previewed the time-evolution equation for states the Schrödinger pic-
ture.12 This section describes it more explicitly, using the Hilbert space that was
defined in section 3 and the lattice action that was defined in section 4. Let Ψt[φ]
denote the state at time t, as a function of the field variables φ associated with
that one time. The time-evolution equation for a single time-step is

Ψt+dt[φ
′] =

∫
[dφ] T [φ′, φ]Ψt[φ] (9)

where T is the transfer matrix defined by

T [φ′, φ] = N exp
(
is1[φ

′, φ] + is0[φ]
)

(10)

with i2 = −1, where N is a normalization factor that will be determined in section
6. It’s called a matrix because the integral in (9) is analogous to a sum over the
continuous “index” φ. Equations (9)-(10) define T as an operator on the Hilbert
space, so we can also write equation (9) as

|Ψt+dt〉 = T |Ψt〉.

Evolution through M time-steps is given by applying M factors of T :

|Ψt+M dt〉 = TM |Ψt〉. (11)

According to equations (7), (9), and (10), this may also be written

Ψt+M dt

[
φ(t+M dt)

]
= NM

∫ M−1∏
m=0

[
dφ(t+mdt)

]
exp

(
iS[φ]

)
Ψt

[
φ(t)

]
(12)

with S defined by equation (7) for the time interval I that starts with t and ends
with t+ (M − 1)dt. Equation (12) is the more explicit version of equation (2).

12The time-evolution equation for states the Schrödinger picture is often called the Schrödinger equation. This
generalizes the name from models of strictly nonrelativistic particles to arbitrary models.
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6 Unitarity

In quantum theory, time evolution should be unitary, as reviewed at the beginning
of section 2. In the path integral formulation, time is discretized so that the con-
struction is mathematically unambiguous, but we’re really only interested in the
continuous-time limit, so requiring time evolution to be unitary in the continuous-
time limit would be good enough.

When the time-derivative term in the action has the form shown in equation (8),
the transfer matrix defined by equations (9)-(10) is already unitary even without
taking the continuous-time limit.13 The proof is an application of the identity14

f(r) =

∫ ∞
∞

dp

2π

∫ ∞
∞

ds ei(r−s)pf(s),

which holds for all square-integrable15 complex-valued functions f(r) of a single
real variable r. This identity is often abbreviated∫ ∞

∞

dp

2π
ei(r−s)p = δ(r − s), (13)

where δ is the Dirac delta distribution.14 If two state-vectors |Ψ1〉 and |Ψ2〉 are
represented by the functions Ψ1[φ] and Ψ2[φ], then equations (3) and (9) say that
the inner product of T |Ψ1〉 with T |Ψ2〉 is

〈Ψ1|T †T |Ψ2〉 =

∫
[dφ′][dφ′′] Ψ∗1[φ

′]Ω[φ′, φ′′]Ψ2[φ
′′] (14)

with

Ω[φ′, φ′′] ≡
∫

[dφ] T ∗[φ, φ′]T [φ, φ′′].

13In many other models, the analog of this formulation is not unitary as it stands, but unitarity can be restored
with the help of Wick rotation. Article 51033 gives an example.

14Article 58590
15Square-integrable means that

∫∞
∞ dr

∣∣f(r)
∣∣2 is finite.
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Equations (8) and (10) give

Ω[φ′, φ′′] = N 2 exp

(
is0[φ

′′]− is0[φ
′] +

i εD

2 dt

∑
x

((
φ′′(x)

)2 −
(
φ′(x)

)2
))

×
∫

[dφ] exp

(
iεD
∑

x

φ(x)
φ′(x)− φ′′(x)

dt

)

and then the identity (13) gives

Ω[φ′, φ′′] =
∏
x

δ
(
φ′(x)− φ′′(x)

)
if we choose

N =

(
2π dt

εD

)KD/2

.

Use this in (14) to get
〈Ψ1|T †T |Ψ2〉 = 〈Ψ1|Ψ2〉. (15)

The result 〈Ψ1|TT †|Ψ2〉 = 〈Ψ1|Ψ2〉 may be derived the same way, so this shows
that the transfer matrix T is a unitary operator on the Hilbert space, at least in
this family of models.
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7 Field operators and time-ordered products

Using the representation defined in section 3, a state |Ψ〉 can be represented by
a function Ψ[φ]. For each of the field variables φ(x) on which the function Ψ[φ]
depends, we can define a corresponding operator φop(x) on the Hilbert space, called
a field operator. The field operator φop(x) is defined by this condition:

The state φop(x)|Ψ〉 is represented by the function φ(x)Ψ[φ]. (16)

The time-dependent field operators are then defined by

φop(t,x) = U(−t)φop(x)U(t) (17)

where U(t) are the unitary time-translation operators. The operators φop(x) all
commute with each other, but the operators φop(t,x) don’t. In particular, φop(t,x)

does not commute with its time derivative φ̇op(t,x).16

In the path integral formulation, instead of using (17) directly, time-dependent
field operators usually enter through quantities like

〈Ψ̃|U(tf − tN)φop(xN) · · ·φop(x2)U(t2 − t1)φop(x1)U(t1 − ti)|Ψ〉 (18)

with
tf > tN > · · · t2 > t1 > ti. (19)

Thanks to the identity U(t+ s) = U(t)U(s), the quantity (18) may also be written

〈Ψ̃|U(tf)φop(tN ,xN) · · ·φop(t2,x2)φop(t1,x1)U(−ti)|Ψ〉. (20)

This product of field operators is called a time-ordered product because of the
condition (19). To express (18) in the path integral formulation, we just need to use
equations (3), (12), and (16). In words: start with the state |Ψ〉 at the initial time
ti, use (12) to evolve it forward by the amount t1 − ti, then use (16) to apply the

16Section 12 uses the path integral formulation to derive the commutation relation.
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operator φop(x1), then use (12) to evolve it farther forward by the amount t2 − t1,
then use (16) to apply the operator φop(x2), and so on until reaching the final time

tf , and then use equation (3) to form the inner product of that final state with |Ψ̃〉.
The result is that (18) is proportional to17∫

[dφ] Ψ̃∗
[
φ(tf)

]
exp

(
iS[φ]

)
F [φ]Ψ

[
φ(ti)

]
. (21)

with

F [φ] =
N∏
n=1

φ(tn,xn). (22)

In this context, the time interval I in equation (7) is understood to be18

I = [ti, tf − dt]

so that S involves only field variables φ(x) in the time interval [ti, tf ] (equation
(7)). The integral

∫
[dφ] · · · is over all of these field variables.

More generally, applying an operator O(t,x) at time t is represented by insert-
ing an appropriate function of the field variables into the integrand of the path
integral, so operators are often called insertions. In this context, operators are
also sometimes called defects. Which word a given author uses may depend on
the intertion’s form or just on the author’s preference.19

The order of the factors in the product (22) doesn’t matter, because the φ(tn,xn)s
are ordinary real variables, so they all commute with each other. This is consistent
with the fact that the corresponding field operators don’t all commute with each
other, because the operators are automatically time-ordered by the path integral
(21) as explained in the text above (21).

17The proportionality factor (not written here) comes from the one in equation (10). It depends only on the
time-difference tf − ti, not on the states or the operators.

18The standard notation [x, y] means the interval that starts with x, ends with y, and includes both x and y.
19Page 10 in Moradi et al (2022), and page 21 in McGreevy (2022)
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8 The equation of motion

The equation of motion for a classical scalar field φ(x) can be expressed in terms
of the action S[φ], like this:20

∂S[φ]

∂φ(x)
= 0. (23)

In the path integral formulation, the corresponding equation of motion for the
time dependent field operators φop(x) = φop(t,x) is an easy consequence of the
time-evolution equation (21). To derive it, use basic identity∫ ∞

−∞
ds

dg

ds
= 0,

which holds for all square-integrable functions g, to get∫
[dφ]

∂

∂φ(x)
Ψ̃∗
[
φ(tf)

]
exp

(
iS[φ]

)
F [φ]Ψ

[
φ(ti)

]
= 0. (24)

This holds for any spacetime point x in the interval [ti, tf ]. Now suppose that x is

such that the functions Ψ[φ(ti)], Ψ̃[φ(tf)], and F [φ] don’t involve the variable φ(x).
Then S[φ] is the only factor in the integrand that depends on φ(x), so equation
(24) implies ∫

[dφ] Ψ̃∗
[
φ(tf)

]
exp

(
iS[φ]

)∂S[φ]

∂φ(x)
F [φ]Ψ

[
φ(ti)

]
= 0. (25)

This is the quantum-field analog of the classical equation of motion (23), and it
agrees with the equation of motion highlighted in article 52890.

20Article 49705
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9 The Schwinger-Dyson equation

The derivation of the field’s equation of motion in section 8 assumed that the factor
F [φ] did not involve φ(x) at the point x of interest. More generally, if F does involve
φ(x) but Ψ and Ψ̃ still don’t, then equation (24) implies∫

[dφ] Ψ̃∗
[
φ(tf)

]
exp

(
iS[φ]

)(
i
∂S[φ]

∂φ(x)
F [φ] +

∂F [φ]

∂φ(x)

)
Ψ
[
φ(ti)

]
= 0. (26)

This is called the Schwinger-Dyson equation. It reduces to the previous result
(25) when ∂F/∂φ(x) = 0.

14
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10 Derivation of the hamiltonian, part 1

In the continuous-time limit, the path integral formulation introduced in the pre-
ceding sections reproduces the hamiltonian formulation that was used in article
52890. This section derives the hamiltonian, and section 12 derives the equal-time
commutation relations for the time dependent field operators.

According to equations (8), (9), and (10), evolving a state Ψt through a single
time increment of duration dt gives the state

Ψt+dt[φ] = N
∫

[dφ′] exp

(
iεD
∑

x

(
φ′(x)− φ(x)

)2

2 dt

)
exp

(
is0[φ

′]
)
Ψt[φ

′]. (27)

Now use the identity21

e−iπ/4√
2πa

∫
dφ′ exp

(
i
(φ′ − φ)2

2 a

)
f(φ′) = exp

[
i
a

2

(
∂

∂φ

)2
]
f(φ). (28)

Using this identity for each of the integration variables φ′(x) in equation (27) gives

Ψt+dt[φ] = e−iπK
D/4 exp

(
i dt εD

∑
x

1

2

[
1

εD
∂

∂φ(x)

]2
)

exp
(
is0[φ]

)
Ψt[φ].

In the continuous-time limit dt→ 0, we may expand the exponentials to first order
in dt to get

Ψt+dt[φ] =
(
1− i dtH

)
Ψt[φ] +O

(
(dt)2

)
(29)

with

H = εD
∑

x

(
−1

2

(
1

εD
∂

∂φ(x)

)2

+

(
∇φ(x)

)2

2
+ V

(
φ(x)

))
+ constant. (30)

This agrees with the hamiltonian that was used in article 52890.
21To prove this, take the the Fourier transform of both sides. The resulting Fresnel integral cancels the complex

normalization factor on the left-hand side (Leonard (2007), question 8). The normalization factor shown here assumes
that a is real and positive.
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11 Derivation of the hamiltonian, part 2

The previous section considered only a single time-step. In the continuous-time
limit, the number of time-steps in any finite time interval becomes infinite. To
finish the derivation that section 10 started, we need to take the number M of
time-steps to infinity with M dt held fixed.

According to equations (9) and (29), the transfer matrix is

T = 1− i dtH +O
(
(dt)2

)
.

The transfer matrix implements evolution through a single time-step, so the oper-
ator that implements evolution through M time-steps is

TM =
(
1− i dtH +O

(
(dt)2

))M
=

(
1− i ∆t

M
H +O

(
(∆t/M)2

))M
with ∆t ≡M dt. In the limit M →∞ with ∆t fixed, the right-hand side becomes

lim
M→∞

(
1− i ∆t

M
H +O

(
(∆t/M)2

))M
= e−iH ∆t. (31)

To prove this, take the derivative of both sides with respect to ∆t and notice that
the term of order (∆t/M)2 in large parentheses does not contribute to the derivative
in the limit M → ∞. This shows that the operator (30) really is the generator
of time-translations in the continuous-time limit. In other words, it really is the
hamiltonian.

16
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12 Derivation of the commutation relations

This section uses the path integral formulation to evaluate the commutators of the
field operators φop(t,x) with their time derivatives φ̇op(t,x′), denoted

[φop(t,x), φ̇op(t,x′)] (32)

using the standard notation22 [A,B] ≡ AB−BA. The path integral (21) automat-
ically puts the field operators in time-order if the times are all distinct, so we can
calculate (32) by writing it as

[φop(t,x), φ̇op(t,x′)] = lim
δt→0

(
φop(t+ δt,x)φ̇op(t,x′)− φ̇op(t,x′)φop(t− δt,x)

)
.

We’re using a formulation in which time is discrete, so this really means

[φop(t,x), φ̇op(t,x′)] ≡ φop(t,x)

(
φop(t,x′)− φop(t− dt,x′)

dt

)
−
(
φop(t+ dt,x′)− φop(t,x′)

dt

)
φop(t,x). (33)

The two quantities in large parentheses are two different ways of discretizing the
time derivative φ̇op(t,x′), chosen so that time-ordering enforces the desired order
of multiplication.

According to section 7, the result of sandwiching (33) between two states |Ψ〉
and |Ψ̃〉 at times t− dt and t+ dt, respectively, is〈

Ψ̃
∣∣[φop(t,x), φ̇op(t,x′)]

∣∣Ψ〉
∝
∫

[dφ] Ψ̃∗
[
φ(t+ dt)

]
exp

(
iS[φ]

)
F [φ]Ψ

[
φ(t− dt)

]
(34)

with

F [φ] = φ(t,x)

(
φ(t,x′)− φ(t− dt,x′)

dt

)
−
(
φ(t+ dt,x′)− φ(t,x′)

dt

)
φ(t,x).

22This should not be confused with the same-looking notation defined in section 7, footnote 18.
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In equation (34), the interval I (equation (7)) consists of the two times t and t−dt,
and the path integral is over all of the field variables in the integrand. To keep the
equations compact, use the abbreviations

φ± ≡ φ(t± dt) φ0 ≡ φ(t)

for the sets of field variables associated with the indicated times. According to
equations (7)-(8), the factor exp

(
iS[φ]

)
F [φ] in the integrand may be written

exp
(
iS[φ]

)
F [φ] = exp

(
is1[φ+, φ0] + is0[φ0] + is1[φ0, φ−] + is0[φ−]

)
F [φ]

= exp
(
is0[φ0] + is0[φ−]

)
φ(t,x)

× 1

iεD
∂

∂φ(t,x′)
exp

(
is1[φ0, φ−] + is1[φ+, φ0]

)
.

Since this is in the integrand of the path integral, we can integrate-by-parts to
move the derivative to the other φ0-dependent factors, which gives

exp
(
iS[φ]

)
F [φ]→ − exp

(
is1[φ0, φ−] + is1[φ+, φ0]

)
× 1

iεD
∂

∂φ(t,x′)

(
exp

(
is0[φ0] + is0[φ−]

)
φ(t,x)

)
= exp

(
iS[φ])× 1

iεD

(
δx,x′ +

∂

∂φ(t,x′)
is0[φ0]

)
.

with

δx,x′ ≡

{
1 if x = x′,

0 otherwise.

The quantity s0 includes an overall factor of dt, which goes to zero in the continuous-
time limit. Altogether, this gives〈

Ψ̃
∣∣[φop(t,x), φ̇op(t,x′)]

∣∣Ψ〉 =

(
i

εD
δx,x′ +O(dt)

)
〈Ψ̃|Ψ〉, (35)

which agrees with the equal-time commutation relation in article 52890.
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13 Are time-ordered products sufficient?

The order of the factors in a product of field variables doesn’t matter in the in-
tegrand of the path integral (equations (21)-(22)), but order of the factors in a
product of field operators does matter (equations (18)-(19)). When the initial and
final states are the vacuum state, so that U(t)|0〉 = |0〉, the relationship can be
expressed concisely like this:

∫
[dφ] Ψ∗|0〉

[
φ(tf)

]
exp

(
iS[φ]

)( N∏
n=1

φ(tn,xn)

)
Ψ|0〉

[
φ(ti)

]
∝ 〈0|T

N∏
n=1

φop(tn,xn)|0〉 (36)

The symbol T means “arrange the factors in chronological order from right to left,”
and φop is the field operator corresponding to the field variable φ. The quantity
(36) is called a time-ordered correlation function.

In the path integral formulation, representing correlation functions involving
products that are not time-ordered is more awkward, but the time-slice principle23

ensures that it can be done. Section 12 showed that commutation relations among
operators at the “same time” are encoded in such time-ordered products, and article
52890 showed that the field operators at all times can be expressed entirely in terms
of those at a single time (say t = 0), so we can rest assured that the path integral
formulation is not missing anything.

Another general principle says that if the order of two events is observer-
dependent (which is possible only if the events are separated by a spacelike interval),
then observables associated with those two events must commute with each other23

– so the order doesn’t matter in that case.24 This ensures that time-ordering is

23Article 21916
24Field operators aren’t necessarily observables, but the time-slice principle implies that time-ordered products of

field operators are sufficient for constructing observables.
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consistent with the fact that time is observer-dependent.25

Time-ordering is also important when using projection operators to describe
what we know about a system’s history, which we must do (at least implicitly)
in order to choose an appropriate state for making predictions about subsequence
measurement outcomes.26

25“Time is observer-dependent” is a loose way of saying that proper duration is a property of a specific worldline
connecting two events and not a property of just the pair of events (article 48968).

26Article 03431
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14 Wick rotation and the vacuum state

One of the inputs to the path integral is the time step-size dt. The path integral
remains well-defined if the real number dt is replaced by a complex number:

dt = e−iθ × (real number).

This is called Wick rotation. A quantity like (21) – regarded as a function of dt
– can be analytically continued from the real dt axis to the complex dt plane by
rotating from θ = 0 to θ > 0.

Wick rotation is possible because the path integral’s dependence on the value of
dt comes from only two places: in the definition of the “integral” over time (equation
(5)), and in the definition of the “derivative” with respect to time (equation (6)).
The t in the arguments of the field variables φ(t,x) is really just an index: t is an
integer multiple of dt, and the integer itself would serve just as well as the index.
For that reason, the value of dt doesn’t affect φ(t,x).

To see why Wick rotation can be useful, consider what happens to equation
(29) when θ = π/2:

dt = −i dtE with dtE real and positive. (37)

After making that substitution, the time-evolution operator (31) becomes

e−H ∆tE (38)

with ∆tE defined by ∆t = −i∆tE. (Section 15 will explain the subscript E.) If
∆tE is real and positive, then applying (38) to a typical27 state suppresses the
contribution of all higher-energy states relative to the contribution of the vacuum
state. If we use (38) as the time-evolution operator in the ratio28

〈Ψ̃|U(tf − tN)φop(xN) · · ·φop(x2)U(t2 − t1)φop(x1)U(t1 − ti)|Ψ〉
〈Ψ̃|U(tf − ti)|Ψ〉

(39)

27Here, typical means not exactly orthogonal to the vacuum state. State-vectors that are exactly orthogonal to
the vacuum state-vector (or to any other given state-vector) are exceptional.

28The numerator is the time-ordered function (18), and the denominator makes the ratio independent of the
normalizations of the initial and final states.
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with typical27 states |Ψ〉 and |Ψ̃〉, then taking the limits

tf →∞ ti → −∞ (40)

(with the other times tn held fixed) converts the ratio to

〈0|U(−tN)φop(xN) · · ·φop(x2)U(t2 − t1)φop(x1)U(t1)|0〉
〈0|0〉

, (41)

where |0〉 is the vacuum state.29 If we hadn’t taken the limits (40), then making
∆t real-valued again would restore the original ratio (39). After taking the limits,
though, only the vacuum state remains, and making ∆t real-valued again cannot
undo that projection.

This works for any pair of states |Ψ〉 and |Ψ̃〉 that are not orthogonal to the vac-
uum state. Even better, we can eliminate the reference to any specific initial/final
states by considering the ratio

trace
(
U(tf − tN)φop(xN) · · ·φop(x2)U(t2 − t1)φop(x1)U(t1 − ti)

)
trace

(
U(tf − ti)

) (42)

insterad of (39). with

trace(· · · ) ≡
∑
n

〈n| · · · |n〉, (43)

where the sum is over any orthonormal basis for the Hilbert space. The initial/final
factors of (38) ensure that the trace is well-defined. As before, taking the limits (40)
leaves (41). This gives us a way to construct vacuum expectation values of time-
ordered products – quantities like (41) – without needing to know in advance which
state-vector represents the vacuum state (the state with lowest energy). The next
section explains how to implement this explicitly in the path integral formulation.

29For simplicity, this section assumes that the lowest-energy state is unique. If a symmetry is spontaneously broken,
making the vacuum state non-unique, then we can add a small symmetry-breaking term to the hamiltonian before
taking the limits (40) and then remove it after the limits have been taken. The result is (41) with whichever state
|0〉 had the lowest energy when the symmetry-breaking term was present.

22



cphysics.org article 63548 2024-06-23

15 Wick rotation and the euclidean action

According to equations (8), the effect of the substitution (37) on the factor eiS in
the path integral is

eiS
∣∣
dt=−i dtE

= e−SE (44)

with

SE[φ] = dtE ε
D
∑
x

(
φ̇2
E(x) +

(
∇φ(x)

)2

2
+ V

(
φ(x)

))
, (45)

where φ̇E is obtained from φ̇ by replacing the dt in the denominator of (6) with
dtE. The functional SE[φ] is called the euclidean action, because it is just like
the original action (section 4) except that the signature of the metric30 is euclidean
instead of lorentzian. The subscript E stands for euclidean.

The reasoning in section 14 referred to the hamiltonian. In particular, the
substitution (37) was used only after expressing the time-ordered function (39) in
terms of the hamiltonian. We can get the same result by using the substitution
(37) first to get (44) and then repeating the steps that were used in section 10
to derive the hamiltonian, but now with a = −i dtE in the identity (28).31 Even
though SE 6= S, the resulting hamiltonian is the same either way because the signs
of 1/a and a are equal when a is real but are opposite when a is imaginary.

To implement the trace (43) in the path integral formulation, use the identity∑
n

〈n|a〉 〈b|n〉 = 〈b|a〉

where the sum is over any orthonormal basis for the Hilbert space. In the path
integral formulation, if we write a[φ], b[φ], and n[φ] for the functions that represent

30The signature of the metric is implicit in the pattern of signs of the derivative terms: the derivative terms may
be written

∑
a,b η

ab(∂aφ)(∂bφ), where ηab are the components of the metric tensor (article 49705).
31The prefactor on the left-hand side of the identity (28) is ambiguous when a is complex, but it can be defined

so that the identity still holds.
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the states |a〉, |b〉, and |n〉, then the preceding identity becomes∑
n

∫
[dφ] [dφ′] n∗[φ]a[φ]b∗[φ′]n[φ′] =

∫
[dφ] b∗[φ]a[φ].

This holds for all normalizable functions a and b, so it implies∑
n

∫
[dφ] [dφ′] n∗[φ]f [φ, φ′]n[φ′] =

∫
[dφ] f [φ, φ]

for all functions f for which the right-hand side is well-defined. In particular, this
implies∑
n

∫
[dφ] n∗

[
φ(tf)

]
exp

(
−SE[φ]

)
F [φ]n

[
φ(ti)

]
=

∫
[dφ] exp

(
−SE[φ]periodic

)
F [φ]

(46)
where the superscript periodic means that the field variables φ(tf) and φ(ti) have
been identified with each other, as though time were periodic (wrapped back on
itself). This shows that the trace in quantities like (42) can be evaluated by treating
the time dimension as as periodic, just like the spatial dimensions are often treated.

This euclidean path-integral formulation makes quantum field theory in d-
dimensional spacetime look like classical statistical mechanics in d-dimensional eu-
clidean space, because the right-hand side of (46) can be viewed as the expectation
value of a function F of random variables φ(x) with distribution exp(−SE[φ]periodic),
which is analogous to the Boltzmann distribution. Quantum field theory and clas-
sical statistical mechanics are not equivalent, of course, because a theory consists
of more than just a mathematical formulation. It also consists of a relationship be-
tween ingredients of that formulation and features of the real world, and quantum
field theory and classical statistical mechanics still differ from each other in that
respect.

24



cphysics.org article 63548 2024-06-23

16 The generating functional

The euclidean version of a time-ordered correlation function (36) is the quantity∫
[dφ] exp

(
− SE[φ]periodic

)( N∏
n=1

φ(xn)

)
. (47)

As explained in section 14, treating time as periodic on the right-hand side effec-
tively selects the vacuum state. From now on, the superscript “periodic” will be
omitted. Whenever a path integral is written without any initial/final states, time
is understood to be periodic. More generally, (euclidean) spacetime is understood
to become a closed manifold in the continuum limit.

Conceptually, Wick rotation converts the signature of the spacetime metric
from lorentzian to euclidean (equation (45)), so Lorentz symmetry in d-dimensional
spacetime becomes ordinary rotation symmetry in d-dimensional euclidean space.
In this context, we might as well set dt = ε, so that the lattice spacings in the
“time” and “space” directions are equal to each other.

The generating functional

Z[J ] =

∫
[dφ] e−SE [φ,J ] (48)

with
SE[φ, J ] ≡ SE[φ]− εd

∑
x

φ(x)J(x) (49)

is a concise way to encode all of the quantities (47). The variable function J(x)
is called an external source or just a source, and correlation functions (47) are
recovered from Z[J ] by taking derivatives with respect to the source:∫

[dφ] exp
(
− SE[φ]

)( N∏
n=1

φ(xn)

)
=

(
N∏
n=1

1

εd
∂

∂J(xn)

)
Z[J ]

∣∣∣∣∣
J=0

. (50)
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17 The Schwinger-Dyson equation again

The (euclidean version of the) Schwinger-Dyson equation derived in section 9 can
be expressed (and derived) more concisely using the generating functional Z[J ].
Start with the identity ∫

[dφ]
1

εd
∂

∂φ(x)
e−SE [φ,J ] = 0,

and use (49) to write this as∫
[dφ] e−SE [φ,J ]

(
1

εd
∂SE[φ]

∂φ(x)
− J(x)

)
= 0. (51)

This one equation encodes the Schwinger-Dyson equations (26) for all polynomials
F [φ] when the initial and final states are the vacuum state.
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18 Another derivation of the commutation relations

Section 12 showed how the equal-time commutation relations can be derived from
the path integral formulation. This section uses the generating functional Z[J ] to
re-derive the same result.

This section uses the lorentzian version instead of the euclidean version, but to
help reduce clutter, the initial and final states won’t be written explicitly. For the
same reason, integrals and derivatives with respect to spacetime coordinates will be
written as though spacetime were continuous, with the understanding that these
are really just abbreviations for the corresponding sums and finite differences. As
before, a point in spacetime will be denoted x = (t,x), where t the time coordinate
and x is the spatial coordinates.

With those abbreviations, the lorentzian version of the Schwinger-Dyson equa-
tion (51) is32 ∫

[dφ] eiS[φ,J ]

(
1

εd
∂S[φ]

∂φ(x)
+ J(x)

)
= 0 (52)

with

S[φ, J ] = S[φ] +

∫
ddx φ(x)J(x).

Write the action as

S[φ] =

∫
dt L(t),

where L(t) is constructed from the field variables φ and φ̇ at time t, and it includes
an integral over the spatial coordinates x. Then33

1

εd
∂S[φ]

∂φ(t,x)
=

1

εd−1

∂L(t)

∂φ(t,x)
− π̇(t,x) (53)

32The different signs of the J terms in equations (51) and (52) is a consequence of Wick rotation.
33Article 46044
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with π̇ ≡ dπ/dt and

π(t,x) ≡ 1

εd−1

∂L(t)

∂φ̇(t,x)
.

Use (53) in (52) to get∫
[dφ] eiS[φ,J ]π̇(t,x) =

∫
[dφ] eiS[φ,J ]

(
1

εd−1

∂L(t)

∂φ(t,x)
+ J(t,x)

)
,

which implies∫
[dφ] eiS[φ,J ]

(
π(t,x)− π(t0,x)

)
=

∫
[dφ] eiS[φ,J ]

∫ t

t0

dt

(
1

εd−1

∂L(t)

∂φ(t,x)
+ J(t,x)

)
(54)

for any t0 < t. As in equation (50), applying

−i
εd

∂

∂J(t′,x′)
(55)

to either side of (54) is equivalent to inserting a factor of φ(t′,x′) into the integrand,
except for an extra term proportional to δx,x′ on the right-hand side in the case
t0 ≤ t′ ≤ t. This extra term comes from the derivative (55) hitting the J(t,x) in
large parentheses on the right-hand side. This occurs only if t′ is within the interval
from t0 to t. It doesn’t occur if t′ > t. To exploit this, define t± ≡ t ± ε, apply
∂/∂J(t−,x′) to both sides of (54), and subtract that from the result of applying
∂/∂J(t+,x′) to both sides of (54). That gives∫

[dφ] eiS[φ,J ]π(t,x)
(
φ(t+,x′)− φ(t−,x′)

)
=

i

εd−1
δx,x′

∫
[dφ] eiS[φ,J ] +O(ε),

where O(ε) represents terms that vanish in the continuous-time limit. The path
integral automatically enforces time-ordering of the operators that correspond to
the factors in the integrand, so this implies the same equal-time commutation
relation that was derived in section 12, namely equation (35).
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