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Homotopy, Homotopy Groups, and
Covering Spaces

Randy S

Abstract Homotopy groups are examples of topological invariants: topologically
equivalent spaces have the same homotopy groups. Roughly, the nth homotopy
group of a topological space M expresses the inequivalent ways an n-sphere can
be continuously mapped into M , regarding two such maps as equivalent if one can
be continuously morphed into the other. The homotopy group with n = 1 is called
the fundamental group. This article introduces homotopy groups and the related
concept of a covering space. A covering space E of M is like M but “unwrapped”
so that E’s fundamental group is only part of M ’s fundamental group.
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1 Outline and conventions

This article has three parts. The first part (sections 2-10) is about homotopy
and homotopy equivalence. Homotopy is a kind of equivalence between continuous
maps from one topological space to another, and homotopy equivalence is a kind of
equivalence relation between topological spaces. The second part (sections 11-22)
is about homotopy groups, which use a modified version of homotopy (homotopy
with a fixed basepoint) to explore the topological properties of a space. The third
part (sections 23-31) is about covering spaces, which have smaller first homotopy
groups than the spaces they cover.

Some of the definitions and results reviewed here apply to topological spaces
that are not necessarily manifolds, but most of the applications in this series of arti-
cles involve topological (or smooth) manifolds. Article 93875 reviews the concept of
a manifold without boundary, and article 44113 reviews the generalization to man-
ifolds with boundary. For the rest of this article, the unqualified word manifold
means a finite-dimensional topological manifold with boundary.1 The boundary
may be empty, in which case it’s a manifold without boundary. In this article, the
unqualified word map always means continuous map.

This article uses the symbol π for two different things. When written with a
subscript, πk denotes the kth homotopy group (section 17). When written without
a subscript, π denotes a covering map (section 23).

In this article, the statement A ⊂ B is synonymous with A ⊆ B. (The case
A = B is not automatically excluded.) If G and H are groups, then the notation
G ' H means that G and H are isomorphic to each other.2,3

Some references to Lee (2011) are paired with references to the earlier edition
Lee (2000), because the earlier edition is freely accessible online.

1Many math texts – including some of the sources cited in this article – use a different convention in which the
word manifold by itself implies without boundary.

2Article 29682 defines isomorphism of groups.
3Sometimes, distinguishing between isomorphism (equality as abstract groups) and other forms of equality is

important. Example: SO(3) has infinitely many different subgroups that are all isomorphic to SO(2). When this
distinction is not important, isomorphism is sometimes written G = H.
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2 Homotopy

Let M be a topological space. Homotopy is one way to formalize the idea that one
given object inside M can or cannot be continuously morphed to another given
object inside M . To define homotopy, both of the given objects are described as
images of maps from another topological space X to M . Instead of only morphing
one of the maps’ images to the other one, we morph one of the maps to the other
one.

To formalize this, let f and g be two maps from X to M , and let I be the
closed interval [0, 1] ⊂ R. If a map h : X × I → M exists with h(x, 0) = f(x) and
h(x, 1) = g(x), then f and g are called homotopic to each other, and h is called a
homotopy from f to g.4,5 Changing the parameter s in h(x, s) continuously from
0 to 1 corresponds to continuously morphing the map f : X → M to the map
g : X → M . Two maps f, g that are homotopic to each other are said to be in
the same homotopy class.6 Homotopy is an equivalence relation on the set of all
maps from X to M .

A map is called constant if it sends its whole domain to a single point. A map
that is homotopic to a constant map is called nullhomotopic7 or inessential.8,9

4Eschrig (2011), pages 40-41
5Section 27.1 in Tu (2011) advocates using a map of the form h : X ×R→M instead of h : X × I →M (because

R is a manifold without boundary) but still requires h(x, 0) = f(x) and h(x, 1) = g(x).
6Eschrig (2011), page 41
7Hatcher (2001), chapter 0; Eschrig (2011), section 2.5, page 41
8Hocking and Young (1961), beginning of section 4-3
9https://encyclopediaofmath.org/wiki/Inessential_mapping
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3 Examples

A two-dimensional torus, S1 × S1, may be represented as a square with opposite
sides identified with each other. Using this representation, each of the four pictures
below shows a single closed loop embedded in a torus. In each picture, the arrows
on the edges of the square indicate how those edges should be identified with each
other to define the torus,10 and the loop is drawn as a thicker black line.article

© 2018-2023 Randy S
For noncommercial use only

1

article

2

article

3

article

4

No two of these loops are homotopic to each other: none of them can be deformed
continuously into any of the others without breaking the loop somewhere. The
upper-left picture shows a loop that is nullhomotopic (homotopic to a point).

10This is a standard graphical notation. Edges with one arrow are identified with each other respecting the
orientations indicated by the arrows, edges with two arrows are identified with each other respecting the orientations
indicated by the arrows, and so on.
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4 Smooth homotopy

Let X,M be smooth manifolds that may have boundaries. If the maps in the
definition of homotopy are also required to be smooth (including the map h :
X × I →M), then h is called a smooth homotopy.11,12 Some basic facts:

• Smooth homotopy is an equivalence relation on the set of all smooth maps
X →M .13

• If two smooth maps f, g from X to M are homotopic to each other, then they
are smoothly homotopic to each other.14

• If f is a continuous map X → M , then f is homotopic to a smooth map.15

Even better: f may be approximated by a smooth map homotopic to f .16

This is the Whitney approximation theorem.

11Eschrig (2011), pages 40-41; Lee (2013), text above lemma 6.28
12When working with smooth manifolds, homotopies are usually required to be smooth, as in section 27.1 in Tu

(2011) and the text above lemma 6.28 in Lee (2013).
13Lee (2013), lemma 6.28
14Lee (2013), theorem 9.28
15Lee (2013), theorem 9.27
16Hirsch (1976), chapter 5, lemma 1.5
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5 Homotopy equivalence

Given a map f : X → M , a homotopy inverse of f is a map in the opposite
direction, g : M → X, such that the compositions

X
f //M

g //X M
g //X

f //M

are homotopic to the identity maps on X and M , respectively. A map that has a
homotopy inverse is called a homotopy equivalence,17 and the topological spaces
X and M are called homotopy equivalent to each other if such a map f : X →M
exists.18 Topological spaces that are homotopy equivalent to each other are said to
have the same homotopy type.

Homotopy is an equivalence relation on the set of maps from one given topo-
logical space to another given topological space,19 so it also defines an equivalence
relation among the images of those maps, but these are both different than the
thing called homotopy equivalence. The thing called homotopy equivalence is an
equivalence relation between two topological spaces, not between two maps from
one topological space to another, and not (just) between two subspaces of a given
topological space.20

If two topological spaces are homeomorphic to each other, then they are also
homotopy equivalent to each other, but two topological spaces may be homotopy
equivalent to each other without being homeomorphic to each other. Example: Rn

is homotopy equivalent to a point,21 but it’s not homeomorphic to a point.22

17Cutler (2021), definition 4
18Tu (2011), definition 27.3; Eschrig (2011), page 136
19Lee (2013), lemma 6.28
20Images of homotopic maps can fail to be homotopy equivalent. Example: if Sn is an n-dimensional sphere, then

any map Sn → Rn is homotopic to one that sends all of Sn to a single point in Rn, but Sn is not homotopy equivalent
to a single point – in other words, Sn is not contractible (section 6).

21In other words, Rn is contractible (section 6).
22Manifolds with different numbers of dimensions cannot be homeomorphic to each other (Lee (2011), problem

13-3; also Lee (2000), theorem 13.22).
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6 Contractible topological spaces

A topological space M is called contractible if it is homotopy equivalent to a
point.23

This definition can be reduced to something more intuitive. Saying that M is
homotopy equivalent to a point p means that maps f : M → p and g : p → M
exist for which

M
f // p

g //M p
g //M

f // p

are both homotopic to the identity map. Only one map of the form f : M → p
exists: this is the constant map that sends every point of M to the same point p.
We can think of a map of the form g : p→M as a way of selecting just one point
of M . The composition

M
f // p

g //M

sends all of M to a single point of M , and the composition

p
g //M

f // p

is the identity map on p, so a topological space M is contractible if and only if
a point m ∈ M exists for which the constant map M → m is homotopic to the
identity map on M .24 We can use this as a simpler way to define contractible.25

All three of these conditions on M are equivalent to each other:26

• M is contractible.

• For every space X, every map f : M → X is nullhomotopic.

• For every space X, every map f : X →M is nullhomotopic.

23Eschrig (2011), section 2.5, page 41; Hatcher (2001), chapter 0; Tu (2011), definition 27.5 (for topological
manifolds, which are a special class of topological spaces)

24Møller (2015), proposition 2.7
25Compared to the definition that uses homotopy equivalence, this one is simpler in the sense that it doesn’t refer

to any auxiliary space N , and it only involves one homotopic-to-the-identity-map condition instead of two.
26Hatcher (2001), chapter 0, exercise 10
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7 Example

A manifold with a boundary may be contractible even if the boundary is not con-
tractible as a manifold by itself. To illustrate this, let M be the set of points in
n-dimensional euclidean space Rn satisfying the condition

x2
1 + · · ·+ x2

n ≤ 1.

This is an n-dimensional compact manifold with boundary. Its boundary ∂M is a
sphere Sn−1, which is an (n− 1)-dimensional compact manifold without boundary.
The interior of M is an n-dimensional open ball, which is a non-compact manifold
without boundary. This example has these properties:

• The manifold M is contractible.27

• The interior M , as manifold by itself, is contractible.27

• The boundary ∂M , as a manifold by itself, is not contractible.28,29

• Even though the boundary ∂M is not contractible as a manifold by itself, the
inclusion map ∂M →M is nullhomotopic.30

The important message here is that the even though the inclusion map ∂M → M
is homotopic to a constant map among homotopies that are allowed to explore all
of M , it’s not homotopic to a constant map among homotopies that are required
to stay within ∂M itself. That’s why the boundary of a contractible manifold can
be a non-contractible manifold.

27To deduce this, consider the homotopy h : M × I → M given by h
(
(x1, ..., xn), s

)
= (sx1, ..., sxn). This shows

that the constant map h(x, 0) is homotopic to the identity map h(x, 1).
28This can be deduced using results that will be quoted in section 18: the homotopy group πk(Sk) is not trivial,

but the homotopy groups of any contractible space are trivial.
29Finite-dimensional spheres are not contractible, but the infinite-dimensional sphere S∞ is contractible (Hatcher

(2001), chapter 0, exercise 16; and Freed (2012), theorem 6.56).
30This is a special case of the theorem that was quoted at the end of section 6, because M is contractible.
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8 Retraction and deformation retraction

Let M be a topological space, and consider a map r : M → M with r(M) = X.
If r(x) = x for all x ∈ X, then r is called a retraction of M onto X. This
is analogous to the linear-algebra concept of a projection,31 because applying a
retraction twice gives the same result as applying it once: r(r(m)) = r(m) for all
m ∈M .

Let i : X → M denote the inclusion map, which is defined by i(x) = x for
all x ∈ X. If the map r-followed-by-i is homotopic to the identity map on M ,
then X is called a deformation retract of M , and the retraction r is called a
deformation retraction.32,33 This implies thatX andM are homotopy equivalent
to each other,34 because the map i-followed-by-r is homotopic to the identity map
on X (because it is the identity map on X).35

A few slightly different versions of deformation retraction are used in the math
literature:36,37

• weak deformation retraction, which is less restrictive than the version
defined above,

• deformation retraction, which is the version defined above,

• strong deformation retraction, which is more restrictive than the version
defined above.

31Hatcher (2001), chapter 0
32Lee (2011), chapter 7, page 200 (also Lee (2000), chapter 7, page 161)
33Fox (1943) says it this way: a retraction r : M → X ⊂M is called a deformation retraction if it’s homotopic to

the identity map on M .
34Homotopy equivalence was defined in section 5.
35Fox (1943) shows that two topological spaces X and Y are homotopy equivalent to each other if and only if

they are both homeomorphic to deformation retracts of a third topological space M . Given a homotopy equivalence
f : X → Y , such a M may be constructed as the mapping cylinder associated with f , but this M is not necessarily
a manifold even if X and Y are. (This is clear from the description on page 206 in Lee (2011).)

36Cutler (2021), example 1.5
37This article uses the name deformation retraction the way it’s used in Fox (1943), Lee (2011), and Cutler (2021).

Chapter 0 in Hatcher (2001) and chapter 27 in Tu (2011) use the name deformation retraction for the more restrictive
version that Cutler (2021) calls strong deformation retraction.
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9 Examples

A deformation retraction is automatically a homotopy equivalence,38 but the con-
verse is false. The converse doesn’t even make sense, because homotopy equivalence
doesn’t require either space to be a subset of the other, but deformation retraction
does. Here’s an example. Let M be the manifold obtained from Rn+1 by deleting
a single point p. This (n + 1)-dimensional manifold M is homotopy equivalent to
an n-dimensional sphere, Sn. In fact, if we treat the sphere as a submanifold of M
that encloses the deleted point, then that submanifold is a (strong) deformation
retract of M .39 On the other hand, if we treat the sphere as a submanifold of M
that doesn’t enclose the deleted point, then that submanifold is not even a retract
of M , much less a deformation retract.40,41

A retraction is not necessarily a deformation retraction. Consider an n-sphere
Sn with n ≥ 1, and let p be a point in Sn. Then the map Sn → p is a clearly a
retraction, but it’s not a deformation retraction.42

If a manifold has a boundary, then it may or may not admit a deformation
retraction onto its boundary. A slight modification of the first example illustrates
this. Let M be the set of points in Rn+1 that satisfy x2

1 + · · ·+x2
n+1 ≤ 1. This is an

(n + 1)-dimensional compact manifold whose boundary X ≡ ∂M is an n-sphere,
Sn. The boundary X cannot be obtained from M by a retraction,40,41 much less
a deformation retraction: a (continuous) map from M onto ∂M does not exist.
Now let M ′ be the manifold obtained from M by deleting one point p from the
interior of M , say the point p = (0, ..., 0). This is a non-compact manifold with the
same boundary as before, but now the boundary is a (strong) deformation retract
of M ′.39

38Section 8
39Lee (2011), example 7.37 (also Lee (2000), example 7.23)
40Lee (2011), problem 13-6 (also Lee (2000), problem 13-3)
41Intuitively, a function from M to X would need to be discontinuous somewhere in the region bounded by X,

because it would need to “rip a hole” somewhere in the interior in order to push all of the interior points to the
boundary while leaving each boundary point where it was. References to various proofs are cited in Kannai (1981).

42A deformation retraction is automatically a homotopy equivalence (section 8), and a sphere is not homotopy
equivalent to a point (sections 6-7).
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10 Fiber bundles with contractible fiber

Article 70621 introduces the concept of a fiber bundle, a map π : E → B satisfying
some special conditions that won’t be repeated here. The map π is called the
bundle projection, and for any point b ∈ B, the manifold F ≡ π−1(b) ⊂ E
is called the fiber. The manifolds E and B are called the total space and the
base space, respectively. A fiber bundle with base space B is often called a fiber
bundle over B.

Given a fiber bundle in which E, B, and F are smooth manifolds, if the fiber F is
contractible, then the total space E and the base space B are homotopy equivalent
to each other.43

For an example, let E be the manifold obtained by deleting one point from Rn+1,
and let B ⊂ E is an n-sphere Sn enclosing the deleted point. Then the deformation
retraction from E to B that was noted in section 9 is the bundle projection of a
trivial fiber bundle with contractible fiber R.

Here’s another example. The unbounded cylinder and unbounded Möbius band
are both smooth fiber bundles with base space S1 and with contractible fiber R,
so their total spaces are both homotopy equivalent to the circle S1. This implies
that they are also homotopy equivalent to each other, so this example shows that
an orientable manifold can be homotopy equivalent to a non-orientable one, even
if they both have the same number of dimensions.

43Freed (2012), proposition 6.42, using the fact that every smooth manifold has the homotopy type of a CW
complex (article 93875)
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11 Loops based at a point

Section 15 will define the fundamental group of a topological space M . This section
introduces a basic ingredient in that definition.44

Let M be a topological space. Choose any point p ∈ M , and call it the base-
point. Imagine drawing a continuous curve in M that starts and ends at p. This
can be described mathematically as a map c : I →M , where I is the closed interval
[0, 1] and c(0) = c(1) = p. Call this a loop based at p. If c and c′ are two loops
based at p, then they will be called loop-homotopic if a map h : I × I → M
exists satisfying these conditions:

• h(x, 0) = c(x) and h(x, 1) = c′(x) for all x ∈ I.

• h(0, s) = h(1, s) = p for all s ∈ I.

The first condition says that c and c′ are homotopic to each other, as defined in
section 2. The second condition requires the homotopy to preserve the basepoint
while it’s morphing one loop to the other. Loop-homotopy serves as an equivalence
relation that is similar to homotopy but that keeps the basepoint fixed.

The constant map I → p will be called the trivial loop based at p.

44The language in this section is similar to the language used in Lee (2013), appendix A, pages 612-613.
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12 Composing loops based at a point

In the context of a topological space M , if c and c′ are two loops based at p,
they can be composed with each other to obtain another loop based at p. Their
composition c · c′ is defined by connecting the end of c to the start of c′. More
precisely: c · c′ : I →M is the map defined by

(c · c′)(s) =

{
c(2s) if s ≤ 1/2,

c′(2s− 1) if s ≥ 1/2.
(1)

This satisfies (c · c′)(0) = (c · c′)(1) = p, so it is another loop based at p. It also
passes through p at an intermediate value of s, namely s = 1/2, which is allowed.
It’s still a loop based at p even if we deform the loop slightly so that it doesn’t
pass through p at this intermediate value of s, as long as its endpoints at s = 0
and s = 1 are still at p.

If c is a loop based at p, then the set of all loops based at p that are loop-
homotopic to c will be denoted [c] and called the loop-homotopy class of c.

When the composition c · c′ is deformed as described above, it remains in the
same loop-homotopy class. This allows us to define the composition of two loop-
homotopy classes by [c] · [c′] ≡ [c · c′]. This composition is clearly associative, but
it can be noncommutative: [c · c′] is not necessarily the same as [c′ · c]. The set of
loop-homotopy classes, equipped with the rule (1) for composing them, defines a
group.45 This group is called the fundamental group of M with basepoint
p, denoted π1(M, p).46 Each element of π1(M, p) is a loop-homotopy class [c]. The
identity element is the loop-homotopy class of the trivial loop I → p, and the
inverse [c]−1 of [c] is defined by switching the roles of the “start” and “end” of c.

45Article 29682 introduces the concept of a group.
46Lee (2013), appendix A, page 613; and Hatcher (2001), section 1.1
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13 Composing loops: another perspective

Section 12 reviewed the standard way of describing the composition of two loops
based at p. That description is constructive: it tells us how to make the composition
c · c′ from c and c′.

We can also describe the composition of loop-homotopy classes in a different
way: instead of giving a recipe for how to make the composition c ·c′, we can give a
criterion for how to recognize that a loop is in the same loop-homotopy class as c·c′,
which is ultimately what really matters. Start with any loop based at p and call
it c′′. Any continuous deformation of c′′ that keeps its starting and ending points
fixed at p is a loop-homotopy: it remains in the same loop-homotopy class. We can
think of c′′ as a stretchable but unbreakable rubber band that can be continuously
morphed, keeping its endpoints fixed at p and keeping the whole thing within M .
Now, suppose that we take some intermediate point on this rubber band and pull
it back to the point p, without moving the endpoints of c′′ and without letting any
part of it leave M , so that it remains in the same loop-homotopy class. The result
is a pair of consecutive loops based at p, which we can call c and c′, and now c′′ is
just the composition c · c′ that was defined in section 12.

Altogether, we can think of the composition [c] · [c′] as the class [c′′] for any loop
c′′ that can be deformed into c · c′ as described above.

16
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14 The importance of the basepoint

Loop-homotopy is required to leave the basepoint fixed throughout the homotopy.47

This section illustrates why that requirement matters.
First consider a two-dimensional torus, T 2 ≡ S1 × S1. The fundamental group

of T 2 with any given basepoint is abelian:48,49 the order in which loop-homotopy
classes are composed doesn’t matter. This is illustrated by the three pictures shown
below. The basepoint is shown as a dot. The picture on the left shows the a loop in
the class [c·c′], where c is a loop that wraps once around the torus in the left-to-right
direction, and c′ is a loop that wraps once around the torus in the bottom-to-top
direction. The picture on the right shows the a loop in the class [c′ · c].article

5

article

6

article

7

The loops shown in the left and right pictures are loop-homotopic to each other:
they can both be continuously deformed to the loop in the middle picture. To
deform the left picture to the middle one, move the upper-left section of the loop
all the way into the upper-left corner of the square. To deform the right picture
to the middle one, move the lower-right section of the loop all the way into the
lower-right corner of the square. This shows that [c · c′] = [c′ · c], illustrating the
fact that the the fundamental group of T 2 with the given basepoint is abelian.

Now consider a different two-dimensional manifold M , obtained from the torus
T 2 by deleting a single point. Topologically, this is the same as deleting a circu-

47Section 11
48This can be deduced from results that will be quoted in section 18.
49A group is called abelian if all of its elements commute with each other. Otherwise it is nonabelian.
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lar disk. The result is a two-dimensional non-compact manifold, still without a
boundary. This is depicted below, with a white hole where the deleted disk was.
The dashed outline around the hole is a reminder that the disk’s boundary was
also deleted, so the remaining manifold does not have a boundary.50 The left and
right pictures below show curves in the classes [c · c′] and [c′ · c], respectively, with
c and c′ defined as before.article

5

article

6

Unlike the situation in the unmodified torus, now these two curves are not loop-
homotopic to each other: [c ·c′] 6= [c′ ·c]. In the picture on the left, the hole prevents
us from pulling the upper-left section of the loop all the way to the corner of the
square, like we could do before when the hole was absent. Thanks to the hole, the
fundamental group of this new manifold, with the given basepoint, is nonabelian.

Now we can understand why the keeping the basepoint fixed is important. If
we think of the two closed curves shown above as the images of maps S1 → M ,
without giving the basepoint any special treatment, then they would clearly be
homotopic to each other: we could deform one to the other just by rounding the
sharp corner and sharpening the round corner. In contrast, the previous paragraph
showed that they are not loop-homotopic to each other as loops based at p (the
point represented by the dot). If we didn’t require the basepoint to remain fixed
during the homotopies, then this informative effect of the hole on the properties of
the fundamental group would be lost.

50This two-dimensional manifold is called a punctured torus and is homeomorphic to (topologically equivalent to)
an infinite plane with one handle attached. (The handle concept is reviewed in https://en.wikipedia.org/wiki/

Handle_decomposition.) Approaching the dashed outline from within the shaded region corresponds to approaching
infinity from within in the infinite plane.

18
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15 The fundamental group

Section 12 defined the fundamental group of a topological space M with respect to
a chosen basepoint p. Now suppose that M is path-connected, which means that
any two points of M may be connected to each other by a continuous path.51,52

In this case, the fundamental groups of M with different basepoints p and p′ are
isomorphic to each other:53 as abstract groups, they are the same. This abstract
group is called the fundamental group of M , denoted π1(M). The fundamental
group is an example of a topological invariant: it’s the same for topological spaces
that are homeomorphic to each other.

The fact that the fundamental group is independent of the basepoint is easy
to understand intuitively, because we can think of a loop c with basepoint p as a
stretchable but unbreakable rubber band that can be continuously morphed to a
loop with basepoint p′. Keeping the basepoint fixed is important for defining the
loop-homotopy classes (this was the message in section 14), but the resulting group
is the same – as an abstract group – no matter which point we choose to serve as
that one immovable basepoint.

As an example, suppose that M is a circle S1. Then its fundamental group
π1(S

1) is isomorphic to Z, the additive group of integers. The integer k ∈ Z
represents the class of loops that wind around the circle k times, and the sign of k
corresponds to the direction of the winding (clockwise or counterclockwise).

Sections 16 and 18-19 will list more examples.

51Lee (2000), chapter 4, page 69
52If M were not path-connected, then loops based at a given point p would only be able to explore one path-

connected component of M , namely the one that contains the point p.
53Hatcher (2001), section 1.1
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16 Examples

If G is any discrete group, then a topological space X exists with π1(X) ' G.54

If G is any finitely generated group,55 then a four-dimensional compact manifold
M exists with π1(M) ' G.56,57,58 Here are a few examples of lower-dimensional
manifolds with nonabelian fundamental groups:

• One example was already described in section 14: start with a two-dimensional
torus and delete a single point. The result is a non-compact manifold whose
fundamental group is nonabelian with an infinite number of elements.59

• The Klein bottle is an example of a compact manifold whose fundamental
group is nonabelian with an infinite number of elements.60

• The Poincaré homology sphere is an example of a compact manifold whose
fundamental group is nonabelian with a finite number of elements.61

54May (2007), chapter 4, section 5 (G is assumed to be discrete on pages 30-31 near the end of chapter 3.)
55A group G is generated by a subset S ⊂ G if G itself is the smallest subgroup of G that contains S (Scott

(1987), section 2.4). A group is finitely generated if it is generated by a subset with a finite number of elements
(Scott (1987), section 5.4).

56Schwartz (2021)
57Calegari (2019) says each finitely presented group is the fundamental group of a closed orientable 4-manifold.
58Some insight about how to construct these manifolds is given in https://mathoverflow.net/questions/15411/

and https://math.stackexchange.com/questions/788097/.
59This is called the once-punctured torus. Its fundamental group is the free group with two generators

(Chas and Phillips (2010), first paragraph). Section 8.1 in Scott (1987) defines free group.
60Rolfsen (2014), text surrounding theorem 5.2 (theorem 5.0.17 in the preprint version). The fundamental group

of the Klein bottle is also called the Klein bottle group. Another description of this group is given in Hatcher
(2001), example 1B.13 (using some notation from example 1B.12).

61Kirby and Scharlemann (1979) gives eight different descriptions of this manifold. The fact that its fundamental
group is the binary icosohedral group is mentioned in descriptions 2 and 6. Description 5 is illustrated in figure 29 on
page 125 in Montesinos (1987), which shows how to identify faces of a dodecahedron in pairs to construct the Poincaré
homology sphere. The binary icosahedral group (also called the icosian group) is a subgroup of Spin(3) with 120
elements. Under the covering homomorphism Spin(3)→ SO(3), it is mapped to the icosohedral group, the 60-element
group of rotational symmetries of a regular dodecahedron (https://ncatlab.org/nlab/show/icosahedral+group
and Dechant (2012)).
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17 Higher homotopy groups

The fundamental group π1(M) that was defined in section 15 is the first in a series
of groups πn(M) called homotopy groups, one for each integer n ≥ 1.62 Intuitively,
each element of π1(M) is a circle S1 in M – actually a map c : S1 →M – together
with a specific start-point and direction in which to travel around the circle, to-
gether with all such maps that are in the same loop-homotopy class as c. Similarly,
each element of πn(M) is a map c : Sn → M , together with all such maps that
preserve the chosen basepoint and are in the same homotopy class as c. A map c
from the n-sphere into M will be called an n-loop.63

To define the group structure of πn(M), we can use either of two approaches.
The standard approach64 is a constructive one: it tells us how to make the compo-
sition c ·c′ from c and c′. Here, I’ll use a different approach, one that tells us how to
recognize that a given n-loop c′′ : Sn → M is in the same class as [c] · [c′]. We can
use this as the definition of the composition [c] · [c′], without needing to construct
c · c′ itself. This generalizes the approach that was described in section 13.

Start with a map c′′ : Sn →M whose image includes a given point p ∈M . Call
this an n-loop with basepoint p. For n = 1, this is a loop with basepoint p as
defined in section 11. The class [c′′] is defined to include all such maps that are
homotopic to c′′ using homotopies that preserve the basepoint p. Now consider a
submanifold Sn−1 ⊂ Sn that separates Sn into two parts, like the equator (a circle
S1) separates the surface of the earth (a 2-sphere S2) into two parts. Choose this
(n − 1)-dimensional “equator” so that its image under c′′ also includes the given
basepoint p. If we continuously morph the map c′′ so that the image of the whole
equator is squeezed into the single point p, then the image of the resulting map is
two spheres Sn in M that touch each other at p. These can be described as maps
c : Sn →M and c′ : Sn →M , and the composition [c] · [c′] of the classes [c] and [c′]

62The general definition can be also applied for n = 0, but π0(M) is not a group (Bott and Tu (1982), text
above proposition 17.3; https://ncatlab.org/nlab/show/homotopy+group). It has one element for each connected
component of M .

63Nash and Sen (1983), section 5.2
64Hatcher (2001), section 4.1; Eschrig (2011), pages 42-45
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is given by [c′′]. We can use this as the definition of the composition [c] · [c′].
One deficiency of this definition is that it doesn’t distinguish between [c] · [c′]

and [c′] · [c] when n ≥ 2. When n = 1, we can distinguish between them by
choosing an ordering for the points of the loop c′′ (because it’s the image of the
interval [0, 1] ⊂ R) and require that it be consistent with the ordering of the points
in c and c′ and of the factors in c · c′, but that doesn’t work when n ≥ 2 because
then points of an n-dimensional space cannot be ordered in any natural way. The
standard constructive definition addresses that deficiency, but that turns out to be
unnecessary, because even when the standard constructive definition is used, the
homotopy groups πn(M) with n ≥ 2 turn out to be commutative anyway.65 So, in
hindsight, the definition given in the preceding paragraph is sufficient. It doesn’t
distinguish between [c] · [c′] and [c′] · [c] when n ≥ 2, and it doesn’t need to.

The set of homotopy classes of n-loops equipped with this rule for composing
them defines a group, and this group is independent of the basepoint if M is path-
connected.66,67 This is the nth homotopy group of M , denoted πn(M). The
homotopy groups are topological invariants: if two topological spaces are homeo-
morphic to each other, then they have the same homotopy groups.68 The converse
is false. Article 28539 describes a counterexample.

65Cohen (2023), proposition 7.2; Fushida-Hardy, “A non-visual proof that higher homotopy groups are abelian”
(https://stanford.edu/~sfh/homotopy.pdf)

66More precisely, the groups defined using different basepoints are isomorphic to each other (Hatcher (2001), section
4.1, page 341).

67More carefully: if M is path-connected, then the homotopy groups πn(M) defined using different basepoints are
isomorphic to each other (the same as abstract groups), but the basepoint is still an important ingredient in their
definition. Section 20 will say more about this.

68Hocking and Young (1961), text below corollary 4-29

22

https://stanford.edu/~sfh/homotopy.pdf


cphysics.org article 61813 2024-05-02

18 Examples

This section lists a few examples of homotopy groups, using this notation: Z is the
infinite cyclic group (isomorphic to the additive group of integers), Zn is the cyclic
group of order n, and 0 is the trivial group.69

• If M is contractible, then πk(M) = 0 for all positive integers k.70,71

• If M is a topological manifold, then π1(M) is countable.72

• πk(S
n) = 0 if k < n,73,71

• πk(S
1) = 0 if k ≥ 2.74,71

• πn(S
n) ' Z for all n ≥ 1.75,71

• πn+1(S
n) ' Z2 for n ≥ 3.76

• πn+2(S
n) ' Z2 for n ≥ 2.76

• πn+3(S
n) ' Z24 for n ≥ 5.77

• π10(S
2) ' Z15.

78

• πk(RPn) ' πk(S
n) when k ≥ 2, and π1(RPn) ' Z2 when n ≥ 2.79,80

69A trivial group G is a group that only has one element, namely the identity element.
70Hocking and Young (1961), bottom of page 185
71May (2007), chapter 9, section 4
72Lee (2013), proposition 1.16
73Sorensen (2017), corollary 3.2.1; Maxim (2018), proposition 6.1
74Sorensen (2017), proposition 2.1
75Sorensen (2017), proposition 5.1
76Mimura and Toda (1991), chapter 4, result 6.9
77Hu (1959), chapter XI, theorem 16.4 (with more examples in section 17 and 18)
78This is one entry from the table in Hatcher (2001), section 4.1 (also in Hu (1959), chapter XI, section 18),

selected to illustrate how surprising the homotopy groups of spheres can be. According to May (2007), chapter 9,
section 4, “there is no non-contractible simply connected compact manifold (or finite CW complex) all of whose
homotopy groups are known.” In particular, the homotopy groups πk(S2) are not all known, but they are known to
be nontrivial for all k ≥ 2 (Ivanov et al (2015)) and they are computable, in principle (Čadek et al (2014)).

79Sections 29 and 31
80The real projective space RPn is an n-dimensional manifold defined by identifying opposite points of Sn.
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19 Homotopy groups of product spaces

If X1, ..., Xn is any collection of connected manifolds without boundaries, then81,82

πk(X1 × · · · ×Xn) ' πk(X1)× · · · × πk(Xn).

Example:

πk(S
1 × S1) '

{
Z× Z if k = 1,

0 if k ≥ 2.

A cartesian product X×Y may be viewed as the total space of a trivial fiber bundle
over one of the factors, say over X,83 where the bundle projection X × Y → X is
the obvious projection onto the first factor. With that perspective, the relationship
πk(X × Y ) ' πk(X)× πk(Y ) is a special case of this one: if a fiber bundle E → B
with fiber F admits a section, then84,85

πk(E) ' πk(B)× πk(F ) for all k ≥ 2.

Here’s another generalization that doesn’t require the spaces to be manifolds:
if X and Y are compactly generated topological spaces (not necessarily manifolds),
then πk(X × Y ) ' πk(X)× πk(Y ).86

81Hatcher (2001), proposition 4.2; Maxim (2018), proposition 1.18
82Article 28539 defines the direct product G×H of two groups G and H.
83Section 10
84Steenrod (1951), section 17.7
85To show that the restriction k ≥ 2 is needed, consider the Klein bottle E, which is the total space of a nontrivial

bundle with B = F = S1. In that case, π1(E) is nonabelian but π1(B)× π1(F ) is abelian (sections 16 and (18)).
86May (2007), chapter 9, section 4, which specifies compactly generated at the end of chapter 5
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20 Homotopy sets with and without basepoints

When X and Y are topological spaces, [X, Y ] is standard notation for the set of
homotopy classes of maps from X to Y . Each element of [X, Y ] is a homotopy
class [f ] of maps f : X → Y .

The definition of a homotopy group involves an additional ingredient, namely
a basepoint. Choose a basepoint in X and a basepoint in Y , let f : X → Y be a
map that sends X’s basepoint to Y ’s, and let [f ]0 be the equivalence class of maps
that are homotopic to f using homotopies that respect the basepoints. The class
[f ]0 is a subset of the class [f ], because [f ] includes all maps that are homotopic
to f , whether or not they respect the basepoints. This defines a correspondence
[X, Y ]0 → [X, Y ], where [X, Y ]0 is87 the set whose elements are the classes [f ]0. If
Y is connected, then the homotopy group πn(Y ) may be defined as the set [Sn, Y ]0
equipped with an appropriate group operation.88

Now suppose that X and Y are both connected topological manifolds.89 The
correspondence [X, Y ]0 → [X, Y ] defined by [f ]0 → [f ] is not necessarily one-to-one,
because we can have [f ]0 6= [g]0 even if [f ] = [g],90 but it is one-to-one if Y is simply
connected91 or when [X, Y ]0 is replaced with [X, Y ]0 modulo an appropriate action
of π1(Y ).92 It’s also one-to-one if Y is a connected H-space.93 Every topological
group (which includes every Lie group) is an H-space.94

87The notation [X,Y ]0 is common (Davis and Kirk (2001), §6.9; Mimura and Toda (1991), §4.1). Hatcher (2001)
writes 〈X,Y 〉 instead of [X,Y ]0 (text above proposition 4.22). Some sources write [X,Y ] for based (instead of
unbased) homotopy sets (May (2007), §8.1; May and Ponto (2012), beginning of §1.4; Arkowitz (2011), page viii).

88Whitehead (1978), section III.5, text above corollary 5.23; May (2007), section 9.1
89The sources cited in footnotes 91-93 assume that the spaces are compactly generated. Every topological manifold

has that property (article 93875). They also assume that the basepoints are nondegenerate (Davis and Kirk (2001),
definition 6.31; May and Ponto (2012), beginning of section 1.1), which means that the inclusion map of the basepoint
into the space is a cofibration (Davis and Kirk (2001), definition 6.31). Again, every topological manifold has that
property (https://ncatlab.org/nlab/show/Hurewicz+cofibration#Examples, proposition 4.2).

90Examples are given in section 14 and in https://math.stackexchange.com/questions/2118574/.
91Davis and Kirk (2001), corollary 6.59
92May and Ponto (2012), lemma 1.4.2
93May and Ponto (2012), proposition 1.4.3 (and comment 0.0.3 on page xxii for the connected premise)
94Whitehead (1978), section III.4, page 119; Mimura and Toda (1991), section 2.4, page 69
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21 Homotopy equivalence and homotopy groups

If topological spaces X and Y are homotopy equivalent to each other, then they
have isomorphic homotopy groups: πn(X) ' πn(Y ) for all n.95

The converse is false.96,97 Whitehead’s theorem98 says that if X and Y have
isomorphic homotopy groups and those isomorphisms are induced by a map X → Y
and X and Y are both homeomorphic to CW complexes,99 then they are homotopy
equivalent to each other. Every smooth compact manifold is homeomorphic to a
CW complex,100 but smooth manifolds X, Y with isomorphic homotopy groups may
still fail to be homotopy equivalent if the isomorphisms between their homotopy
groups are not induced by a map X → Y .

If M is a smooth manifold with boundary, then M is homotopy equivalent
to its interior,101,102 which is a manifold without boundary. Homotopy equivalent
manifolds have the same homotopy groups, so the homotopy groups of a manifold
with boundary the same as the homotopy groups of its interior.

If X is a deformation retract of Y , then they have isomorphic homotopy groups:
πn(X) ' πn(Y ).103 This is a special case of the fact that homotopy equivalent
spaces have the same homotopy groups, because deformation retraction is a special
case of homotopy equivalence.104

95Maxim (2018), corollary 1.11
96Article 28539 describes an example of two smooth manifolds that have the same homotopy groups but different

homology groups, which implies that they are not homotopy equivalent to each other.
97Here’s a case where the converse is true: If Lie groups G and H are both connected and both compact, then

they are homotopy equivalent to each other (and isomorphic to each other as Lie groups) if and only if they have
the same homotopy groups (Toda (1976)).

98Hatcher (2001), theorem 4.5; May (2007), chapter 10, section 3 (using the definition of weak equivalence in
chapter 9, section 6)

99A CW complex is a type of topological space.
100Article 93875
101Lee (2013), text above theorem 9.26
102This is true even though M is not homeomorphic to its interior if the boundary is not empty.
103Proposition 1.17 in Hatcher (2001) addresses the case n = 1.
104Section 8
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22 n-connected manifolds

A topological manifold is a special kind of topological space.105 A topological space
is called connected if it is not the union of two (or more) disjoint nonempty open
subsets.106 Every path-connected107 topological space is also connected,108 but the
converse is not always true. For a topological manifold, the converse is always
true,109 so we don’t need to distinguish between connected and path-connected for
topological manifolds.

A connected manifold M is called simply-connected if π1(M) is trivial.110

Equivalently, M is simply-connected if and only if all maps S1 →M are homotopic
to each other. Examples: an n-sphere Sn with n ≥ 2 is simply-connected, but the
circle S1 and torus S1 × S1 are not.

More generally, a manifold M is called n-connected if πk(M) is trivial for all
k ≤ n.111 Equivalently, a manifold is n-connected if and only if every map Sk →M
is homotopic to a constant map (a map that sends Sk to a single point in M) for
all k ≤ n.111 Notice that n-connected implies (n−1)-connected.112,113 In particular,
if a manifold is n-connected for some n ≥ 2, then it is also simply-connected.

The results reviewed in section 18 show that if n ≥ 2, then an n-sphere Sn is
(n − 1)-connected.114 They also show that the projective space RPn is not even
simply connected (1-connected), much less (n− 1)-connected.

105Article 93875
106Tu (2011), definition A.41
107Section 15 defined path-connected.
108Lee (2013), proposition A.41(b)
109Lee (2013), text below exercise A.42
110Hatcher (2001), text above proposition 1.6
111Hatcher (2001), section 4.1, page 346
112n-connected also implies connected: a manifold is (path-)connected if and only if π0(M) is trivial (footnote 111).
113Eschrig (2011) uses a different definition of n-connected. There, a manifold is called n-connected if every map
Sn → M is homotopic to a constant map (section 2.5, page 47). That’s different that the definition used here,
because it only refers to Sn instead of to Sk for all k ≤ n.
114Cohen (2023), proposition 7.4
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23 Covering maps and covering spaces

If E and M are both n-dimensional connected topological manifolds, then a map
π : E →M is called a (topological) covering map if it has these properties:115,116

• π is surjective.

• Every point x ∈ M has a neighborhood U for which each connected com-
ponent of π−1(U) is an open set (called a sheet over U) that is mapped
homeomorphically onto U by π.

If π : E →M is a covering map, then E is called a covering space for M .
The set π−1(x) is called the fiber over x. The concept of a covering map

π : E → M is a special case of the concept of a (locally trivial) fiber bundle117

with total space E, base space M , and bundle projection π. Covering maps are
precisely the fiber bundles for which the fiber over each point is discrete (has a
countable number of elements).118 For a given covering map, every fiber has the
same cardinality, called the number of sheets.119

A map f : E →M is called a local homeomorphism if each point p ∈ E has
a neighborhood U for which f(U) ⊂ M is open and the restriction of f to U is a
homeomorphism.120 Any covering map is a local homeomorphism,121 and any local
homeomorphism between compact, connected manifolds is a covering map.122 An
injective covering map is a (global) homeomorphism.123

115Lee (2011), chapter 11, page 278 (also Lee (2000), chapter 11, page 234); Lee (2013), appendix A, page 615;
Hatcher (2001), section 1.3
116The sources cited in the previous footnote give the definition for a more general class of topological spaces.

The proof of proposition 4.40 in Lee (2013) shows that a covering of an n-dimensional topological manifold is an
n-dimensional topological manifold.
117Article 70621
118Cohen (2023), last paragraph before section 2.1.1; Davis and Kirk (2001), section 4.3
119Lee (2011), proposition 11.11 (also Lee (2000), proposition 11.8); Lee (2013), exercise A.74
120Lee (2011), text before proposition 2.31
121Lee (2011), proposition 11.1; Lee (2013), exercise A.72
122Lee (2011), problem 11-9 combined with proposition 4.93
123Lee (2011), proposition 11.1; Lee (2013), exercise A.73
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24 Covering transformations

Two covering maps π : E → M and π′ : E ′ → M are called isomorphic to each
other if

π′(·) = π(f(·)) (2)

for some homeomorphism f : E ′ → E.124 Equation (2) may also be expressed by
saying that the diagram

E ′
f //

π′ !!

E

π
��
M

commutes. If E ′ = E and π′(·) = π(·), then such a homeomorphism f is called a
covering transformation or deck transformation.125

124Lee (2011), text above proposition 11.36 (also Lee (2000), text above lemma 12.1)
125Lee (2013), text above proposition 7.23
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25 Smooth covering maps

In the context of smooth manifolds, a more refined definition of covering map is
appropriate. If E and M are both n-dimensional connected smooth manifolds, then
a map π : E →M is called a smooth covering map if it has the properties listed
in section 23 for a topological covering map but with mapped homeomorphically
replaced by mapped diffeomorphically.126,127

A map f : E → M is called a local diffeomorphism if each point p ∈ E has
a neighborhood U for which f(U) ⊂ M is open and the restriction of f to U is
a diffeomorphism.128 Any smooth covering is a local diffeomorphism,129 and any
local diffeomorphism between compact, connected manifolds is a covering map.130

An injective smooth covering is a diffeomorphism.129

If M is a connected smooth manifold and π : E → M is a topological covering
map, then the topological manifold E admits a unique smooth structure that makes
π a smooth covering map.131 If M has a nonempty boundary, then the boundary
of E is given by ∂E = π−1(∂M).132

126Lee (2013), chapter 4, page 91
127A diffeomorphism is a smooth homeomorphism with a smooth inverse. A smooth homeomorphism might have

an inverse without having a smooth inverse, so a smooth covering is not just a topological covering that happens to
be smooth (Lee (2013), chapter 4, page 91).
128Lee (2013), text above theorem 4.5
129Lee (2013), proposition 4.33
130Lee (1997), exercise 11.2
131Lee (2013), proposition 4.40
132Lee (2013), proposition 4.41
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26 Smooth covering transformations and orientations

Every nonorientable smooth manifold M has an orientable two-sheeted covering
E called its orientation covering.133 The orientation covering E of M has two
sheets,134 so it is also called the oriented double covering of M .135 It is unique
in the sense that any two orientation coverings of M are diffeomorphic to each
other.136 Examples:

• The n-sphere Sn is the orientation covering of RPn. The covering map Sn →
RPn sends each pair of antipodal points in Sn to a single point in RPn.

• The torus S1×S1 is the orientation covering of the Klein bottle. If the torus
is described as R2 modulo Z2, then the Klein bottle is obtained by identifying
(x+ 1/2,−y) with (x, y) for all x, y ∈ R2.

If M is a compact, connected, non-orientable smooth manifold and π : E → M
is its orientation covering, then the map E → E that exchanges the two points
in each fiber is a homeomorphism, and this homeomorphism is the only nontrivial
covering transformation of π.137

If H is a subgroup of a group G, then the index of H in G is the number
of distinct subsets of G that can be written as gH for some g ∈ G.138 If M is a
nonorientable connected smooth manifold, then its fundamental group π1(M) has
a subgroup of index 2.139 The fundamental group of a simply connected manifold
is trivial, so every simply connected manifold is orientable.139

133Lee (2013), chapter 15, pages 393-394 and theorem 15.41(b)
134Lee (2013), theorem 15.41(b)
135Lee (2013), chapter 15, page 396
136Lee (2013), theorem 15.42
137Lee (2013), in the proof of theorem 15.43, and figure 15.9
138Scott (1987), section 1.7
139Lee (2013), theorem 15.43
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27 Lifting a path to a covering space

If I ≡ [0, 1] ⊂ R, then a map c : I → M describes a continuous path (one-
dimensional curve) in the base space M . If E is a covering space for M , then a
map c̃ : I → E for which π(c̃(s)) = c(s) for all s ∈ I is called a lift of the path
from M to E. The lift is uniquely determined by its value at s = 0.140 This is
called the path lifting property.

If the fiber has more than one element, then the condition c(1) = c(0) does not
guarantee c̃(1) = c̃(0), so the lift of a closed loop in M might not be a closed loop
in E. Section 29 will use this to show that the fundamental group of E is only part
of the fundamental group of M .

140Lee (2011), theorem 11.12 (also Lee (2000), proposition 11.10)

32



cphysics.org article 61813 2024-05-02

28 Universal covering spaces

If E is a simply connected covering space for M , then E is called a universal
covering space for M .141 A simply connected cover E is called universal because
if E ′ is any other covering space for M , then the universal covering space E is a
covering space for E ′, too.142 If E ′ is already simply connected, then a covering
map E → E ′ is a homeomorphism.143 This implies that any two universal covering
spaces for M are homeomorphic to each other. That statement about covering
spaces are implied by this stronger statement about covering maps : the covering
maps are isomorphic to each other.144

Every connected topological manifold M has a universal covering space,145 and
every connected smooth manifold M has a universal covering space with a smooth
covering map.146

141Lee (2011), text after proposition 11.41 (also Lee (2000), text below proposition 12.6)
142Lee (2011), proposition 11.41(a) (also Lee (2000), proposition 12.6)
143Lee (2013), proposition A.79 (also Lee (2000), corollary 11.24)
144Lee (2011), proposition 11.41(b)
145Lee (2011), theorem 11.43 (also Lee (2000), theorem 12.8); May (2007), chapter 3, first theorem in section 8
146Lee (2013), corollary 4.43
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29 Covering spaces and homotopy groups

If M is a manifold and E is a covering of M , then they have mostly the same
homotopy groups: πn(M) = πn(E) for all n ≥ 2.147 The fundamental group π1(·)
is the only homotopy group that can distinguish between M and E. This section
describes a correspondence between coverings of M and subgroups of π1(M).

Choose a basepoint m̃ ∈ E in the covering space, and let m ≡ π(m̃) ∈ M be
the corresponding basepoint in the base space. Use the abbreviations

FE ≡ π1(E, m̃) FM ≡ π1(M,m)

for the fundamental groups with the given basepoints. The group FE is defined in
terms of paths c̃ : I → E with a given basepoint c̃(0) = c̃(1) = m̃,148 and composing
c̃ with the covering map π defines a path c : I → M in the base space M with
basepoint m ≡ π(m̃):

I c̃ //

c   

E

π
��
M

The group structure of FE is defined by a rule for composing paths in E.149 This
rule carries over to a rule for composing paths in M , so this defines a group homo-
morphism h : FE → FM .150

The homomorphism h is injective,151 so we can think of FE as a subgroup of FM .
This subgroup is said to be induced by the covering E.152 The induced subgroup
of FM uses only those closed loops in M that remain closed when lifted to E.153

147Maxim (2018), corollary 1.13; Hocking and Young (1961), theorem 4-34
148Sections 15 and 27
149Section 12
150Lee (2000), text above lemma 7.15
151Lee (2000), theorem 11.13; Hatcher (2001), proposition 1.31
152Lee (2000), text below theorem 11.13
153Recall the simple fact that was highlighted in section 27: if the cover is nontrivial (has more than one sheet),

then some closed paths in M don’t come from any closed paths in E.
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In this way, any given covering for M defines a subgroup FM that is isomorphic to
the fundamental group FE of the covering space E.

The converse is also true: for any given subgroup H of FM , a covering map
π : E → M exists for which H is the induced subgroup,154 so H is isomorphic
to the fundamental group of E. The fact that every connected manifold M has
a simply connected covering space155 corresponds to the fact that FM – like any
group – has a subgroup H with only one element (the identity element).

Two subgroups H and H ′ of G are called conjugate to each other if H ′ =
g−1Hg for some g ∈ FM . Two coverings of M are isomorphic to each other if and
only if the corresponding induced subgroups of FM are conjugate to each other.156

These results are the same no matter what basepoint we choose, so isomorphism
classes of coverings of M are in one-to-one correspondence with conjugacy classes
of subgroups of the fundamental group π1(M).157

154Hatcher (2001), proposition 1.36
155Section 28
156Lee (2000), theorem 12.5; also Hatcher (2001), section 1.3, text at the bottom of page 59
157Lee (2000), theorem 12.19; and Hatcher (2001), theorem 1.38
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30 Example

Consider the base space M = S1. Its fundamental group is π1(S
1) ' Z. For

every positive integer n, this has a subgroup consisting of integer multiples of n.
The covering map corresponding to this subgroup is the map S1 → S1, where the
covering circle E = S1 wraps n times around the base circle M = S1. The universal
covering map R→ S1 corresponds to the trivial subgroup of π1(S

1), consisting only
of the identity element 0.158

This example illustrates the general fact that if M is a compact manifold and
π : E → M is a covering map, then E is compact if and only if π has a finite
number of sheets.159

158We can think of this as the subgroup consisting of integer multiples of n in the limit n → ∞, because 0 is the
only integer multiple of n that remains finite in this limit.
159Lee (2000), problem 11-4
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31 More examples of covering spaces

• Take the base space M to be a Klein bottle. The Klein bottle can be con-
structed by identifying opposite edges of a square with each other in a partic-
ular way, so M has R2 as a covering space. The result quoted at the beginning
of section 29 says πn(M) ' πn(R2) for n ≥ 2, and the homotopy groups of
R2 are all trivial, so we can infer that πn(M) = 0 for n ≥ 2.

• The n-dimensional real projective space RPn is defined by identifying opposite
points of an n-sphere Sn with each other. This defines a covering map Sn →
RPn whose fiber consists of two points. When n ≥ 2, the sphere Sn is simply
connected, so Sn is the universal covering space for RPn for n ≥ 2. The
fact that the universal cover is a double cover (the fiber has only two points)
shows that any covering space of RPn must be homeomorphic to either RPn or
Sn, because the universal covering space for M is a covering space for every
covering space for M (section 28). This shows that when n ≥ 2, π1(RPn)
must have exactly two elements, so π1(RPn) ' Z2.

160

• This example generalizes the previous one when n = 3. Let E ≡ S3 be the
unit sphere in 4d space, and let G be the group of symmetries generated by
R, where R is the transformation that rotates through angle 2π/n in the 1-2
plane and through angle 2πm/n in the 3-4 plane, where m is relatively prime
to n. Then S3 → S3/G is a covering map, the quotient space M ≡ S3/G is a
manifold called a lens space, and its fundamental group is π1(S

3/G) ' G '
Zn.161,162

160https://topospaces.subwiki.org/wiki/Homotopy_of_real_projective_space
161Lee (2011), example 12.28 (also Lee (2000), example 12.13)
162This is a special case of corollary 12.27 Lee (2011) (also corollary 12.12 Lee (2000)), which uses a broad class of

quotient manifolds to generate examples of covering maps.
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