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Fourier Transforms
and Tempered Distributions

Randy S

Abstract Some functions don’t have a well-defined
Fourier transform when treated as a function, but the
Fourier transform may often still be defined by treating
things as tempered distributions instead of as functions.
This article reviews the basic definitions.
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1 Motivation

Let D be the number of dimensions of space. Use a boldface symbol like x =
(x1, ..., xD) to denote a list of D real variables, and use the standard abbreviations
p · x ≡

∑
n pnxn and x2 ≡ x · x and |x| ≡

√
x · x.

Let poly(p) be a polynomial in the components of p. Formally, the inverse
Fourier transform of this polynomial would be∫

dDp

(2π)D
eip·x poly(p), (1)

but this is undefined as it stands. Article 22050 explains how such an expression
can be given a legitimate definition as a function of x for x 6= 0, by starting with
a finite integration domain and then taking a limit. This article reviews a different
perspective: the “Fourier transform of a polynomial” can be given a legitimate
definition by treating things as tempered distributions instead of trying to treat
them as functions.
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2 Tempered distributions: definition

Suppose that s(x) rapidly approaches zero as x2 → ∞. More precisely, suppose
that s(x) is a smooth function for which the magnitude of p(x)q(∂x)s(x) is finite
for all x, whenever p is a polynomial in the components of x and q is a polynomial
in the components of ∂x, the partial derivatives with respect to the components of
x. A function s(x) satisfying this condition is called a Schwartz function or a
test function.1 Example: the function s(x) = exp(−x2) is a Schwartz function.

Every Schwartz function is absolutely integrable, which means that the integral∫
dDx

∣∣s(x)
∣∣

is finite. Proof: let p(x) be any nonnegative polynomial for which the integral∫
dDx

1

p(x)

is finite,2 and use the inequality∣∣s(x)
∣∣ =

p(x)
∣∣s(x)

∣∣
p(x)

≤ a

p(x)
,

where a is the maximum value of the function p(x)
∣∣s(x)

∣∣. This implies∫
dDx

∣∣s(x)
∣∣ ≤ ∫ dDx

a

p(x)
,

which is finite.
Let S be the set of Schwartz functions. A continuous linear map from S to the

field C of complex numbers is called a tempered distribution.3

1 Hunter (2005), definition 11.1
2 Example: p(x) = (1 + x2)D

3 Hunter (2005), beginning of section 11.2. If we only require the map to be defined on test functions that have
compact support, then it is called a distribution (Hunter (2005), end of section 11.2).
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3 Example

The map δ : S → C defined by

s 7→ s(0) for s ∈ S (2)

is one example of a tempered distribution. This is the famous Dirac delta “function”
δ(x), and the map (2) is often expressed formally like this:∫

dDx δ(x)s(x) = s(0). (3)

The integral-like notation (3) is a convenient way of writing the map (2), even
though the thing δ(x) in the integrand can’t be a function. No function can satisfy
this condition for all Schwartz functions s(x), but the map (2) is perfectly well-
defined. Sections 4-5 explain why the integral-like notation is convenient.
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4 Derivatives of a tempered distribution

Given a tempered distribution T : S → C, let 〈T, s〉 denote the result of applying
it to the function s. The gradient ∇T of a tempered distribution T is the tempered
distribution defined by

〈∇T, s〉 ≡ −〈T,∇s〉, (4)

where ∇s is the ordinary gradient of the test function s(x) with respect to its
argument x.

Here’s an example to motivate the negative sign in that definition. For any
polynomial p(x), then we can define a corresponding tempered distribution Tp by

〈Tp, s〉 ≡
∫
dDx p(x)s(x).

The integral is finite because p(x)s(x) is still a Schwartz function. Then the gra-
dient ∇T is

〈∇Tp, s〉 ≡ −〈Tp,∇s〉 = −
∫
dDx p(x)∇s(x) =

∫
dDx s(x)∇p(x) = 〈T∇p, s〉. (5)

Altogether,
∇Tp = T∇p.

This motivates the sign is the definition (4): that negative sign cancels the one that
comes from integrating-by-parts in (5).

A distribution that can be represented in the form 〈T, s〉 =
∫
dDx f(x)s(x) for

an ordinary function f is called a regular distribution. A distribution that is not
regular is called singular. The δ distribution described in section 3 is a singular
distribution. The sign in (4) is motivated by considering regular distributions, but
the definition (4) can also be applied to singular distributions. That’s one reason
why the integral notation used in section 3 is convenient: the definition (4) lets
us use integration-by-parts for singular distributions just like we can for regular
distributions.
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5 Example

Take D = 1 and consider the distribution T defined by

〈T, s〉 =

∫
dx θ(x)s(x),

where θ(x) is the function

θ(x) ≡

{
1 if x ≥ 0,

0 otherwise.

Then

〈∇T, s〉 ≡ −〈T,∇s〉 = −
∫
dx θ(x)

d

dx
s(x) = s(0)− s(∞) = s(0).

This shows that ∇T is the δ distribution that was described in section 3:

〈∇T, s〉 = 〈δ, s〉.
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6 Convolution with a distribution

Let U(x) denote the translation operator, whose effect on a function s(x) is defined
by

U(x′)s(x) = s(x + x′).

Let R denote the reflection operator, whose effect on a function s(x) is defined by

Rs(x) = s(−x).

The convolution of a distribution T with a test function s is a function whose
value at x is defined to be 〈T,RU(x)s〉.

To motivate this definition, suppose that T is a regular distribution:

〈T, s〉 =

∫
dDx f(x)s(x).

Then

〈T,RU(x)s〉 =

∫
dDy f(y)Rs(x + y)

=

∫
dDy f(y)s(x− y)

=

∫
dDy f(x− y)s(y),

which is the usual convolution of two ordinary functions. Example: the convolution
of the δ distribution with s is∫

dDy δ(x− y)s(y) ≡ 〈δ, RU(x)s〉 = s(x).
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7 Fourier transform of a Schwartz function

The Fourier transform of a Schwartz function s(x) is the function s̃(p) defined
by

s̃(p) ≡
∫
dDx e−ip·x s(x).

The integral is finite, because∫
dDx e−ip·x s(x) ≤

∫
dDx

∣∣e−ip·x s(x)
∣∣ =

∫
dDx

∣∣s(x)
∣∣.

The right-hand side of this inequality is finite because s(x) is a Schwartz function.
Section 8 shows that the Fourier transform of a Schwartz function is another

Schwartz function, so the Fourier transform of s̃(p) is also finite. The Fourier
transform of s̃(p) turns out to be equal to4 (2π)Ds(−x), which immediately implies∫

dDp

(2π)D
eip·x s̃(p) = s(x). (6)

This inverts the Fourier transform.5

4 I won’t review the proof here. Proposition 2.5 in Liu (2021) proves it for D = 1. (This article is mainly about
definitions, so proofs are omitted unless they’re relatively short, like the one in section 8.)

5 The normalization conventions used here are standard in the physics literature. Sometimes the Fourier transform
is defined with a prefactor of 1/(2π)D/2 instead, because this splits the factor of 1/(2π)D equally between the Fourier
transform and its inverse.
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8 Proof

To prove that the Fourier transform of a Schwartz function is another Schwartz
function, let p and q be arbitrary polynomials. Then

max
p

∣∣p(p)q(∂p)s̃(p)
∣∣ = max

p

∣∣∣∣p(p)q(∂p)

∫
dDx e−ip·xs(x)

∣∣∣∣
= max

p

∣∣∣∣p(p)

∫
dDx q(−ix)e−ip·xs(x)

∣∣∣∣
= max

p

∣∣∣∣∫ dDx q(−ix)p(i∂x)e−ip·xs(x)

∣∣∣∣ .
= max

p

∣∣∣∣∫ dDx e−ip·xp(−i∂x)q(−ix)s(x)

∣∣∣∣ .
≤
∣∣∣∣∫ dDx p(−i∂x)q(−ix)s(x)

∣∣∣∣
=

∣∣∣∣∫ dDx
(1 + x2)Dp(−i∂x)q(−ix)s(x)

(1 + x2)D

∣∣∣∣
≤ max

x

∣∣(1 + x2)Dp(−i∂x)q(−ix)s(x)
∣∣ ∫ dDx

1

(1 + x2)D
.

The last expression is finite because s(x) is a Schwartz function. This proves that
the first expression is also finite, so s̃(p) is a Schwartz function, too.
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9 Fourier transform of a tempered distribution

If T is a tempered distribution, then its Fourier transform T̃ is defined by

〈T̃ , s〉 ≡ 〈T, s̃〉. (7)

As usual, this definition is motivated by the case where T is a regular distribution.
In that case,6

〈T̃ , s〉 ≡ 〈T, s̃〉

=

∫
dDx f(x)s̃(x)

=

∫
dDx

∫
dDy f(x)s(y)e−ix·y

=

∫
dDy

∫
dDx f(x)s(y)e−ix·y

=

∫
dDy f̃(y)s(y).

Altogether, this says that if T a regular distribution with kernel f , then T̃ is the
regular distribution whose kernel is the Fourier transform of f .7

Example: the Fourier transform of the δ distribution is the distribution δ̃ given
by

〈δ̃, s〉 ≡ 〈δ, s̃〉 = s̃(0) =

∫
dDx s(x).

Intuitively, this says that the Fourier transform of δ is 1.

6 One of the steps in this derivation assumes that
∫
dDx f(x)e−ix·y is finite. That assumption is harmless in this

context, because we know that plenty of functions f with that property do exist, and that’s enough functions to
provide plenty of motivation the definition (7).

7 Without invoking the concept of tempered distributions, the definition of the Fourier transform can be extended
by continuity to all square-integrable functions (Candes (2021) and section 5.11 in Debnath and Mikusiński (2005)).
With that definition, the Fourier transform is a unitary operator on the Hilbert space of square-integrable functions.
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10 The motivating example again

Let poly(p) be a polynomial in the components of p. If s is a Schwartz function,
then the integral ∫

dDp

(2π)D
s(p) poly(p)

is finite, so we can define a distribution Ω by

〈Ω, s〉 ≡
∫

dDp

(2π)D
s(p) poly(p).

The Fourier transform of this distribution is the distribution Ω̃ defined by

〈Ω̃, s〉 ≡ 〈Ω, s̃〉.

Explicitly,

〈Ω̃, s〉 ≡ 〈Ω, s̃〉 =

∫
dDp

(2π)D
s̃(p) poly(p)

=

∫
dDp

(2π)D
poly(p)

∫
dDx e−ip·xs(x)

=

∫
dDp

(2π)D

∫
dDx s(x) poly(i∇) e−ip·x

=

∫
dDp

(2π)D

∫
dDx e−ip·x poly(−i∇)s(x).

This is the integral over all p of the Fourier transform of the function poly(−i∇)s(x).
According to equation (6), the result is the function poly(−i∇)s(x) evaluated at
x = 0, so

〈Ω̃, s〉 = 〈δ, poly(−i∇)s〉 = 〈poly(−i∇)δ, s〉.
In this sense, taking the Fourier transform of a polynomial gives a combination of
derivatives of the Dirac delta distribution.
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