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Charged Particles in an
Electromagnetic Field: the Lorentz
Force Equation in Flat Spacetime

Randy S

Abstract This article introduces the Lorentz force equation, which
governs the behavior of a charged particle in a prescribed electromagnetic
field in a spacetime with any number of dimensions. The case of a constant
electromagnetic field is used as an example.
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1 Context

The electromagnetic interaction is mediated by the electromagnetic (EM) field. The
action principle says that all physical influences must go both ways. In particular,
influences between the EM field and charges/currents go both ways:

Charges 
and currents

EM field

influence

influence

For pedagogical purposes (and even for some practical purposes), we can consider
models in which the influence goes only one way. This article treats the EM field as
a prescribed background field, exempt from the action principle. In such a model,
the influence goes only one way:

Charges 
and currents

EM field

influence

Specifically, this article considers a classical1 model of pointlike charged particles
under the influence of a prescribed EM field. Since the influence between field and
particle goes only one way in this model, the charged particles do not interact with
each other at all: their behavior is influenced by the EM field, but the EM field
is prescribed independently of the particles’ behavior, so it cannot mediate any
interaction from one particle to another. This article considers only one particle,
because the particles don’t interact with each other anyway.

1Classical = not quantum.
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2 Notation and conventions

The EM field is introduced in article 31738. This article uses the same notation
and conventions, which are briefly reviewed here.

Let Fab(x) denote the components of the Faraday tensor, which represents the
electromagnetic field. The argument x is an abbreviation for the list of spacetime
coordinates (x0, x1, ..., xD) Work in a coordinate system where the proper time τ
along any timelike worldline satisfies

dτ 2 = (dx0)2 −
[
(dx1)2 + · · ·+ (dxD)2

]
= ηab dx

a dxb (1)

in natural units, where the metric is

ηab =


1 if a = b = 0,

−1 if a = b > 0,

0 if a 6= b.

(2)

This is the Minkowski metric, which defines flat spacetime. The index 0 corre-
sponds to the time dimension, and D is the number of spatial dimensions. Indices
from the beginning of the alphabet (a, b, c, ...) are space-time indices: they take the
values 0, 1, 2, ..., D. Indices from the middle of the alphabet (j, k, ...) are spatial
indices: they take the values 1, 2, ..., D.

The electric and magnetic components of the Faraday tensor Fab are

Ek ≡ Fk0 Bjk ≡ Fjk. (3)

This article uses natural units (article 00669) to clarify the underlying symmetry
of the model and to avoid extraneous coefficients.2

2The coefficient q in equation (10) could be considered extraneous in a model with only one particle, but it’s
important in a model with multiple particles having different charges (article 98002), so I’ll retain it.
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3 The Lorentz force equation

This section introduces the Lorentz force equation, which governs the behavior
of a structureless charged particle3 under the influence of a given EM field.

Consider a particle of mass m and charge q. The particle’s worldline can be
described by specifying its coordinates as functions of its proper time: xa(τ). The
particle’s behavior is governed by the Lorentz force equation4

dpc

dτ
=

q

m
pa Fab

(
x(τ)

)
ηbc (4)

with

pa ≡ m
dxa

dτ
. (5)

The Lorentz force equation is the equation of motion governing the behavior of
charged particles in this model.

The component p0 is the particle’s energy, and p ≡ (p1, ..., pD) is the particle’s
momentum vector.5 The more familiar form of the Lorentz force equation shown
later (section 6) comes from specializing equation (4) to D = 3 and separating Fab

into its the electric and magnetic parts.

3The particle is assumed to have negligible size and no intrinsic angular momentum (no spin).
4Sums over a and b are implied.
5The words “energy” and “momentum” are in boldface here because these can be regarded as definitions. Articles

98002 and 78463 relate these definitions to the action principle and conservation laws.
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4 Example: uniform EM field

We can use a matrix notation in which the Lorentz force equation (4) is

dp

dτ
= − q

m
ηFp,

where p is the column matrix with components pa, and η and F are the square
matrices with components ηab and Fab, respectively. For simple examples of solu-
tions, suppose that F is constant in space and time. In this case, the Lorentz force
equation is solved by6

p(τ) = exp
(
− q

m
ηF τ

)
p(0). (6)

This says that p(τ) is related to p(0) by a Lorentz transformation7 whose “angle”
is proportional to the proper time τ .

For a specific example, setD = 3 and suppose that the only nonzero components
of F are F12 = −F21 = B12. Then

F =


0 0 0 0
0 0 B12 0
0 −B12 0 0
0 0 0 0

 ⇒ −ηF =


0 0 0 0
0 0 B12 0
0 −B12 0 0
0 0 0 0

.
In this case, the τ -dependent Lorentz transformation in equation (6) is

exp
(
− q

m
ηF τ

)
=


1 0 0 0
0 cos(eB12τ/m) sin(eB12τ/m) 0
0 − sin(eB12τ/m) cos(eB12τ/m) 0
0 0 0 1


is an ordinary rotation with angle proportional to τ , so a charged particle in a
constant magnetic field travels in a circle with constant centripetal acceleration.

6The exponential of a matrix is defined in article 18505.
7Articles 49705 and 18505 together explain why this qualifies as a Lorentz transformation.
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Now suppose that the only nonzero components of F are F01 = −F10 = −E1.
Then

F =


0 −E1 0 0
E1 0 0 0
0 0 0 0
0 0 0 0

 ⇒ −ηF =


0 E1 0 0
E1 0 0 0
0 0 0 0
0 0 0 0

.
In this case, the τ -dependent Lorentz transformation in equation (6) is

exp
(
− q

m
ηF τ

)
=


cosh(eE1τ/m) sinh(eE1τ/m) 0 0
sinh(eE1τ/m) cosh(eE1τ/m) 0 0

0 0 1 0
0 0 0 1

.
This is a Lorentz boost with “angle” (rapidity)8 proportional to τ , so a charged
particle in a constant electic field undergoes a constant linear acceleration. The
acceleration is not constant in the relative sense, but it is constant in the absolute
sense: the particle has constant weight from its own perspective.9

Realistic EM field configurations are not constant everywhere in space and time,
but they are approximately constant within a sufficiently small region of space and
time, so the examples shown above can be useful approximations within such a
region.

8Article 77597
9To prove this, use the fact that this specific configuration of the electric field is invariant under this specific

Lorentz transformation, so the field always the same strength from the particle’s perspective.
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5 Expression in terms of electric and magnetic fields

In this section, the timelike coordinate x0 will be denoted t, so the spacetime
coordinates are x = (t,x) = (t, x1, x2, ..., xD). The ordinary velocity vector v is
defined by

v ≡ dx

dt
. (7)

To write the Lorentz force equation (4) in terms of the electric and magnetic fields
(3), separate the timelike and spacelike components of equation (4) like this:

dp0

dτ
=

q

m

∑
k

pk Fk0

−dp
k

dτ
=

q

m

(
p0F0k +

∑
j

pjFjk

)
.

Use the definitions (3) to get

d

dτ
p0 =

q

m

∑
k

Ek p
k =

q

m
E · p

d

dτ
pk =

q

m

(
p0Ek −

∑
j

pjBjk

)
. (8)

Equation (5) implies

v =
p

p0

d

dτ
=
p0

m

d

dt
. (9)

Use (9) and exploit the antisymmetry of Bjk to rewrite equations (8) as

dp0

dt
= q v · E dpk

dt
= q

(
Ek −

∑
j

vjBjk

)
. (10)
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Equations (10) are equivalent to the original equation (4), even though the original
symmetry is obscured by the new notation and by the use of one coordinate as
“time.”

The first equation in (10) can be deduced from the second one. To see this, use
equations (1) and (5) to get

papbηab = m2.

Take the derivative of both sides with respect to t to get

pa
dpb

dt
ηab = 0,

which can be re-arranged to get

p0dp
0

dt
=
∑
k

pk
dpk

dt
.

Use use v = p/p0 and the second of equations (10) on the right-hand side to get

dp0

dt
= qv · E,

which is the first equation in (10). For this reason, the second equation in (10) can
be called the Lorentz force equation by itself.

9



cphysics.org article 54711 2024-05-21

6 Specialization to 3-dimensional space

In 3-dimensional space, the electric field vector is

E = (E1, E2, E3),

and we can pretend that the magnetic field is also a “vector” given by

B = (B23, B31, B12).

Then the second of equations (10) can be written in the traditional form10

dp

dt
= q(E + v ×B). (11)

10Griffiths (1989), section 7.4.4; Jackson (1975), equation (11.124)
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7 The non-relativistic approximation

Equation (11) is valid for arbitrary speeds, even though its Lorentz symmetry is
obscured by the notation. However, if we use the non-relativistic relationship

p ≈ mv,

then the resulting equation

d

dt
v ≈ q

m
(E + v ×B) (12)

is valid only in the non-relativistic approximation.
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