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Defining Scalar Quantum Fields
on a Spatial Lattice

Randy S

Abstract This article constructs a family of models of a single scalar field
with a not-necessarily-linear equation of motion, using a discrete lattice in
place of continuous space so that the whole construction is mathematically
unambiguous. These are toy models, not intended to have direct physical
applications, but they illustrate some features of relativistic quantum field
theory without some of the complications of more realistic models.
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1 Introduction

In classical field theory, we normally treat spacetime as a smooth manifold. Treat-
ing spacetime as a smooth manifold would be nice in quantum field theory, too,
except that in most cases we don’t know how to do it.1 Even when we do know
how, it usually involves some heavy technical details.2 This article uses a more
straightforward appraoch. Instead of trying to treat spacetime as a smooth mani-
fold, this article treats space as a discrete lattice. This is good enough as long as
the step-size is much finer than any of the observables we care about. Time will
still be treated as a continuous parameter.

The type of model constructed in this article involves only the simplest type
of quantum field, namely a scalar quantum field. It consists of one self-adjoint
operator φ(x) for each spacetime point x. In continuous spacetime, the equation
of motion would be3

ηab∂a∂bφ(x) + V ′
(
φ(x)

)
= 0 (1)

where ηab are the components of the Minkowski metric (article 48968), ∂a is the
derivative with respect to the ath spacetime coordinate, and sums over the repeated
indices a, b are implied. Conditions on the function V ′(φ) will be specified later.

Equation (1) has Lorentz symmetry.4 Discretizing space ruins exact Lorentz
symmetry, but evidence from small-parameter expansions (not reviewed here) indi-
cates that Lorentz symmetry can still be an excellent approximation at sufficiently
low resolution.5

1 Some models are believed to have nontrivial continuum limits even though we don’t yet have watertight proofs.
Some models are believe to not have nontrivial strict continuum limits, even though they can still have realistic
applications at achievable resolutions. The approach illustrated in this article is appropriate in either case.

2Article 44563 reviews an approach that only works when the equation of motion is linear.
3This article uses natural units with c = ~ = 1.
4Article 49705 studies the Lorentz symmetry of this equation in the context of classical field theory.
5This does not require the existence of a nontrivial strict continuum limit. Such a limit probably doesn’t even

exist for most models of the type considered in this article (footnote 1).
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2 The equation of motion on a spatial lattice

A point in spacetime will be denoted (x, t), where x is the list of spatial coordinates
and t is the time coordinate. Equation (1) may be written

φ̈(x, t)−∇2φ(x, t) + V ′
(
φ(x, t)

)
= 0, (2)

where each overhead dot denotes a derivative with respect to t, and∇ is the gradient
with respect to x. The function V ′(φ) is a polynomial with real coefficients, such
as V ′(φ) = c1φ+ c2φ

2 + c3φ
3. The notation V ′ is used because it will be expressed

later as the derivative V ′ = dV/dφ of another polynomial V (φ).
In this article, space is D-dimensional and is treated as a periodic lattice with

finite size.6 The lattice is defined by a set of D basis vectors e1, e2, ..., eD, each
with magnitude ε. Each lattice site x is a linear combination of the basis vectors
with integer coefficients:

x = n1e1 + n2e2 + · · ·+ nDeD.

The time coordinate t is still continuous. The field φ(x, t) is defined only at lattice
sites x, not between lattice sites.

The equation of motion may still be written as in (2), but now x is restricted
to lattice sites, and the gradient term in (2) is defined by

∇2φ(x, t) ≡
∑
n

φ(x + en, t) + φ(x− en, t)− 2φ(x, t)

ε2
. (3)

Taking the limit ε → 0 would give the usual gradient in continuous space, but we
will keep ε fixed.7 If ε is much smaller than the resolution of any observables that
we care about, then space is still effectively smooth.

6Article 71852 reviews some tools for working with the lattice formulation.
7Defining the limit ε → 0 would require defining φ(x, t) at all points in continuous space, which is problematic.

The purpose of defining the model on a lattice is to avoid that problem.
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3 Preview

Sections 4-5 construct a set of operators φ(x, t) called field operators. They will
be constructed explicitly as operators on a Hilbert space. Operators representing
observables are then constructed from the field operators (section 5).

Here’s a preview of some consequences of the construction. Section 8 shows
that the field operators satisfy the equal-time commutation relations8,9[

φ(x, t), φ(y, t)
]

= 0
[
φ̇(x, t), φ̇(y, t)

]
= 0[

φ(x, t), φ̇(y, t)
]

= iδ(x− y), (4)

with δ(x) defined in equation (8). Section 9 shows that the field operators satisfy
the equation of motion (2), with ∇2φ(x, t) given by (3). Sections 7-8 show that the
operator10

H =

∫
dDx

(
φ̇2(x, t) +

(
∇φ(x, t)

)2

2
+ V

(
φ(x, t)

))
(5)

is independent of time, where
∫
dD · · · is a lattice version of the integral and ∇

is a lattice version of the gradient. The operator H is the hamiltonian for this
model. It generates translations in time (equation (12)), so it is the observable
corresponding to the system’s total energy. The fact that H is independent of time
says that the total energy is conserved.

This was only a preview. The actual construction is in sections 4-5, and the
consequences previewed here are derived in sections 7-9. The sequence is chosen
carefully to avoid any circular logic.

8[A,B] ≡ AB −BA
9This qualifies as a quantum model because its observables don’t all commute with each other: measurements of

these observables are not all compatible with each other (article 03431).
10The right-hand side of equation (5) has the same form as the expression for the total energy in the corresponding

classical model (article 49705).
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4 The Hilbert space and basic operators

The goal is to construct a model using operators that satisfy the equation of motion
(2), with one operator φ(x, t) for each point (x, t) in spacetime, with x restricted
to lattice sites. These are operators on a Hilbert space. This section constructs a
convenient representation of the Hilbert space.

Each element of the Hilbert space is represented by a complex-valued function
Ψ[s] of a collection [s] of real variables, with one real variable s(x) for each site x
in the spatial lattice. The inner product is defined by

〈Ψ1|Ψ2〉 ≡
∫

[ds] Ψ∗1[s]Ψ2[s] (6)

≡
∫ (∏

x

ds(x)

)
Ψ∗1[s]Ψ2[s].

The integral is over the full range −∞ < s(x) < ∞ of each of the real variables
s(x). For each lattice site x, define a pair of operators φ(x) and π(x) by the
conditions11

φ(x)Ψ[s] ≡ s(x)Ψ[s] π(x)Ψ[s] ≡ −i
εD

∂

∂s(x)
Ψ[s].

These operators are self-adjoint, if the adjoint is defined with respect to the inner
product (6). They clearly satisfy the commutation relations[

φ(x), φ(y)
]

= 0
[
π(x), π(y)

]
= 0 (7)

and [
φ(x), π(y)

]
= iδ(x− y) with δ(x− y) ≡

{
1/εD if x = y,

0 otherwise.
(8)

11These operators are both unbounded, meaning that they are not defined on all elements of the Hilbert space,
but every element of the Hilbert space can be arbitrarily well-approximated by elements on which they are defined.
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5 Time evolution, field operators, and observables

Define the hamiltonian H by

H =

∫
dDx H(x) ≡ εD

∑
x

H(x) (9)

with

H(x) ≡
π2(x) +

(
∇φ(x)

)2

2
+ V

(
φ(x)

)
(10)

where V is a polynomial with a finite lower bound, and

(
∇φ(x)

)2 ≡
∑
n

(
φ(x + en)− φ(x)

ε

)2

. (11)

The hamiltonian is (unbounded but) self-adjoint, so the operators

U(t) ≡ exp(−iHt)

are unitary. The field operators at time t are defined by12

φ(x, t) ≡ U−1(t)φ(x)U(t). (12)

In quantum field theory, observables are expressed in terms of field operators, but
the field operators themselves are not necessarily observables. The present model
is an exception: the field operators φ(x, t) are observables. A measurement of the
observable φ(x, t) represents what we could call a measurement of the amplitude
of the field at the location x at time t. All other observables associated with a
given region R of spacetime are expressed in terms of the field operators φ(x, t)
with (x, t) ∈ R.

This completes the construction of the model on a spatial lattice of finite size.

12This article uses the Heisenberg picture, where observables are time-dependent and states are not (article 22871).
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6 The spectrum condition and infinite volume

The operators φ(x) and π(x) are self-adjoint, so if the function V in equation
(10) has a finite lower bound, then the hamiltonian (9) satisfies the spectrum
condition (article 22871). This provides the foundation for defining particles, as
article 30983 illustrates using the special case V (φ) ∝ φ2 + constant.

The construction of the Hilbert space in section 4 assumed that the lattice has
finite size (a finite number of points). In that case, the Hilbert space is automati-
cally separable, as it should be in quantum theory. In the näıve limit of an infinite
lattice (called the infinite volume limit), the Hilbert space would become non-
separable.13 To get a separable Hilbert space in the infinite volume limit, we can
use the completion of the space of states that can be reached from the lowest-energy
state by applying sums and products of finite numbers of field operators.14

One quirk of the infinite volume limit in this family of models is that if we keep
the coefficients in the hamiltonian (9) fixed while taking that limit, the hamilto-
nian’s lower bound goes to +∞ (article 00980). This isn’t really a problem, because
we can include a constant term in V that depends on the size of the lattice in such
a way that the hamiltonian’s lower bound remains finite, conventionally zero, in
the infinite volume limit. This requires the constant term in V to become infinitely
negative, and that’s okay, because the important thing is that the hamiltonian as a
whole remains well-defined in the limit. Ensuring that the hamiltonian as a whole
remains well-defined is exactly the purpose of choosing the constant term in V this
way.15

13This would still be true even if s(x) were a ±1-valued variable instead of a real variable, because the set of all
binary digits with an infinite number of digits is uncountable.

14Witten (2021)
15This does have an interesting side-effect, though: even if we choose the volume-dependent constant so that

the total energy H is positive, the energy density (10) can be negative in some places even if V > 0. This is
reviewed in Fewster (2005a) and Fewster (2005b). Witten (2018), section 2.4, page 11, relates this phenomenon to
the Reeh-Schlieder theorem.
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7 Deriving the equation of motion, part 1

The next goal is to show that the field operators defined above satisfy the equation
of motion (2). This section starts the derivation, and the next two sections finish
it.

To begin, define

π(x, t) ≡ U−1(t)π(x)U(t) (13)

H(x, t) ≡ U−1(t)H(x)U(t). (14)

According to equations (12) and (13), H(x, t) can be expressed by starting with
equation (10) and replacing

φ(x)→ φ(x, t) π(x)→ π(x, t),

as previewed in equation (5). Even though H(x, t) depends on time, its integral
over space does not:∫

dDx H(x, t) =

∫
dDx U−1(t)H(x)U(t)

= U−1(t)

(∫
dDx H(x)

)
U(t)

= U−1(t)HU(t)

= H. (15)

The last step is true because H commutes with U(t). This way of writing the
hamiltonian will be used in the following sections to derive the equation of motion
for the field operators.
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8 Deriving the equation of motion, part 2

The time dependence of φ(x, t) is defined by equation (12). This section uses that
definition to derive a relationship between π(x, t) and the time derivative of φ(x, t).

Use equations (7)-(8) and (12)-(13) to deduce the equal-time commutation
relations [

φ(x, t), φ(y, t)
]

= 0
[
π(x, t), π(y, t)

]
= 0[

φ(x, t), π(y, t)
]

= iδ(x− y). (16)

Take the derivative of equation (12) with respect to t to get

φ̇(x, t) = −i
[
φ(x, t), H

]
. (17)

Use the results from the preceding section to see that this may also be written

φ̇(x, t) = −i
∫
dy
[
φ(x, t), H(y, t)

]
=
−i
2

∫
dy
[
φ(x, t), π2(y, t)

]
.

The other terms in H(y, t) do not contribute because φ(x, t) commutes with φ(y, t)
for all x,y. Use the equal-time commutation relations (16) to evaluate the remain-
ing commutator, which gives

φ̇(x, t) = π(x, t).

This shows that the operator π(x, t) is the time-derivative of the field operator
φ(x, t).

By combining this result with equation (15), the hamiltonian defined in section
5 may also be written as shown in section 3.
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9 Deriving the equation of motion, part 3

Take the derivative of equation (17) with respect to t to get

φ̈(x, t) = −i
[
φ̇(x, t), H

]
= −i

[
π(x, t), H

]
,

= −i
∫
dy
[
π(x, t), H(y, t)

]
.

The term π2(y, t) in H(y, t) does not contribute because π(x, t) commutes with
π(y, t) for all x,y. To evaluate the remaining commutator, use16

−i
2

∫
dy

[
π(x, t),

(
∇φ(y, t)

)2
]

= ∇2φ(x, t)

−i
∫
dy

[
π(x, t), V

(
φ(y, t)

)]
= −V ′

(
φ(x, t)

)
with ∇2φ defined by (3) and where V ′ is the derivative of V with respect to its
argument. Altogether, this gives

φ̈(x, t)−∇2φ(x, t) + V ′
(
φ(x, t)

)
= 0. (18)

This is equation (2).

16The first equation can be derived using an integration-by-parts identity described in article 71852,
because the lattice is periodic. To second equation can be derived by writing the left-hand side as
−iU−1(t)

∫
dy

[
π(x), V

(
φ(y)

)]
U(t) and then using the definitions of φ and π in section 4.
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10 Multiple scalar fields

The model introduced in the preceding sections involved a single scalar field. The
generalization to multiple scalar fields is straightforward. For a system of N scalar
fields, each element of the Hilbert space is represented by a complex-valued function
Ψ[s] of a collection of real variables, with N real variables s1(x), s2(x), ..., sN(x) for
each site x in the spatial lattice. The inner product is defined as before, using an
integral over all of these real variables. The hamiltonian is

H =

∫
dDx

(∑
n

π2
n(x) +

(
∇φn(x)

)2

2
+ V

(
φ1(x), φ2(x), ..., φN(x)

))
, (19)

where V is a polynomial in N real variables, and the operators φn(x) and πn(x)
are defined by

φn(x)Ψ[s] ≡ sn(x)Ψ[s] πn(x)Ψ[s] ≡ −i
εD

∂

∂sn(x)
Ψ[s].

The time-dependent field operators are defined by

φn(x, t) ≡ U−1(t)φn(x)U(t) (20)

with U(t) ≡ e−iHt. As before, this implies the equal-time commutation relations[
φj(x, t), φk(y, t)

]
= 0

[
φ̇j(x, t), φ̇k(y, t)

]
= 0[

φj(x, t), φ̇k(y, t)
]

= iδ(x− y)δjk

and the equations of motion (one for each n)

φ̈n(x, t)−∇2φn(x, t) + Vn
(
φ1(x), φ2(x), ..., φN(x)

)
= 0,

where Vn is the derivative of V with respect to its nth argument.
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11 Lorentz symmetry and microcausality

The motive for using the lattice is to make the construction mathematically unam-
biguous, but it also has obvious drawbacks:

• It ruins exact Lorentz symmetry.

• It doesn’t satisfy the microcausality principle (article 21916). The lattice
version of the equation of motion wouldn’t have a strict maximum speed even
if the field operators were ordinary real variables, like they are in classical
field theory. As a result, observables separated from each other by a spacelike
interval do not necessarily commute with each other, even though they do
commute at equal times (equations (16)).

The search for quantum field models that can be defined in continuous spacetime,
with strict Lorentz symmetry and strict microcausality, is an important theme in
the literature about quantum field theory.17 In four-dimensional spacetime, models
of the type constructed in this article probably don’t have any such nontrivial
continuum limit.18 (In this context, nontrivial means distinct from anything that
could be obtained with a linear equation of motion.) Another important theme,
though, is that a model can effectively have those properties (Lorentz symmetry
and microcausality) at sufficiently coarse resolution. Most of the articles in this
series, including this one, are written with this empirically-oriented theme in mind.
Evidence from small-parameter expansions (perturbation theory) indicates that
nontrivial models of the type constructed in this article can be effectively consistent
with Lorentz symmetry and microcausality at sufficiently coarse resolution, at least
in four-dimensional spacetime.19

17Example: Heckman and Rudelius (2018)
18Smit (2002), end of section 3.8
19In quantum field theory, if the lattice spacing is changed relative to some physical scale of interest, then the

coefficients in the hamiltonian must typically also be changed in order to keep the model’s low-resolution predictions
unchanged. This is called (nonperturbative) renormalization, and this is why the (non)existence of a nontrivial
continuum limit depends on the number of dimensions of spacetime.
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Even models that aren’t expected to have emergent Lorentz symmetry at low
resolution may still have a property analogous to effective microcausality, or at
least an effective limit to the speed at which information can propagate. This is
quantified by Lieb-Robinson bounds.20 Lieb-Robinson bounds assume that the
observables in question are represented by bounded operators, and they also assume
that the hamiltonian is a sum of bounded local operators. The field operators used
in this article are not bounded, and the local terms H(x) in the hamiltonian (9) are
not bounded, so Lieb-Robinson bounds cannot be directly applied to these models.
On the other hand, these operators might as well be bounded when the model is
restricted to low-energy states,21 so Lieb-Robinson bounds might be applicable with
this restriction. That might be a way to address the issue of effective microcausality
in models that are expected to have emergent Lorentz symmetry at low energy,
without relying on perturbation theory, but this hasn’t been explored much yet as
far as I know.

20Lieb-Robinson bounds quantify the group velocity in quantum models that use discrete space and continuous
time (Lieb and Robinson (1972)). Lieb-Robinson bounds are reviewed in section 4 of Naaijkens (2013), in section
III.B of Masanes (2009), and in Hastings (2010). Beware, though, that group velocity does not always represent the
speed at which information propagates (Robinett (1978)).

21For a hamiltonian of the form described in section 5, with a finite lower bound, low energy implies low resolution:
if a state is restricted to low energies (relative to the lower bound), then it’s automatically also restricted to low
values of the gradient term (11), because the gradient term is nonnegative.

14



cphysics.org article 52890 2023-11-12

12 References

Fewster, 2005a. “Energy Inequalities in Quantum Field Theory” https://

arxiv.org/abs/math-ph/0501073

Fewster, 2005b. “Quantum Energy Inequalities and Stability Conditions in Quan-
tum Field Theory” https://arxiv.org/abs/math-ph/0502002

Hastings, 2010. “Locality in Quantum Systems” https://arxiv.org/abs/

1008.5137

Lieb and Robinson, 1972. “The finite group velocity of quantum spin sys-
tems” https://projecteuclid.org/euclid.cmp/1103858407

Masanes, 2009. “An area law for the entropy of low-energy states” Physical
Review A 80: 052104, https://arxiv.org/abs/0907.4672

Naaijkens, 2013. Quantum spin systems on infinite lattices. Lecture Notes in
Physics, volume 933, Springer, https://arxiv.org/abs/1311.2717

Smit, 2002. Introduction to Quantum Fields on a Lattice. Cambridge University
Press

Witten, 2021. “Why Does Quantum Field Theory In Curved Spacetime Make
Sense?” https://arxiv.org/abs/2112.11614

Heckman and Rudelius, 2018. “Top Down Approach to 6D SCFTs” https:

//arxiv.org/abs/1805.06467

13 References in this series

Article 00980 (https://cphysics.org/article/00980):
“The Free Scalar Quantum Field: Vacuum State” (version 2023-11-12)

15

https://arxiv.org/abs/math-ph/0501073
https://arxiv.org/abs/math-ph/0501073
https://arxiv.org/abs/math-ph/0502002
https://arxiv.org/abs/1008.5137
https://arxiv.org/abs/1008.5137
https://projecteuclid.org/euclid.cmp/1103858407
https://arxiv.org/abs/0907.4672
https://arxiv.org/abs/1311.2717
https://arxiv.org/abs/2112.11614
https://arxiv.org/abs/1805.06467
https://arxiv.org/abs/1805.06467
https://cphysics.org/article/00980


cphysics.org article 52890 2023-11-12

Article 03431 (https://cphysics.org/article/03431):
“What is Quantum Theory?” (version 2023-11-12)

Article 15939 (https://cphysics.org/article/15939):
“Field Operators for Nonrelativistic Fermions and Bosons” (version 2023-11-12)

Article 21916 (https://cphysics.org/article/21916):
“Local Observables in Quantum Field Theory” (version 2023-11-12)

Article 22871 (https://cphysics.org/article/22871):
“Time Evolution in Quantum Theory” (version 2023-11-12)

Article 30983 (https://cphysics.org/article/30983):
“The Free Scalar Quantum Field: Particles” (version 2023-11-12)

Article 44563 (https://cphysics.org/article/44563):
“The Free Scalar Quantum Field in Continuous Spacetime” (version 2023-11-12)

Article 48968 (https://cphysics.org/article/48968):
“The Geometry of Spacetime” (version 2022-10-23)

Article 49705 (https://cphysics.org/article/49705):
“Classical Scalar Fields and Local Conservation Laws” (version 2023-11-12)

Article 71852 (https://cphysics.org/article/71852):
“Treating Space as a Lattice” (version 2022-08-21)

16

https://cphysics.org/article/03431
https://cphysics.org/article/15939
https://cphysics.org/article/21916
https://cphysics.org/article/22871
https://cphysics.org/article/30983
https://cphysics.org/article/44563
https://cphysics.org/article/48968
https://cphysics.org/article/49705
https://cphysics.org/article/71852

	Introduction
	The equation of motion on a spatial lattice
	Preview
	The Hilbert space and basic operators
	Time evolution, field operators, and observables
	The spectrum condition and infinite volume
	Deriving the equation of motion, part 1
	Deriving the equation of motion, part 2
	Deriving the equation of motion, part 3
	Multiple scalar fields
	Lorentz symmetry and microcausality
	References
	References in this series

