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The Quantum Electromagnetic Field
on a Spatial Lattice

Randy S

Abstract This article introduces one of the simplest examples of a
quantum model with a gauge field, treating D-dimensional space as a
lattice so that the math is straightforward. The model is a special case
of compact quantum electrodynamics (compact QED), namely the case
with no electrically charged matter, so the quantum electromagnetic field
is the only physical entity.

The adjective compact in the name refers to the fact that the model
uses the compact group U(1) as its gauged group, in contrast to traditional
electrodynamics in which the gauged group is the noncompact group R.
The choice U(1) is motivated by the fact that the electric charges of all
known elementary particles appear to be precisely integer multiples of a
single elementary unit of charge. The model constructed here does not
include charged matter, but it uses U(1) as the gauged group to prepare
for models that do.
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1 Introduction

Article 26542 sketches a model of the quantum electromagnetic field. That sketch
isn’t quite well-defined mathematically, because it tries to associate operators on
a Hilbert space with individual points in continuous space. That sketch can be
promoted to a mathematically well-defined construction by using only operators
that are smeared in space,1 but learning that consruction has a low value-to-cost
ratio because it doesn’t allow generalizing the model to include charged matter.
This article uses a different approach to making the model well-defined, treating
space as a large but finite number of closely spaced points.2 This approach works
just as well when charged matter is included.

As in article 26542, this article uses the hamiltonian formulation, in which
time is continuous. The model also has a well-defined path-integral formulation in
which time and space are both discrete. The path-integral formulation has several
advantages, but the hamiltonian formulation makes the relationship to the general
principles of quantum theory3 more clear, so the hamiltonian formulation will be
used here.

The equations of motion in this model are nonlinear,4,5 even though interactions
with charged matter are absent. The nonlinearity makes calculations challenging,
but this article focuses on the easy part: constructing the model without any
mathematical ambiguity, so that calculations have a solid place to start.

1Smearing in time works more generally than smearing only in space (Witten (2023)), but the smearing approach
(in time and/or space) has not yet led to nonperturbative constructions of many models that are believed to have
nontrivial continuum limits, much less of models that are not believed to have nontrivial continuum limits (like
quantum electrodynamics with charged matter).

2Article 52890 uses this approach for scalar fields, for the same reason. The holographic principle (reviewed in
Bousso (2002)) gives us a good reason to think that this lattice-like picture of space and the conventional picture of
continuous space are both ultimately incorrect. With that in mind, the fact that we don’t know how to define most
quantum field models in continuous space is less disappointing, and the fact that we do know how to define so many
quantum field models using a lattice-like approach is a welcome concession.

3Article 03431
4Section 25
5Section 26 will relate these nonlinear equations to Maxwell’s equations, which are linear.
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2 Outline

• Section 3 previews some notation.

• Section 4 introduces the gauged group.

• Sections 5-6 define the spatial lattice – actually two different versions of the
spatial lattice, one periodic and one not, because they both have advantages
when studying gauge theories in general.

• Sections 7-21 define a Hilbert space and the model’s observables at time
t = 0, represented as operators on that Hilbert space, and explain how this
representation reproduces some of Maxwell’s equations (the ones that don’t
involve time derivatives).

• Sections 22-23 introduce the hamiltonian and use it to define the model’s
observables at all times t in terms of those at t = 0.

• Sections 24-27 give some insight about the model’s continuum limit. First,
some simplistic calculations are used to help relate the lattice equations of
motion to Maxwell’s equations (the ones that involve time derivatives), and
then some insights from more careful studies will be summarized.

• Section 28-30 clarify how to relate the definitions of magnetic flux in sections
15 and 19 to what experiments actually measure.
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3 Preview of notation

For reference, here’s a summary of some notation that will be introduced later in
this article:

• x = a point (site) in the spatial lattice (section 5)

• G = the group of interior gauge transformations (section 6)

• ` = link (a pair of neighboring lattice sites)

• 2 = plaquette (section 9)

• u(`) = U(1)-valued link variable (section 7)

• θ(`) = angle-valued link variable (section 7)

• E(`) = electric field operator associated with link ` (section 11)

• W (2) = plaquette operator (section 13)

• W (C) = Wilson loop operator or Wilson line operator (section 13)

• B(S) = magnetic flux through a surface S (sections 15 and 19)

This article uses the units conventions described in article 26542. That system of
units uses a minimum electric charge that will be denoted q.
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4 The gauged group

Article 70621 introduced the concept of a principal G-bundle, which is the math-
ematical foundation for the concept of a gauge field. In the physics literature, the
group G is often called the gauge group, but that means something different in
the math literature.6 For clarity, this article calls G the gauged group. This
name is not standard, but it is consistent with the important idea of gauging a
symmetry group (using the word gauge as a verb).

In classical electrodynamics, the gauged group is usually taken to be R, the
additive group of real numbers. In quantum electrodynamics (QED), we have a
good reason to take the gauged group to be the compact group U(1) instead. This
is called compact QED. Here’s the reason: the magnitudes of the electric charges
of all known elementary particles are precisely integer multiples of a single quantity,
with no evidence of any deviations despite careful searches for exceptions.7 This
charge quantization8 would be unexplained in models that use G = R, but it is
automatic in quantum models that use G = U(1).9 This is related to the fact that
in a model with a charged entity, the term in the hamiltonian that implements its
interaction with the electromagnetic field involves a link variable eiθ (introduced in
section 7) raised to the nth power, where n is the entity’s electric charge expressed
as a multiple of an elementary unit q of charge. When the gauged group is U(1),
the quantity θ is defined only modulo 2π, so n must be an integer for the nth power
of eiθ to make sense. If the gauged group were R instead, then n could be any real
number, so the empirical quantization of charge would be unexplained.

The model constructed in this article doesn’t include electrically charged ob-
jects, but it uses G = U(1) anyway as practice for models that do.

6In the math literature, the name gauge group is used for the group of gauge transformations, which is much larger
than G (article 76708). G is often called the structure group, but that can also be ambiguous (article 70621).

7Dylla and King (1973), Marinelli and Morpurgo (1984), Baumann et al (1988)
8Here, quantization means limited to a discrete (not continuous) set of values.
9Harlow and Ooguri (2021), section 3.4, page 76: “...it would be crazy to ignore the observational fact that the

charges of the electron and proton are exact opposites to within one part in 1021 [ref]. By far the most plausible
explanation of this remarkable agreement is that the gauge group of electrodynamics is indeed U(1)...”

7



cphysics.org article 51376 2025-01-26

5 The short-distance cutoff

Each element of the Hilbert space will be represented by a function of an enormous
number of variables, nominally D variables for each point in D-dimensional space.
To keep the number of variables finite, so that the model’s construction is straight-
forward, we will need both a short-distance (UV) cutoff and a long-distance
(IR) cutoff. This section describes the short-distance cutoff, and section 6 will
modify this picture to implement a long-distance cutoff.

Start with D-dimensional euclidean space, and choose a set of D mutually
orthogonal basis vectors e1, e2, ..., eD, all with the same magnitude ε. Choose any
one point p in the D-dimensional space. The lattice consists of all points that may
reached from p by adding integer multiples of the basis vectors ek. Each point in
this infinite lattice has coordinates (n1, n2, ..., nD) in the chosen basis, where each
coordinate nk is an integer. The point p has coordinates (0, 0, ..., 0).

Two points x and y in the lattice are called nearest neighbors if they have
the same coordinates except for one coordinate in which they differ by ±1, so the
distance between them is ε. An ordered pair (x,y) of nearest neighbors will be
called a directed link, and an unordered pair {x,y} of nearest neighbors will be
called an undirected link. The two directed links (x,y) and (y,x) will be called
oppositely directed compared to each other. The two points x and y will be
called the endpoints of the link.

Instead of associating variables with each point in continuous space, variables
will be associated only with the (directed) links in this lattice.10 These variables
will be called link variables. This is a type of short-distance cutoff, because the
number of variables per unit volume is finite.

10Section 7
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6 The long-distance cutoff

The Hilbert space inner product will be defined by integrating over all of the link
variables. To ensure that this makes sense, a long-distance cutoff will be used so
that the total number of integration variables is finite. Two different long-distance
cutoffs will be considered. Both of them start with the lattice that was defined in
section 5 and modify it to limit the total number of link variables.

One long-distance cutoff uses a truncated lattice.11,12 To define this, choose
a convex open set O of D-dimensional euclidean space that contains a very large
but finite number of the original lattice points. Choose O so that its boundary
doesn’t pass through any lattice point. Points that are in O will be called interior
points, any other point that is connected to an interior point by a single link will
be called a boundary point, and those links will be called boundary links. This
is illustrated in figure 1. Only links with at least one interior endpoint13 will have
associated link variables.14

The other long-distance cutoff will be called a wrapped lattice,11 because
space wraps back on itself like a torus. To define this, choose an integer K ≫ 1.
Start with the same infinite lattice as before, but declare two points x and y to be
equivalent (the same point) if each coordinate of x is equal to the corresponding
coordinate of y modulo K. With this equivalence relation, each point still has 2D
nearest neighbors, the lattice still has (discrete) translation symmetry, and it still
doesn’t have any boundary points or boundary links, but now the total number of
points in the lattice is finite (equal to KD). This is illustrated in figure 2.

The model’s construction will be described in a way that works equally well with
either of these two long-distance cutoffs. When using a wrapped lattice, statements
that apply only to boundary points and boundary links may simply be ignored,
because the wrapped lattice doesn’t have any.

11This name is not standard.
12A truncated lattice is technically no longer a lattice in the usual mathematical sense of the word, but this article

still calls it a lattice. This is common in the literature about “lattice” quantum field theory.
13An interior endpoint is an endpoint that is inside O.
14Section 7
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Figure 1 – Example of a two-dimensional truncated lattice (D = 2). Dots represent points in
the lattice, and solid lines represent links. The dashed outline is the boundary of the region
that was denoted O in the text. The points inside the dashed outline are interior points. The
points outside the dashed outline are boundary points. Links that cross the dashed outline
are boundary links. When D = 3, the one-dimensional dashed outline is replaced by a two-
dimensional surface.

Figure 2 – Example of a two-dimensional wrapped lattice (D = 2). Opposite sides of the dashed
outline are identified with each other, so space is topologically a torus. This lattice does not
have any boundary points or links. Every point is an interior point with 2D nearest neighbors.
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7 Link variables

Section 10 will construct the Hilbert space. Each element of the Hilbert space is a
function of variables called link variables. This section introduces the link variables.

Gauge fields in smooth space are defined using a mathematical structure called
a principal G-bundle.15 The Lie group G is often called the gauge group in the
physics literature, but the math literature uses that name for a much larger group
(the group of all gauge transformations). To avoid confusion, this article will call
G the gauged group, because the group of all gauge transformations is obtained
by “gauging” the group G.16

In the standard hamiltonian formulation of lattice gauge theory, every directed
link (x,y) with at least one interior endpoint has an associated link variable
u(x,y), which takes values in the gauged group G. Link variables associated with
oppositely-directed links are related to each other by the condition

u(x,y)u(y,x) = 1. (1)

If a link (x,y) doesn’t have an associated link variable,17 then u(x,y) ≡ 1.
In this article, the gauged group G is U(1), the multiplicative group of complex

numbers with magnitude 1, so each link variable may be written in terms of a
real-valued angle variable θ(x,y) like this:

u(x,y) = eiθ(x,y). (2)

The angle variable θ(x,y) is only defined modulo 2π. Equation (1) implies that
θ(x,y) is equal to −θ(y,x) modulo 2π.

The collection of link variables represents the gauge field, and any assignment
of specific values (specific elements of G) to all of the link variables will be called a
configuration of the gauge field. The name compact QED refers to the fact that
the gauged group U(1) is compact as a smooth manifold.

15Article 76708
16Harlow and Ooguri (2021), section 3.1
17Remember that only links with at least one interior endpoint have associated link variables.
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8 Gauge transformations

Section 10 will define the Hilbert space using functions that are invariant under a
group of gauge transformations. This section explains what that means.

Let h be a map from the set of points in the lattice to the gauged group U(1),
so h(x) ∈ U(1) for each point x. A transformation that replaces the original value
of every link variable with the new value

uh(x,y) ≡ h(x)u(x,y)h−1(y) (3)

will be called a gauge transformation. It will be called an interior gauge
transformation if h(x) = 1 whenever x is not an interior point.18 The group
of all interior gauge transformations will be denoted G. A function Ψ[u] of the
link variables will be called G-invariant if it is invariant under all interior gauge
transformations:19

Ψ[uh] = Ψ[u] for all h ∈ G. (4)

This is the only part of the construction that treats boundary points differently than
interior points, so let’s consider what would happen if we didn’t require h(x) = 1
for boundary points. The Hilbert space that will be defined in section 10 consists
of G-invariant functions of the link variables. If we required invariance under all
gauge transformations, not just interior ones, then the space of invariant functions
would be smaller, so the set of linear operators that can act on the Hilbert space
would also be smaller. Requiring only G-invariance accommodates a slightly larger
set of operators on the Hilbert space.20,21

18This constraint is empty on a wrapped lattice (section 6).
19This article uses the temporal gauge, in which A0 = 0. Only time-independent gauge transformations are

considered here.
20The text between equations (3.21) and (3.22) in Harlow and Ooguri (2021) mentions a context in which this can

be important.
21The set would be even larger if we didn’t require gauge invariance at all, but then the model wouldn’t be

consistent with electrodynamics.
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9 Examples of G-invariant functions

Let x1,x2, ...,xN be any sequence of points for which each pair (xn,xn+1) of con-
secutive points is a link. Let C denote this set of directed links, and define

u(C) ≡
∏
`∈C

u(`) = u(x1,x2)u(x2,x3) · · ·u(xN−1,xN). (5)

This is the product of link variables along a path C made of links.22 The effect of
a gauge transformation on this product is

u(C)→ h(x1)u(C)h−1(xN).

The product is G-invariant for either of these two types of path (figures 3-6):

• If the path’s endpoints are both boundary points, then the product is G-
invariant because h(x) = 1 for boundary points.23

• If the path is closed (xN = x1), then the product is G-invariant. This works
because the gauged group is abelian (commutative), so

h(x1)u(C)h−1(x1) = u(C)h(x1)h
−1(x1) = u(C).

An important example of a closed path is the sequence of directed links that traces
out the perimeter of a plaquette, the smallest possible loop in the lattice:

u(2) ≡
∏
`∈2

u(`) = u(x1,x2)u(x2,x3)u(x3,x4)u(x4,x1). (6)

The product u(2) is called a plaquette variable. The plaquette 2 can have either
of two possible orientations, corresponding to the two possible directions in which
we can trace around the perimeter.

Any function of these G-invariant products is still G-invariant. This provides a
rich supply of G-invariant functions.

22Recall that u(x,y) ≡ 1 when (x,y) doesn’t have an associated link variable (section 7).
23Section 8
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Figure 3 – Example of a path whose endpoints are both boundary points.

Figure 4 – Examples of closed paths. The example on the right is the boundary of a plaquette.
The lattice in these pictures is two-dimensional (D = 2). On a D-dimensional lattice with
D ≥ 3, most paths do not lie in a single plane, but (the boundary of) a plaquette necessarily
lies in a single plane no matter how many dimensions the lattice has.

14
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Figure 5 – Example of a closed path that is not the (whole) boundary of any surface made
from plaquettes. Such paths exist on a wrapped lattice. If the space were continuous (but still
topologically a torus), this loop would still not be contractible (article 61813).

Figure 6 – Example of a closed path forming the boundary of a single plaquette, on a wrapped
lattice. If space were continuous, this loop would be contractible.

15
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10 The Hilbert space

Observables are represented by linear operators on a Hilbert space. This section
constructs the Hilbert space that will be used for the rest of this article.

An element of the Hilbert space will be called a state-vector.24 Each state-
vector is represented by a G-invariant25 complex-valued function Ψ[u] of the link
variables. Given two states Ψ1[u] and Ψ2[u], their inner product is

〈Ψ1|Ψ2〉 ≡
∫

[du] Ψ∗1[u]Ψ2[u] (7)

≡
∫ (∏

`

du(`)

)
Ψ∗1[u]Ψ2[u]

where the product is over all links that have associated link variables and where
du(`) is defined by ∫

du(`) · · · ≡
∫ 2π

0

dθ(`) · · ·

with u(`) = eiθ(`). The inner product is well-defined because the number of inte-
gration variables is finite (sections 5-7) and because the domain of each integration
variable is finite.26 This Hilbert space will be denoted H.27

24Article 03431
25Section 8
26This is a technical advantage of working with the compact group U(1) instead of the noncompact group R. If

the gauged group were noncompact, then defining the inner product would require gauge fixing.
27H is pronounced “curly H.”
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11 The electric field operators

This section defines some of the model’s basic observables, namely the components
of the electric field at a given locaion in space.

For each U(1)-valued link variable u(`), define the angle-valued link variable
θ(`) by writing u(`) in the form (2), and define an operator E(`) on H by

E(`)Ψ[u] ≡ iκ
∂

∂θ(`)
Ψ[u], (8)

where κ is a constant with units of mass/length that will be specified below.28 The
factor of i makes this operator self-adjoint. When ` = (x,x + ej), the operator
E(`) will also be denoted Ej(x):

Ej(x) ≡ E(`) when ` = (x,x + ej). (9)

These are the electric field operators representing the components of the electric
field. The list of components E1(x), E2(x), ..., ED(x) will be abbreviated E(x).

The value of the coefficient κ in equation (8) is29

κ ≡ q2

εD−1
, (10)

where q is the magnitude of the smallest electric charge that we would want the
model to include when the model is extended to include charged matter. In the
context of the full standard model of particle physics, the appropriate value would
be 1/3 the charge of a proton.30

28This article uses units in which the speed of light is 1.
29The variable denoted θ here is related to the variable that was denoted a in article 26542 by equation (18) in

section 16 (which writes A instead of a). That’s why (10) doesn’t include a factor of ~. To relate the factor εD−1

in the denominator to article 26542, note that article 26542 implicitly uses ∂aj(x)/∂ak(y) = δ(x− y), whose lattice
version has εD in the denominator, and the integral in (18) cancels one of those factors of ε. The sign is consistent
with article 26542, because Ej = −Ej when the mostly-minus convention is used for the Minkowski metric.

30Section 28
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12 G-invariance and the electric field

Gauss’s law (one of Maxwell’s equations) is implicit in the fact that the Hilbert
space uses only G-invariant functions. Given a gauge transformation (3), we can
define a set of angle variables φ(x), one for each point x, by h(x) = exp(iφ(x)). If
Ψ[u] is any smooth complex-valued function of the link variables, not necessarily
G-invariant, then equation (3) implies

∂

∂φ(x)
Ψ[uh] ∝ ∇ · E(x) Ψ[uh] (11)

with ∇ · E ≡
∑

j∇jEj, where ∇ is this lattice version of the gradient:

∇jf(x) ≡ f(x)− f(x− ej)

ε
.

If the function Ψ[u] is G-invariant, then (11) implies

∇ · E(x)Ψ[u] = 0 for all h ∈ G. (12)

This is the quantum version of Gauss’s law in a model where the quantum elec-
tromagnetic field is the only physical entity (no charged matter). Equation (12) is
another way to write equation (4).

18
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13 Wilson loop and Wilson line operators

This section defines more of the model’s basic observables. Section 16 will explain
how these observables relate to the magnetic field.

Every G-invariant function Ψ[u] represents an element of the Hilbert space H
that was constructed in section 10. Any G-invariant function ω[u] may also be used
to define a linear operator W on H, like this:31

WΨ[u] ≡ ω[u]Ψ[u] for all Ψ ∈ H. (13)

Section 9 described examples of G-invariant functions. One example is the product
u(C) of link variables around a closed path C. The corresponding operator W (C),
defined by

W (C)Ψ[u] ≡ u(C)Ψ[u], (14)

is called a Wilson loop operator or just Wilson loop.32 An important special
case of a Wilson loop is the plaquette operator

W (2)Ψ[u] = u(2)Ψ[u] (15)

with u(2) defined by (6). Another example is the product u(C) of link variables
along a path C whose endpoints are boundary points. In this case, the operator
defined by (14) is called a Wilson line.33

If ω[u] is not a G-invariant function, then (13) does not define an operator on
the Hilbert space, because the product ω[u]Ψ[u] is not G-invariant and so does not
belong to the Hilbert space. In particular, multiplication by a single link variable
does not define an operator on this Hilbert space.

31All such operators clearly commute with each other. In particular, W commutes with its adjoint (defined by
replacing ω[u] with its complex conjugate), so W is a normal operator (article 74088). This is important because
operators representing observables should be normal. This is implicit in article 03431, using a relationship between
normal operators and projection operators highlighted in article 74088.

32Some authors use the name Wilson loop for the expectation value of this operator, as in Montvay and Münster
(1997), section 3.2.4. The way I’m using the name here is consistent with Peskin and Schroeder (1995), section 15.3.

33Wilson loop operators and Wilson line operators are both called line operators to emphasize that they are
localized along a one-dimensional curve, as opposed to being localized at a point (Aharony et al (2013), Gaiotto et
al (2015)).
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14 An identity

Consider two adjacent plaquettes, directed so that their shared link occurs with
opposite directions, as shown here:
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1

Call these two plaquettes 21 and 22, and define u(21) and u(22) as in equation
(6). One plaquette includes the link (y,x), and the other includes the link (x,y).
Equation (1) says that those two link variables cancel each other in the product
u(21)u(22), leaving the product of the six link variables around the perimeter of
the pair, as illustrated here:
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This is still true if the two adjacent plaquettes are not coplanar. This generalizes to
any number of plaquettes whose shared links all occur in oppositely-directed pairs.
Such a collection of plaquettes will be called consistently directed.

Consider a surface S formed by consistently directed plaquettes, and suppose
for simplicity that its boundary ∂S is a single closed loop. Then the product of all
of those plaquette variables satisfies∏

2∈S

u(2) =
∏
`∈∂S

u(`) (16)

because equation (1) says that the contributions of the other link variables (the
ones that are not in ∂S) cancel each other in pairs, as illustrated above.

20
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15 One definition of magnetic flux

Let S be any connected surface made from consistently oriented plaquettes, as in
section 14, and suppose that its boundary ∂S is a single closed loop. Equation 16
shows that the Wilson loop operator W (∂S) that was defined in section 13 may be
written

W (∂S) =
∏
2∈S

W (2),

so we can define an observable B(S) corresponding to the magnetic flux through
the surface S by

W (∂S) = eiB(S)/~. (17)

Sections 16-17 will help explain why B(S) deserves to be called magnetic flux.
The quantity (17) is unaffected when the B(S) in the exponent is replaced by
B(S)+2π~n for any integer n, so B(S) is only defined modulo 2π~. Section 19 will
introduce an alternate definition of magnetic flux that doesn’t have this ambiguity.
Sections 19-20 and 28-30 will explain how these two definitions relate to each other
and to real-world experience.

21
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16 Motivation for the definition (17)

Article 76708 introduces the concept of a connection on a principal G-bundle,
which is the mathematical foundation for the general concept of a classical gauge
field. A principal G-bundle associates a copy of the fiber, a smooth manifold that
is almost the Lie group G but without the full structure of a group, to each point
of the base space. In this article, the base space is ordinary three-dimensional
physical space, generalized to D dimensions for more insight, and the group G is
U(1). A connection defines a way of lifting each path in the base space to a path
through the collection of fibers. When the path in the base space is a closed loop C,
the lifted path starts and ends in the same (copy of the) fiber, but not necessarily
at the same point in the fiber. The transformation from one point to the other is
reproduced by an element of G called the holonomy associated with the loop C.34

The quantity u(C) ∈ G defined in equation (5) is a lattice version of the holon-
omy associated with C. To relate this to magnetic flux, consider classical electro-
magnetism. Article 76708 explains that when G is abelian, the holonomy has the
form exp

(
i
∫
C A
)
, where A is the gauge field one-form and the integral is around

the loop C. This is related to (5) through

θ(y,y′) =
1

~

∫ y′

y

Ak(x) dxk, (18)

where θ is the angle-valued link variable defined in (2). In classical electrodynamics
with gauged group R, if S is a two-dimensional surface whose boundary is C, then
Stokes’s theorem35 gives ∫

C

A =

∫
S

B, (19)

where B is the magnetic field two-form. The integral
∫
S B defines the magnetic flux

through the surface S in classical electromagnetism. This motivates the definition
(17) of the magnetic flux operator in the quantum U(1) model.

34If the gauged group were nonabelian, then this element of G would also depend on the starting point in the fiber.
35Article 91116
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17 The magnetic flux through a closed surface

One of Maxwell’s equations involves only the magnetic field. In continuous space,
this equation may be written dB = 0, where B is the magnetic field two-form and
d is the exterior derivative.36 If S is a closed surface forming the boundary of a
three-dimensional volume V , then37,38∫

S

B =

∫
V

dB = 0. (20)

The magnetic flux defined in (17) also has this property, modulo 2π~. To show
this, start with the identity (16). When ∂S is empty, that identity reduces to∏

2∈S

u(2) = 1 if S is closed

because all of the link variables cancel in pairs. Combine this with equations (15)
and (17) to get

B(S) = 0 modulo 2π~ if S is closed. (21)

This shows that the magnetic flux defined by equation (17) satisfies a lattice version
of equation (20).

36Article 91116
37The first equality is another special case of Stokes’s theorem

∫
∂M

ω =
∫
M
dω. This application uses ω = B.

Equation (19) uses ω = A and the relationship B = dA.
38Stokes’s theorem assumes that the differential form ω in footnote 37 has compact support (article 91116). To

appreciate why this is important, suppose that V is a 3-dimensional ball with one interior point deleted. Deleting
that point makes V a non-compact manifold, and a two-form B on that manifold can satisfy both dB = 0 and∫
∂V

B 6= 0. This does not contradict (20) because (20) assumes that B has compact support as a two-form on V ,
but the condition

∫
∂V

B 6= 0 requires B to have non-compact support as a two-form on V . (Specifically, it implies
that B would have a singularity at the deleted point if that point were not deleted.) Having compact support on the
boundary S = ∂V is not sufficient.
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18 A property of the low-energy limit

Space is being treated as a lattice to make the math clear, but we are ultimately
only interested in taking a continuum limit in which lattice artifacts are negligible,
so the energy range of interest is

energy < ξ
~
ε

(22)

where ε is the lattice spacing and39

ξ � 1 (23)

When space is three-dimensional (D = 3), the form of the hamiltonian that will
be introduced in section 23 shows that the condition (22) requires using states in
which the dimensionless quantity

χ(2) ≡ 2−W (2)−W−1(2)

effectively satisfies

χ(2) < ξ
q2

~
when D = 3. (24)

The ratio q2/~ is . 1 in the real world,40 so the conditions (23) and (24) imply

χ(2)� 1 when D = 3. (25)

This will be important in section 19.

39This article uses units in which the speed of light is 1 (footnote 28 in section 11), so the quantity ~/ε has the
same units as energy.

40In the system of units used here, q2/~ is the fine structure constant except for a factor of order 1. When
D = 3, the model’s properties are qualitatively different for large and small values of q2/~ (section 27). In QED with
matter, perturbation theory relies on the smallness of q2/~.
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19 Another definition of magnetic flux

If S is a surface made from consistently oriented plaquettes, then we can define a
different observable B(2) by

B(S) ≡
∑
2∈S

B(2) with B(2) ≡ W (2)−W−1(2)

2i
~. (26)

This observable is different than the observable B(S) defined by equation (17),
but this one also deserves to be called magnetic flux. To understand why, use
(23) and (24) to infer that the flux B(2) through a single plaquette is effectively
restricted by the condition

(B(2)/~)2 . ξ
q2

~
when D = 3 (27)

in the continuum limit. Use this with (23) to get the approximation

exp
(
iB(2)/~

)
≈ exp

(
iB(2)/~

)
when D = 3.

The quantity ξ is arbitrarily small in the continuum limit, so if S is a macroscopic
surface (made of an enormous number of plaquettes), then we can take ξ to be
small enough so that the approximation

exp
(
iB(S)/~

)
≈ exp

(
iB(S)/~

)
when D = 3

holds with negligible error in the continuum limit.
One appealing property of the earlier definition (17) is that B(S) is exactly

zero (modulo 2π~) whenever the surface S is closed (equation (21)). The observ-
able B(S) defined by (26) only approaches this property in the low-energy limit,
but sections 28-30 will explain why B(S) is a better representation of the mag-
netic flux that we actually measure in experiments. The key is to remember that
measurements are physical processes. Any description of physical processes within
the model uses its equations of motion (section 25), and those equations directly
involve the quantities W (2).
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20 The magnetic field

In continuous space, the components of the magnetic field may be expressed in
terms of the magnetic flux like this:

Bjk(x) = lim
α(S)→0

B(S)

α(S)
(in continuous space), (28)

where S is a surface element41 in the j-k plane with area α(S) containing the
point x. On a lattice, the minimum possible area is ε2, where ε is the distance
between neighboring lattice sites, so by analogy with (28), we can use either of
these definitions:

Bjk(x) ≡ B(2)/ε2 (29)

Bjk(x) ≡ B(2)/ε2 (30)

where 2 is the plaquette whose links trace through this sequence of points:

x → x + ej → x + ej + ek → x + ek → x. (31)

This is consistent with the continuous-space relationship Bjk = ∇jAk−∇kAj when
θ is related to A by equation (18).

In the definition (29), the flux is defined only modulo 2π~, so the field Bjk(x) is
defined only modulo 2π~/ε2. Section 29 will show that the period 2π~/ε2 is much
larger than the magnetic field magnitudes encountered in real experiments, so in
the context of states with low enough energy to be relevant to such experiments, we
can refine the definition (29) by selecting the value with the smallest magnitude.
That makes definitions (29) and (30) interchangeable in the low-energy limit.42

The definition (29) will be more convenient when deriving the formal continuum
limit of the hamiltonian in section 24.

41To make this definition unambiguous, an orientation (one of the two directions around the boundary C) would
need to be specified. The sequence (31) does that for the lattice version.

42Section 19
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21 A commutation relation

Define E(`) as in section 11, and let W (C) be any Wilson loop or Wilson line as
defined in section 13. Let ` rev denote the link obtained by reversing the direction
of `, so if ` = (x,y), then ` rev = (y,x). If the loop C does not intersect itself, then
the definitions of E(`) and W (C) imply

[
E(`), W (C)

]
=


−κW (C) if ` ∈ C,
κW (C) if ` rev ∈ C,
0 otherwise,

(32)

using the standard notation [A,B] ≡ AB − BA. In particular, the electric field
operator E(`) commutes with a Wilson loop or Wilson line W (C) if the loop C
does not include the link ` or its oppositely-directed version ` rev. If it does, then
E(`) doesn’t commute with W (C).

The commutation relation (32) is a lattice version of the commutation relation
shown in article 26542. To infer this, use the fact that the representations of the
electric and magnetic field operators in sections 11 and 15 are lattice versions of the
representations of the electric and magnetic field operators in article 26542. The
commutation relations are consequences of those representations, both in smooth
space and on the lattice.
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22 Time dependent observables

In quantum field theory, part of the task of defining a model is to associate ob-
servables with regions of spacetime.43 Sections 11 and 13 defined the model’s basic
observables at time t = 0. These are the electric field operators E(`) and the
Wilson loop and Wilson line operators W (C). This section defines observables
at arbitrary times t in terms of those at t = 0, using a hamiltonian that will be
specified in section 23.

If R is any region of space, then observables localized in R at time t are
represented by operators of the form

O(t) ≡ U(−t)OU(t) (33)

with
U(t) ≡ e−iHt/~, (34)

where O is any linear operator on the Hilbert space – like an electric field operator
E(`) or a Wilson loop W (C) – that can be expressed using only links in R, and the
hamiltonian is defined by (36). The hamiltonian is (unbounded but) self-adjoint, so
the operators (34) are unitary, and O(t) is self-adjoint for each t if O is self-adjoint.

The Hilbert space consists only of G-invariant functions, so if O is a linear
operator on the Hilbert space, then applying O to any G-invariant function gives
another G-invariant function. In this sense, observables are G-invariant.

Equations (32) and (33) imply[
E(`, t), W (2, t)

]
= U−1(t)

[
E(`), W (2)

]
U(t) =

[
E(`), W (2)

]
(35)

for all t. This is the equal-time commutation relation. It is a lattice version
of the commutation relation between the electric and magnetic field operators that
was described in article 26542.

43Article 21916
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23 The hamiltonian

This section introduces the hamiltonian, the operator that section 22 used to define
the time dependence of the model’s observables. The hamiltonian is44,45

H =
1

q2

(
εD
∑
`

E2(`)

4
+ εD

∑
2

1−W (2)

2ε4
~2

)
+ constant

=
1

q2

(
εD
∑
`

E2(`)

4
+ εD

∑
2

2−W (2)−W †(2)

4ε4
~2

)
+ constant. (36)

The operators E(`) and W (2) are defined by equations (8) and (15). The sum over
` is over all directed links that have associated link variables.46 The sum over 2
is over all oriented plaquettes,47 including plaquettes that involve fewer than four
link variables.48,49

For any t, equation (33) and the obvious identity U−1(t)HU(t) = H imply that
the hamiltonian (36) may also be written50

H =
1

q2

(
εD
∑
`

E2(`, t)

4
+ εD

∑
2

1−W (2, t)
2ε4

~2

)
+ constant. (37)

Section 24 will show that this is a lattice version of the more familiar hamiltonian
for electrodynamics in continuous space.

44This is the Kogut-Susskind hamiltonian specialized to the gauged group G = U(1).
45The two expressions for H are equal because reversing the direction of a plaquette is the same as replacing

W (2)→W †(2).
46Recall that only links with at least one interior endpoint have associated link variables (section 7).
47Equation (36) has an extra factor of 2 in the denominator compared to equation (3.66) in Montvay and Münster

(1997), because the sum in their equation includes only one orientation of each unoriented plaquette.
48Harlow and Ooguri (2021), text below equation (3.26)
49A plaquette always involves four links, but they might not all have associated link variables (section 7). Including

these plaquettes makes the hamiltonian depend on all of the link variables, including those with only one interior
endpoint.

50Footnote 45 in section 23
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24 Formal continuum limit of the hamiltonian

This section shows that the hamiltonian (36) is a lattice version of the more familiar
hamiltonian for electrodynamics in continuous space.

Use the relationships (17) and (29) to get

∑
2

2−W (2)−W †(2)

4ε4
~2 =

∑
2

2− eiB(2)/~ − e−iB(2)/~

4ε4
~2

=
∑
x,j,k

2− eiε2Bjk(x)/~ − e−iε2Bjk(x)/~

4ε4
~2

=
∑
x,j,k

(
Bjk(x)

)2

4
+O(ε2).

Use this and (9) in (36) to get

H ≈ 1

q2

εD∑
`

E2(`)

4
+ εD

∑
x,j,k

(
Bjk(x)

)2

4

+ constant

=
1

2q2
εD
∑

x

∑
j

E2
j (x) +

∑
j<k

(
Bjk(x)

)2

+ constant,

where “≈” means up to terms that are negligible when the resolution is low com-
pared to the lattice scale ε, ignoring the fact that the magnetic flux is only defined
modulo 2π~.51 This matches the form of the hamiltonian that was used in article
26542.

51Section 16 explained why it’s only defined modulo 2π~.
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25 Equations of motion

This section derives expressions for the time derivatives of E(`, t) and W (C, t), and
section 26 will show that the resulting equations are a lattice version of Maxwell’s
equations.52 This section ignores the long-distance cutoff (section 6).

Use equation (37) to get53

i~Ė(`, t) =
[
E(`, t), H

]
=
−~2

2q2
εD−4

∑
2

[
E(`, t), W (2, t)

]
i~Ẇ (2, t) =

[
W (2, t), H

]
=

1

4q2
εD
∑
`

(
E(`, t)

[
W (2, t), E(`, t)

]
+
[
W (2, t), E(`, t)

]
E(`, t)

)
,

and then use the commutation relations (32) and (35) to get

iĖ(`, t) =
κ~
2q2

εD−4

(∑
23`

W (2, t)−
∑

23` rev
W (2, t)

)
(38)

i~Ẇ (2, t) =
κ

4q2

(
εD
∑
`∈2

(
E(`, t)W (2, t) +W (2, t)E(`, t)

)
− εD

∑
` rev∈2

(
E(`, t)W (2, t) +W (2, t)E(`, t)

))
=

κ

2q2
εD
∑
`∈2

(
E(`, t)W (2, t) +W (2, t)E(`, t)

)
. (39)

The sum
∑

23` is over all directed plaquettes that include the directed link `, and
the sum

∑
`∈2 is over all directed links that occur in the directed plaquette 2.

52Some of Maxwell’s equations don’t involve time derivatives. Sections 12 and 16 already showed how those are
reproduced in this model.

53Ẋ denotes the derivative of X with respect to t.
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26 Relationship to Maxwell’s equations

To show that equation (38) is a lattice version of one of Maxwell’s equations, use
equation (17) and ignore the modulo-2π~ ambiguity in the magnetic flux to get

Ė(`, t) =
κ

q2
εD−4

∑
23`

B(2, t) +O(B2).

Then use (9), (29), and (31) to get

Ėj(x, t) =
κ

q2
εD−2

(∑
k

(
Bjk(x, t)−Bjk(x− ek, t)

)
+O(ε2)

)

=
κ

q2
εD−1

(∑
k

∇kBjk(x, t) +O(ε2)

)
(40)

where ∇ is a lattice version of the gradient. To show that equation (39) is a lattice
version of one of Maxwell’s equations, use equations (17) and (29) on the right-hand
side to get

i~Ẇ (2, t) =
κ

q2
εD

(∑
`∈2

E(`, t) +O(ε2)

)
.

Then use (17) and (29)-(31) again on the left-hand side to get

−Ḃjk(x, t) =
κ

q2
εD−2

(
Ej(x) + Ek(x + ej)− Ej(x + ek)− Ek(x)

)
=
κ

q2
εD−1

(
∇jEk(x, t)−∇kEj(x, t) +O(ε2)

)
(41)

where ∇ is another lattice version of the gradient. When κ is given by (10),
equations (40) and (41) agree with the zero-current case of Maxwell’s equations as
presented in article 31738, up to terms that are negligible when the resolution is
low compared to ε.
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27 Notes about the continuum limit

Equations (38)-(39) look more complicated than Maxwell’s equations in smooth
space, for two reasons. One reason is that space is being treated here as a lattice
instead of as a continuum, so we have sums εD

∑
x · · · in place of integrals

∫
dDx · · · .

Another reason is that these equations are nonlinear in the basic observables E and
W , both explicitly and implicitly. The products of E with W on the right-hand
side make them explicitly nonlinear, and a further nonlinearity is implicit in the
constraint W †W = 1.

The fact that the equations of motion are nonlinear makes extracting this
model’s predictions more difficult. Even something as basic as the existence of
a Lorentz-symmetric continuum limit governed by Maxwell’s equations is far from
obvious. As a concession, section 26 showed that equations (38)-(39) are a lattice
version of Maxwell’s equations, in the sense that they reproduce Maxwell’s equa-
tions when the parameter ε is formally sent to zero, ignoring the noncommutativity
of the operators and the periodicity of the magnetic flux. The periodicity of the
flux does need to be taken into account when studying the continuum limit of the
model as a whole, though. The rest of this section summarizes some insights from
such studies.

For D ≥ 3, studies using the path-integral formulation have shown that compact
QED has a Coulomb phase with massless photons when the overall coefficient of
the action is large enough. For a given ε, the coefficient of the action is proportional
to 1/q2, just like the coefficient of the hamiltonian, so the Coulomb phase with
massless photons occurs when q2 is small enough (for fixed ε). Masslessness implies
infinite correlation length, so this is evidence that the expected continuum limit
exists.54 For larger values of q2, compact QED is in a confinement phase with
no massless particles. When D = 3, the phase transition between the Coulomb
phase and the confinement phase appears to be weakly first order.55 That means

54These statements are based on Frölich and Spencer (1982), section 2.11 (for D = 3) and remark 1 at the end of
section 2.12 (for D > 3). Their analytic results agree with numerical studies for D = 3, recent examples of which
include Lewis and Woloshyn (2018), Loveridge et al (2021), and Loveridge et al (2021b).

55Torres et al (2024), section 1
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that the correlation length doesn’t diverge in units of the lattice spacing ε when
the transition is approached from the confinement phase, so a strict continuum
limit probably doesn’t exist for the confinement phase56 even though it does for
the Coulomb phase.

For D = 2, compact QED is in the confinement phase for all nonzero values of q2

when the lattice spacing is finite, but what happens in the continuum limit depends
on how the continuum limit is defined.57 By definition of continuum limit, the
correlation length in units of the lattice spacing must diverge, but the correlation
length in unspecified units may either diverge or remain finite. We are free to choose
which of these two options we use to define the limit.58 If we choose the limit in
which the correlation length diverges, then the result is a model of free massless
photons.59,60 If we choose the limit in which the correlation length remains finite
(even though it diverges in units of the lattice spacing), then the result is a model
whose only particle is a massive spinless particle with no interactions.61 Both
continuum limits are valid, and interactions are absent in both of them.62

56Majumdar et al (2004), Espriu and Tagliacozzo (2003)
57Athenodorou and Teper (2019), paragraph containing equations (3.1)-(3.3)
58Article 07611 explains this in more detail.
59This limit is mentioned in Banks et al (1977) (second-to-last paragraph in section 2, with additional insight in

the text below equation (A.9) about what happens as the limit is approached) and in Harlow and Ooguri (2021)
(footnote 47 on page 59).

60Article 26542 shows that the angular momentum of a photon is zero when D = 2, but they are still often called
photons.

61This limit is used in Göpfert and Mack (1982) and in Athenodorou and Teper (2019).
62Confinement – defined as a linear potential between static external charges – is also absent in both continuum

limits (Athenodorou and Teper (2019), section 3.4 and the text below equation (3.3)).
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28 Quantifying the magnetic flux period

Equation (17) defines the magnetic flux B(S) only modulo the period 2π~. Instead
of using the units convention that was used in this article,63 we can remove a
factor of q from the definitions of the electric and magnetic fields to recover the
engineering convention. With that convention, the period is 2π~/q. As explained
in section 4, the constant q should be the magnitude of the smallest nonzero electric
charge that the model includes after charged matter is included.64 The smallest
nonzero electric charge in the standard model of particle physics is 1/3 the charge
of a proton. If we use this as the value of q, then the period is65

2π~
q
≈ 10−14 weber (42)

in standard international units. The assertion that magnetic flux is defined only
modulo 2π~/q means that for any given surface S, values of the magnetic flux B(S)
that differ from each other by an integer multiple of the quantity (42) are physically
equivalent to each other.

For comparison, a typical value for the flux of the earth’s magnetic field through
one square meter is more than 10−5 weber,66 which is enormous compared to (42),
and other values we encounter routinely are even larger. The alternate definition
that was given in section 19, which is not periodic, is evidently a better represen-
tation of the magnetic flux that we determine through real measurements. Section
30 will explain how this can be anticipated by thinking about how the model would
describe the physical process of measurement.

63The units convention used in this article is described in detail in article 26542.
64If a nonzero electric charge could be arbitrarily small, then the flux period would be infinite – the gauged group

would be R instead of U(1).
65The flux quantum that is famous in the study of conventional (BCS) superconductivity has the form 2π~/q,

but in that case q is two times the magnitude of an electron’s charge. References are cited in Loder et al (2007),
which points out that the flux quantum can have a different value in unconventional superconductors.

66https://climate.nasa.gov/news/3105/
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29 Quantifying the magnetic field period

Section 20 used the magnetic flux through a plaquette 2 to define the magnetic
field like this:

magnetic field =
magnetic flux through 2

ε2
(43)

where ε is the distance between neighboring lattice sites. If we use the definition
(17) for the magnetic flux, then the periodicity of the magnetic flux implies a
periodicity for the magnetic field. This section quantifies that period.

The lattice is artificial, so when we treat space as a lattice for the purpose
of defining the model, we should take ε to be much smaller than any practical
measurement can resolve. As an example, suppose we choose ε ∼ 10−20 meter, so
that the lattice is indistinguishable from a continuum for most practical purposes.
Then the period (42) for the magnetic flux implies this period for the magnetic
field:

2π~/q
ε2

∼ 1025 tesla. (44)

This is much greater than any of the magnetic field strengths that been measured
so far.67 This confirms that we can refine the definition (29) by selecting the value
with the smallest magnitude, as stated at the end of section 20.

If we could take the strict ε → 0 limit of compact QED, then the range of
distinguishable values of the magnetic field strengths would be unbounded even
with the definition (29). A nontrivial strict limit ε→ 0 might be obstructed when
charged matter is included68 but that’s not a problem for physical applications,
because (44) is plenty big enough already.

67According to the text below equation (1) in Kong et al (2022), the magnetic field of a particular neutron star,
with a strength of ∼ 1013 Gauss = 109 Tesla, became the new record-holder in 2022.

68Göckeler et al (1998a) and Göckeler et al (1998b)
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30 Measuring magnetic flux

To study the physical process of measurement using a model that includes the
microscopic details of the measurement equipment would be too difficult, and the
model defined in this article doesn’t include those details anyway – it doesn’t include
any matter at all. This model does share some features with more comprehensive
models, though, and we can use those features to anticipate that the definition of
magnetic flux in equation (26) is a more direct representation of what we actually
measure than the definition given by equation (17).

Measurements are physical processes, and to describe physical processes within
a model, we use its equations of motion. In the present model, the equations of
motion (38)-(39) involve only single-valued functions of W (2). The corresponding
equations of motion in compact QED with matter also have that property,69 so the
quantities that we measure in experiments should also expressible as single-valued
functions of W (2). The definition of B(2) in equation (26) satisfies this condition.
The definition of B(2) in equation (17) does not.

This suggests that compared to the definition (17), the definition (26) of the
magnetic flux and the corresponding definition (43) of the field is a better repre-
sentation of what we actually measure in experiments,70 after a suitable degree of
smearing71 to make the resolution much coarser than the lattice spacing ε.

69They also involve other gauge invariant combinations of link variables and matter fields, but that doesn’t change
the message here.

70The derivation of the formal continuum limit of the hamiltonian in section 24 and of the equations of motion in
section 26 used the definition (17), but that’s justified because those derivations implicitly use the refinement that
was described at the end of section 20, and that refinement makes the two definitions of the magnetic field in section
20 consistent with each other at sufficiently low energies.

71Smearing a local observable means forming a weighted sum of translated versions of the observable over a region
whose size corresponds to the resolution (article 22792).
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Göckeler et al, 1998b. “Resolution of the Landau pole problem in QED” Nucl.
Phys. Proc. Suppl. 63: 694-696, https://arxiv.org/abs/hep-lat/9801004
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