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How Quickly Does an Object Falling
Into a Black Hole Disappear?

Randy S

Abstract Consider this common question: if a hovering
observer releases a beacon, letting it fall toward the event
horizon, does the hovering observer see the object freeze at
the horizon because of extreme time dilation? Or does the
hovering observer see the object disappear? This article uses
the metric of an ideal non-rotating black hole to answer the
question quantitatively.
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1 Introduction

Consider a radially falling object in the Schwarzschild metric. Use the standard
coordinate system in which the line element for radial motion is given by equation
(6) in section 4, with coordinates t, r. Suppose the object is dropped from a ra-
dius r0 > R, where R is the Schwarzschild radius. How quickly does the object
disappear, for all practical purposes, according to an observer hovering at rH � R?

(In this article, H denotes the distant hovering observer and F denotes the
falling object. A subscript 0 denotes an initial value for the falling object.)

To define “disappear,” suppose that the object is emitting light with a frequency
f0 and with a constant power P0, both according to its own clock. For simplicity,
pretend that all of the light travels directly toward the distant observer, so that none
of the power is wasted. The distant hovering observer will receive a lower frequency
fH and a lower power PH , both of which continue to decrease as the object falls, due
to the increasing redshift as the object approaches the event horizon. The object
“disappears” when the frequency or power (or both) are too low to be observed by
any practical devices.

Let t be the coordinate-time,1 which coincides with the distant observer’s proper
time in the standard coordinate system. This article derives the result

fH(t) = Q(t)f0 PH(t) = Q2(t)P0 (1)

with

Q(t) ≤ r0

R
exp

((r0

R

)2

− ct

R

)
(2)

where c is the speed of light. The exponentially-decreasing dependence on t im-
plies that the falling object will disappear very quickly (according to the distant
observer’s clock) as it approaches the event horizon.

1As emphasized in article 48968, time is defined by the metric (6), not by how we name the coordinates, but
referring to t as “coordinate time” will be convenient.
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2 Example

For a numeric example, consider a solar-mass black hole, for which R ≈ 3 km, and
suppose that the object is dropped from r0 = 1.8R.

Before the object is dropped, suppose that it is temporarily held at r0. If the
light emitted has wavelength 470 nm (a blue wavelength) according to that object’s
clock, then the light received by the distant observer will be2

(470 nm)×
(

1− R

r0

)−1/2

= 705 nm

(a red wavelength) according to the distant observer’s clock.
Now suppose that the object is dropped from r0. After 1 millisecond has elapsed

on the distant observer’s clock (so that ct/R ≈ 100), we have

Q(t) < 10−40,

so the wavelength received by the distant observer will be more than 1040 times
the emitted wavelength, and the power received will be less than 10−80 times the
emitted power. For all practical purposes, according to the distant observer, the
object has disappeared less than a millisecond after being dropped.

2I chose r0 = 1.8R so that 1−R/r0 = 4/9, to make it easy.
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3 Approach

Consider radial motion only, and use units in which the speed of light is c = 1.
Suppose we have equations

t = tF (τ) r = rF (τ)

for the coordinates of the falling (F) object as a function of its own proper time τ .
Suppose also that we have an equation

t = tL(r)

for a null geodesic3 (L = light) expressed by giving the t-coordinate as a function
of the r-coordinate. As the object falls, it emits light that has a constant frequency
and constant power according to its own clock. Consider an observer hovering at
rH , and let tH at which a given parcel of light reaches the observer, expressed as
a function of the falling object’s proper time τ at which that parcel was emitted.
Then

tH(τ) = tF (τ) + ∆L

(
rF (τ)

)
. (3)

The first term on the right-hand side is the coordinate-time at which the parcel of
light was emitted, and the second term is the elapsed coordinate-time during the
light’s journey from rF to rH . The term ∆L depends only on rF because the metric
(6) is invariant under translations in t. The factor Q(t) that relates fH to f0 in
equation (1) is

Q
(
t(τ)

)
= (ṫH)−1 (4)

where the overhead dot means a derivative with respect to τ .
To relate this to power, we can use a simplistic “photon” model for the light.

Then (4) is proportional to the number of photons received per second as a function
of τ , given that photons are emitted at a constant rate on the falling object’s clock.
The power received is proportional to hf (the energy in one photon) times the

3Null geodesic is a shorter name for lightlike geodesic (article 48968).
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number of photons received per second, where h is Planck’s constant, so the power
is proportional to Q2.

Equation (3) implies

ṫH(τ) = ṫF (τ) + ∆′L
(
rF (τ)

)
ṙF (τ) (5)

where ∆′L is the derivative of ∆L(r) with respect to its argument rF . Now if we
express τ as a function of the coordinate time t, then we have Q as a function of
the coordinate time t, which coincides with the distant observer’s proper time if
rH � R.
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4 Geodesic equations

For radial motion with r > R, the proper-time equation for an ideal non-rotating
black hole (article 24902) can be written

dτ 2 = a dt2 − a−1 dr2 (6)

with

a(r) ≡ 1− R

r
where R is the Schwarschild radius. The equations of motion for an object with
non-zero mass are (article 33547)4

r̈ = −a′/2 aṫ = γ (7)

where γ is a constant and where each overhead dot is a derivative with respect to
τ . Substitute this expression for ṫ2 into (6) to deduce

1 = a−1γ2 − a−1ṙ2. (8)

At the point where the object is dropped, we have ṙ = 0, so this gives

γ2 = a(r0) (9)

if the object is dropped from r0. Use this in the second of equations (7)

ṫ2 =
a(r0)

a2(r)
. (10)

Use (9) in (8) to get

ṙ2 = a(r0)− a(r), (11)

4We won’t need the equation for r̈.
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and multiply both sides of this by 1/ṫ2 to get

(dr/dt)2 =
a(r0)− a(r)

a(r0)
a2(r). (12)

The equation for a radial null geodesic is easier to derive, because for this special
metric, any radial null worldline is a geodesic. Set dτ = 0 in (6) to get

(dr/dt)2 = a2(r) (null geodesic). (13)

Solving equation (11) gives us r = rF (τ), and then substituting this into (10)
gives us t = tF (τ). Solving equation (13) gives us t = tL(r). Altogether, this is
everything we need for equation (3).
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5 World-line of the light

The quantity
∆′L(rF )

in equation (5) can be evaluated exactly. For an outgoing parcel of light, equation
(13) reduces to

dr/dt = a(r),

which is the same as
dt/dr = 1/a(r) =

r

r −R
. (14)

The solution is
t = constant + r +R log(r −R) ≡ tL(r),

which can be verified by taking the derivative with respect to r and comparing to
(14). The elapsed coordinate-time for the light to travel from rF to rH is therefore

∆L(rF ) = rH − rF +R
(

log(rH −R)− log(rF −R)
)
,

and the derivative of this with respect to rF is

∆′L(rF ) = −
(

1 +
R

rF −R

)
=
−1

a(rF )
. (15)

This could have been inferred directly from (14) with no calculation, because only
the rF -end of the journey changes as a function of rF . The result is negative
because the elapsed coordinate-time decreases with increasing rF (because the dis-
tance traveled decreases witih increasing rF ). In equation (5), the negative sign is
canceled by the sign of ṙF < 0.
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6 Reduction to an integral

We can easily derive a version of equation (5) in which the parameter is rF (abbre-
viated r from now on) instead of τ . Equations (10), (11), and (15) give5

ṫF + ∆′LṙF =
a

1/2
0

a
+

1

a
(a0 − a)1/2 =

a
1/2
0 + (a0 − a)1/2

a
(16)

with a ≡ a(r) and a0 ≡ a(r0). This is the quantity of interest expressed as a
function of the falling object’s coordinate r. As expected, it diverges as r → R, so
the frequency goes to zero as r → R.

To finish, we need to express r as a function of the coordinate time t, so we
need to solve equation (12). Define

h(r) ≡ a(r)b(r) b(r) ≡

√
a(r0)− a(r)

a(r0)

so that equation (12) may be written

dr/dt = −h(r).

The minus sign ensures that r is a decreasing function of t (so that the object is
falling toward the black hole). We can also think of this as

dt/dr = −1/h(r),

which is solved by

t =

∫ r0

r

ds

h(s)
=

∫ r0

r

ds
s

(s−R)b(s)
. (17)

To check this, just take the derivative of both sides with respect to r. The upper
limit of the integration range is set to r0 so that t = 0 when r = r0, which represents
the instant the object is dropped.

5The minus sign in (15) cancels the minus sign in ṙF = −(a0 − a)1/2.
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The integral (17) diverges as r → R. By adding and subtracting R/(s − R)
from the integrand, we can write the integral as

t = T (r) + S(r) (18)

with

T (r) ≡
∫ r0

r

ds
R

s−R
(19)

S(r) ≡
∫ r0

r

ds

(
s

(s−R)b(s)
− R

s−R

)
. (20)

Here’s why this is useful:

• The function T (r) can be calculated exactly, and it diverges as r → R.

• The function S(r) remains finite as r → R and is therefore negligible com-
pared to T (r) when the falling object is very close to the horizon (when r is
close to R), so we don’t need to calculate it exactly.
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7 The divergent part

The part that diverges as r → R is

T (r) = R
(

log(r0 −R)− log(r −R)
)
> 0.

Use this in (18) to get

t ≤ Smax +R
(

log(r0 −R)− log(r −R)
)
.

Re-arrange this to get

r ≤ R + (r0 −R) exp

(
Smax − t

R

)
≡ R + ρ(t).

This implies

a(r) ≤ 1− R

R + ρ(t)
=

ρ(t)

R + ρ(t)
.

Equations (3), (4), and (16) say the redshift factor is

Q(t) =
a(r)

√
a0 +

√
a0 − a

≤ a(r)
√
a0
,

and combining this with the preceding inequality for a(r) gives

Q(t) ≤ 1
√
a0

ρ(t)

R + ρ(t)

≤ 1
√
a0

ρ(t)

R

=

((r0

R

)2

− r0

R

)1/2

exp

(
Smax − t

R

)
≤ r0

R
exp

(
Smax − t

R

)
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The next section derives the result

Smax ≤
r2

0

R
, (21)

which finally gives the result quoted in the introduction, expressed here in units
where c = 1:

Q(t) ≤ r0

R
exp

((r0

R

)2

− t

R

)
.
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8 The finite remainder

This section derives the inequality (21). Use the identity b(R) = 1 to see that the
integrand of S(r) (equation (20)) is finite when s = R. The integrand diverges
when s = r0, because b(r0) = 0, but the integral is still finite. To prove this, start
by writing S(r) as

S(r) =

∫ r0

r

ds
s− b(s)R

(s−R)b(s)
.

=

∫ r0

r

ds
s
√
a0 −R

√
a0 − a(s)

(s−R)
√
a0 − a(s)

.

Temporarily work in units R = 1 and multiply the numerator and denominator of
the integrand by

√
r0s to get

S(r) =

∫ r0

r

ds
s3/2
√
r0 − 1−

√
r0 − s

(s− 1)
√
r0 − s

.

Define
u ≡
√
r0 − s σ ≡

√
r0 − 1

and use u du = −ds to get

S(r) =

∫ √r0−r
0

du
(r0 − u2)3/2σ − u

σ2 − u2

=

∫ √r0−r
0

du
(1 + σ2 − u2)3/2σ − u

σ2 − u2
.

The integrand is finite for all 0 ≤ u ≤
√
r0 − s, as long as s ≥ 1. This proves that

S(r) is finite for all 1 ≤ r ≤ r0, which is R ≤ r ≤ r0 after restoring factors of R.
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To get an upper bound on S(r), use

S(r) ≤
∫ √r0−r

0

du
(1 + σ2 − u2)2σ − u

σ2 − u2

=

∫ √r0−r
0

du

(
1

σ + u
+ 2σ + (σ2 − u2)σ

)
≤
∫ √r0−r

0

du

(
1

σ
+ 2σ + σ3

)
=

(
1

σ
+ 2σ + σ3

)√
r0 − r.

The maximum value occurs for r = 1, so

Smax ≤ 1 + 2σ2 + σ4 = (1 + σ2)2 = r2
0.

After restoring factors of R, this becomes

Smax ≤
r2

0

R
.
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