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Constrained Scalar Quantum Fields
Randy S

Abstract This article uses the path integral formulation to construct
toy models of multi-component scalar quantum fields whose equations of
motion are implicitly nonlinear because of a constraint on the values of
the field variables. The constraint can lead to interesting phenomena, like
spontaneous symmetry breaking and asymptotic freedom, even though the
equation of motion looks very simple.

This article constructs a few families of such models, using a path in-
tegral formulation that treats spacetime as a discrete lattice. Each family
is characterized by a different type of target space, the space of possible
values of the scalar field at each point in spacetime. In the O(N) models,
the target space is a sphere SN−1. In the Zn models or clock models,
the target space consists of n equally-space points around a circle. In the
principal chiral models, the target space is a Lie group.

For some of these models (the O(2) model, Zn models, and principal
chiral models), this article also explains how to derive a corresponding
hamiltonian formulation. This is especially interesting in the case of the
Zn models, because deriving a hamiltonian formulation requires taking a
limit as time becomes continuous, but the field variables themselves are
constrained to a discrete set of values. This article explains how a useful
hamiltonian formulation can still be derived by taking a special kind of
continuous-time limit. For the Z2 model, the result is the hamiltonian
formulation of the quantum Ising model, whose phase structure is studied
in article 81040.
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1 Introduction to the O(N) models

In quantum field theory (QFT), the collection of models that we know how to
construct nonperturbatively1 in continuous d-dimensional spacetime, without any
mathematical ambiguity, is very limited when d ≥ 3. The collection is much larger
if we are willing to treat spacetime as a discrete structure, like a lattice.2 This
article considers a class of lattice-based models whose construction is especially
simple. Each model is constructed using a path integral3 whose action S[φ] is a
functional of a scalar field φ(x) with one or more components at each point x in
spacetime:

φ(x) =
(
φ1(x), ..., φN(x)

)
. (1)

The norm of the field is constrained to satisfy the constraint

φ2(x) ≡
∑
k

(
φk(x)

)2
= R2 (2)

for a given constant R > 0. The action is required to have O(N) rotational symme-
try in this abstract (N − 1)-dimensional space. This is an internal symmetry,4

so it is exact even when spacetime is treated as a lattice.
In this article, the name O(N) model5 refers to the simplest of these models

with O(N) symmetry, namely the one for which (∂φ)2 is the only term in the
lagrangian.

1Nonperturbatively means without relying on any small-parameter approximations. Section 14.7 in Fradkin
(2022a) says, “quantum field theories have properties that largely cannot be guessed from perturbation theory.”

2Treating spacetime as a discrete structure is artificial, but we can chose the scale of the discreteness to be much
finer than the finest resolution of any existing measurements.

3Article 63548
4Article 21916
5The name N-vector model is also used.
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2 Motive

In a way, the constraint (2) is unnatural, because at resolutions that are sufficiently
coarse compared to the spacetime lattice spacing, the predictions of a model that
was constructed using this constraint become indistinguishable from the predictions
of many other models that were constructed without the constraint.6

One motivation for considering models with the constraint (2) is that even
the simplest such models have nonzero interactions. Without the constraint, the
simplest7 models are relatively boring, because they don’t have any interactions.
We can add interaction terms (terms involving higher-than-quadratic powers of the
field variables),8 but that introduces an unlimited number of coefficients, with no
obviously-most-natural way of choosing their values. In contrast, among models
satisfying the constraint (2), the simplest ones already include nonzero interactions.
The constraint (2) and the symmetry requirement imply that the only possible
non-constant terms in the lagrangian are terms with derivatives.9 In the simplest
models of this type, the only term in the lagrangian is (∂φ)2, but the equation of
motion is still implicitly nonlinear because of the constraint (2). As a result, even
the simplest models of this type have nonzero interactions, and in some cases these
interactions persist even in the continuous-spacetime limit.

6This is an example of universality (article 10142). In particular, the constraint is not preserved by the
momentum-shell renormalization group (article 22212).

7Here, simplest means that the action involves only terms that are quadratic in the field variables, which is the
lowest order for which the model has any content at all (article 30983).

8Article 52890
9The derivatives ∂φ are really finite differences, because spacetime is treated as a lattice, so such terms make

sense even in the single-component case (N = 1), where the constraint (2) implies φ(x) = ±1.
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3 Framework

In the path integral formulation for scalar quantum fields, the state10 at a given
time11 is represented by a complex-valued function Ψ[φ] of the field variables φ
associated with all points in space at that time. The inner product of two states
Ψ1[φ] and Ψ2[φ] is

〈Ψ1|Ψ2〉 ≡
∫

[dφ] Ψ∗1[φ]Ψ2[φ], (3)

with an integration measure [dφ] that will be defined in the following sections. Only
functions Ψ[φ] for which 〈Ψ|Ψ〉 is finite are used to represent states.

The relationship between an initial state Ψi and a final state Ψf can be written12

Ψf [φ]C ∝
∫

[dφ]A∪B exp
(
− S[φ]A∪B∪C

)
Ψi[φ]A (4)

where S is the (euclidean) action, [φ]X denotes the collection of field variables
associated with a region X of spacetime, and the regions A,B,C are defined like
this:13

A is the set of spacetime points at time ti,

B is the set of spacetime points with times in the range ti < t < tf ,

C is the set of spacetime points at time tf .

A point in d-dimensional spacetime will be denoted x = (t,x), where t is the time
coordinate and x is the list of D ≡ d− 1 spatial coordinates. The action S and the
measure [dφ] will be defined for the various models in the following sections.

10In this article, state means an element of the Hilbert space. It it also called a state-vector, for the reasons
explained in article 03431.

11This description uses the Schrödinger picture (article 22871).
12This article uses the euclidean path integral, from which the lorentzian path integral can be recovered by Wick

rotation (article 63548) after taking the continuum limit (section 9).
13In this formulation, spacetime is treated as a lattice of finite extent in the spatial directions so that the number

of integration variables [φ]A∪B is finite.
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4 The O(2) model: measure and action

For the O(2) model,14 the constraint (2) may be solved by writing

φ(x) =
(
R cos θ(x), R sin θ(x)

)
, (5)

where a single angular variable θ(x) is associated with each lattice site x. In this
case, the integration measure [dφ] in equations (3) and (4) is defined by

[dφ] ≡
∏
x

dθ(x) − π ≤ θ(x) < π,

where the product is over all spacetime points x at the specified time(s).15

Let ε0, ε1, ε2, ..., εd−1 be a set of d basis vectors for the lattice, each with magni-
tude ε. The action in equation (4) is S[φ]A∪B∪C = SA∪B[φ] with16

SX [φ] = εd
∑
x∈X

(
∂φ(x)

)2

2
= εd

∑
x∈X

∑
a,k

(
∂aφk(x)

)2

2

≡ εd
∑
x∈X

∑
a,k

(
φk(x+ εa)− φk(x)

)2

2ε2
.

This looks superficially like the action for a free massless scalar field, but using (5)
gives the manifestly non-quadratic action

SX [φ] = εdR2
∑
x∈X

∑
a

1− cos
(
θ(x+ εa)− θ(x)

)
ε2

. (6)

14Section 5 will generalize this construction to the O(N) model for arbitrary N .
15In equation (3), the product is over all points in space at a single time. In equation (4), the product is over all

x ∈ A ∪B.
16The notation SX [φ] used here differs from the notation S[φ]X used in equation (4) because the meaning is slightly

different: SX [φ] depends on field variables at times in X and at one time-step after X.

7



cphysics.org article 51033 2024-06-23

5 The O(N) model: measure and action

For any N ≥ 2, the constraint (2) may be solved by writing

φ1(x) = R cos
(
θ1(x)

)
φ2(x) = R sin

(
θ1(x)

)
cos
(
θ2(x)

)
φ3(x) = R sin

(
θ1(x)

)
sin
(
θ2(x)

)
cos
(
θ3(x)

)
...

φN−1(x) = R sin
(
θ1(x)

)
· · · sin

(
θN−2(x)

)
cos
(
θN−1(x)

)
φN(x) = R sin

(
θ1(x)

)
· · · sin

(
θN−2(x)

)
sin
(
θN−1(x)

)
with

0 ≤ θk(x) < π if k ≤ N − 2, −π ≤ θN−1(x) < π.

The integration measure [dφ] in equations (3) and (4) is

[dφ] =
∏
x

dΩ(x)

with17

dΩ(x) ≡
N−1∏
k=1

((
sin θk(x)

)N−1−k
dθk(x)

)
.

Just like in section 4, the action is

SX [φ] = εd
∑
x∈X

(
∂φ(x)

)2

2
≡ εd

∑
x∈X

∑
a,k

(
φk(x+ εa)− φk(x)

)2

2ε2
. (7)

17This is the usual measure on the sphere SN−1, expressed using hyperspherical coordinates (Blumenson (1960)).
This is the angular part of what the measure would have been without the constraint (2). This measure has O(N)
symmetry, even though that symmetry is obscured when the measure is written this way.
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6 Another way to enforce the constraint

Consider a single lattice site x, and temporarily write φk as an abbreviation for
φk(x). At this site, the constraint (2) is φ2 = R2. Without that constraint, the

quantity R ≡
√
φ2 would be variable (not constant). Whether R is variable or not,

the Nth component of φ may be written

φN = ±ϕ ϕ ≡
√
R2 − φ̃2 (8)

where φ̃ includes only the first N − 1 components of φ. If the value of R were not
fixed by the constraint (2), then the differential of (8) would be

dϕ =
RdR− φ̃ · dφ̃

ϕ
, (9)

and the integral of f(φ) over all N independent components of φ could be written∫
dNφ f(φ) =

∫
dϕ ∧ dN−1φ̃

∑
signs

f(φ) =

∫
dR dN−1φ̃

∑
signs

R

ϕ
f(φ).

The sum is over the two possible signs in (8). Now we can implement the constraint
(2) just by omitting the factor dR from the measure. Then the integral becomes∫

dN−1φ̃
∑
signs

R

ϕ
f(φ).

This leads to an alternative way of writing the integration measure in equations
(3) and (4), instead of using the approach that was described in section 5. The
important message is that in this alternative formulation, we must include the
factor 1/ϕ in the integrand. Pages 392-393 in Weinberg (1995) explain what would
go wrong if this factor were excluded.18

18That author writes the factor as exp (log (R/ϕ)) so that the log term can be viewed as part of the action S.
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7 The O(2) model: single time-step, part 1

Section 10 will derive the hamiltonian for the O(2) model that was defined in
section 4. To prepare, consider the action for a single time-step. Write the variables
associated with the past and future endpoints of the time-step as θ(x) and θ′(x),
respectively, for each point x in space. Then, according to equation (6), the action
for a single time-step may be written

s[θ, θ′] = εdR2

∑
x

1− cos
(
θ′(x)− θ(x)

)
ε2

+
∑
{x,y}

1− cos
(
θ(y)− θ(x)

)
ε2

 , (10)

where the sum over {x,y} is over all unordered pairs of nearest-neighbor points
in the spatial lattice. To take the continuous-time limit, we must generalize the
action so that the lattice spacing dt in the time direction is independent of the
lattice spacing ε in the D ≡ d− 1 spatial directions, like this:

s[θ, θ′] = R2 dt εD

(∑
x

1− cos
(
θ′(x)− θ(x)

)
dt2

+
∑
{x,y}

1− cos
(
θ(y)− θ(x)

)
ε2

 .

(11)

Use the abbreviations

β ≡ R2 εD

dt
(12)

and

V [θ] ≡ R2 εD
∑
{x,y}

1− cos
(
θ(y)− θ(x)

)
ε2

(13)

so that
s[θ, θ′] = β

∑
x

[
1− cos

(
θ′(x)− θ(x)

)]
+ dt V [θ]. (14)

Section 8 will use this to derive another way of writing the evolution equation (4)
for a single time-step.

10
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8 The O(2) model: single time-step, part 2

If Ψ[θ] is the initial state, then the state after a single time-step is proportional to

Ψ′[θ′] ≡
∫

[dθ] e−s[θ,θ
′]Ψ[θ]

where [dθ] denotes the integral over each θ(x) from −π to π. Using (14), this
becomes

Ψ′[θ′] =

∫ ∏
x

(
dθ(x) exp

(
− β[1− cos(θ′(x)− θ(x))]

))
f [θ] (15)

with
f [θ] ≡ e−dt V [θ]Ψ[θ]. (16)

By shifting the integration variables, this may also be written

Ψ′[θ′] =

∫ ∏
x

(
dθ(x) exp

(
− β[1− cos(θ(x))]

))
f [θ + θ′].

Now use the identity

f [θ + θ′] =
∏
x

exp

(
θ(x)

∂

∂θ′(x)

)
f [θ′]

to get this new way of writing the time-evolution equation for a single time-step:

Ψ′[θ′] =

∫ ∏
x

(
dθ(x) exp

(
− β[1− cos(θ(x))]

)
exp

(
θ(x)

∂

∂θ′(x)

))
f [θ′]. (17)

So far, no approximations have been made.
Section 10 will finish deriving the hamiltonian, after an interlude about unitarity

in section 9.
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9 The O(2) model: is it unitary?

In quantum theory, time evolution should be unitary: it should preserve the norm
of the state. This requirement is automatically satisfied if time evolution is gen-
erated by a self-adjoint operator (the hamiltonian). The time evolution equation
(4) deviates from that condition in two ways. First, it treats time as discrete, so
the usual concept of a generator of time evolution does not apply. Second, it uses
the euclidean path integral, which clearly does not preserve the norm of the state
because of the factor e−S in the integrand. That’s okay, because the euclidean path
integral is just a convenient technical device from which time evolution in lorentzian
signature can be recovered by Wick rotation.19 Section 10 will show that unitarity
is restored after taking a continuous-time limit and then using Wick rotation to
change the signature from euclidean to lorentzian.

Article 63548 showed that for a family of models without the constraint (2), time
evolution is already unitary even without taking a continuous-time limit, but that’s
not the case for the models considered in this article. The rest of this section shows
that the evolution defined by equations (15)-(16) for a single discrete time-step is
not unitary, not even after Wick rotation from euclidean to lorentzian signature,
not even after including an overall factor that equations (15)-(16) didn’t bother to
include because they’re not unitary anyway.

To simplify the analysis, suppose that the spatial lattice has only one point.
Then equation (15) reduces to

Ψ′(θ′) ∝
∫ π

−π
dθ exp

(
β cos(θ′ − θ)

)
f(θ). (18)

Now θ is a single real variable, and so is θ′. Equation (18) can be expressed in terms
of the Bessel functions Jn(z) with integer order n, which are defined for arbitrary

19Article 63548
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complex-valued z. We can use the generating function20

exp

((
s− 1

s

)
z

2

)
=

∞∑
n=−∞

Jn(z)sn

as the definition of Jn(z). Set s = ieiθ to get the Jacobi-Anger expansion

exp (iz cos θ) =
∞∑

n=−∞
Jn(z)ineinθ.

Use this in (18) with z = −iβ to get

Ψ′(θ′) ∝
∞∑

n=−∞

∫ π

−π
dθ Jn(−iβ)inein(θ′−θ)f(θ) (19)

=
∞∑

n=−∞
Jn(−iβ)ineinθ

′
fn (20)

where fn are the complex-valued coefficients in the Fourier transform of f(θ).
In order for the time evolution equation to be unitary, it must at least be

reversible: if the norm of the initial state Ψ is nonzero, then the norm the final
state Ψ′ must also be nonzero. Using equation (20), we can say it like this: if any
one of the quantities fn is nonzero, then the final state Ψ′ must also be nonzero.
Otherwise, the time evolution equation is not even reversible, much less unitary.

The Bessel function Jn(z) has an infinite number of zeros (values of z for which
Jn(z) = 0), and all of them occur at real values of z.21 Equation (20) involves
only imaginary values of z, but the question is whether time evolution is unitary
after Wick rotation from euclidean to lorentzian signature but before taking a
continuous-time limit. Wick rotation replaces β → −iβ.22 After that replacement,

20Equation (5.3.4) in Lebedev (1972), and equation (5) in Baring (2022)
21Lebedev (1972), section 5.13, theorem 1
22Article 63548
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equation (20) becomes

Ψ′(θ′) ∝
∞∑

n=−∞
Jn(−β)ineinθ

′
fn. (21)

Now the theorem that was quoted before says that an infinite number of values
of β exist for which at least one of the quantities fn does not contribute to the
sum because Jn(−β) is zero for that n. For these values of β, the time evolution
equation is not even reversible, much less unitary.

We can recover unitarity by taking a continuous-time limit dt→ 0 before using
Wick rotation to change the signature from euclidean to lorentzian.23 This will be
done in section 10.

23The fact that this works doesn’t contradict the phenomenon highlighted above, because the quantity β defined
in equation (12) diverges when dt → 0, and the result depends on how the limit β → ∞ is taken in the complex
β-plane (Matsumoto (2022), text below equation (11)).

14
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10 The O(2) model: hamiltonian

In the continuous-time limit dt → 0, the coefficient β defined by equation (12)
becomes large. The quantity 1− cos(θ) in equation (17) is nonnegative, so when β
is large, only values of θ for which 1 − cos(θ) ≈ 0 make a significant contribution
to equation (17). This justifies using the approximation

1− cos(θ) ≈ θ2

2

in equation (17),24 which gives

Ψ′[θ′] ≈
∫ ∏

x

(
dθ(x) exp

(
−βθ

2(x)

2

)
exp

(
θ(x)

∂

∂θ′(x)

))
f [θ′].

Only small values of θ(x) contribute when β is large, so we might as well extend
the limits of integration to ±∞. Then the integrals over θ(x) are Gaussian, and
evaluating them gives

Ψ′[θ′] ∝
∏
x

exp

(
1

2β

(
∂

∂θ′(x)

)2
)
f [θ′].

Now use (12), (13), and (16) to get

Ψ′[θ′] ∝ e−H dt Ψ[θ′]

where the hamiltonian is

H = −εD
∑

x

1

2

(
1

R εD
∂

∂θ(x)

)2

+R2 εD
∑
{x,y}

1− cos
(
θ(y)− θ(x)

)
ε2

. (22)

24The simplicity of this justification is one advantage of the euclidean path integral instead of the lorentzian version
(footnote 12 in section 3).
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11 Another way to write the hamiltonian

Use the identity

cos
(
θ(y)− θ(x)

)
=
eiθ(y)e−iθ(x) + complex conjugate

2

to see that the hamiltonian (22) may also be written25

H = εD
∑

x

H0(x) +R2 εD−2
∑
{x,y}

(
1− Z(y)Z†(x) + Z†(x)Z(y)

2

)
(23)

where the operators H0(x) and Z(x) are defined by

H0(x)Ψ[θ] = −1

2

(
1

R εD
∂

∂θ(x)

)2

Ψ[θ] (24)

and
Z(x)Ψ[θ] = eiθ(x)Ψ[θ]. (25)

The operators Z(x) and Z†(x) commute with H0 when y 6= x, but not when y = x.

25Throughout this article, a sum over {x,y} means the sum over all unordered nearest-neighbor pairs of points in
the spatial lattice, as in section 7.
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12 The Zn model

In the Zn model, the field is given by

φ(x) =
(
R cos θ(x), R sin θ(x)

)
(26)

like in the O(2) model, but now the angles θ(x) are restricted to integer multiples
of 2π/n:

θ(x) = 2πk(x)/n k(x) ∈ {0, 1, 2, ..., n− 1}. (27)

The integration measure [dφ] in equations (3) and (4) is simply a sum over the
integers k(x) at each spacetime point x. The action is the same as the action for
the O(2) model,26

SX [φ] = εd
∑
x∈X

∑
a,j

(
φj(x+ εa)− φj(x)

)2

2ε2

= εdR2
∑
x∈X

∑
a

1− cos
(
θ(x+ εa)− θ(x)

)
ε2

, (28)

but with the angles θ(x) restricted to the discrete set of values (27).
The Zn model gets its name from some of its internal symmetries:27 any trans-

formation that adds the same integer to each k(x) is a symmetry, and adding an
integer multiple of n has no effect at all. These transformations constitute the
group called Zn, the additive group of integers modulo n. This model is also called
the n-clock model,28 because the allowed values of the field (26) are n equally-
spaced points around a circle, like the tick-marks on a clock. The O(2) model can
be recovered by taking n→∞.

26Section 4
27When n ≥ 3, the group of internal symmetries is larger than Zn, because the transformation that reverses the

sign of every k(x) is also a symmetry. When n = 2, the second component of φ(x) is always zero, and reversing the
sign of every k(x) has the same effect as adding 1 to every k(x).

28The letter p or q is often used instead of n.

17
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13 Hamiltonian for the Zn model: perspective

Starting with the path integral formulation of the Zn model (section 12), we can
take n → ∞ to get the path integral formulation of the O(2) model. This is
relatively straightforward. From there, sections 7-10 explained how we can take
a continuous-time limit (dt → 0) to get the hamiltonian formulation of the O(2)
model. That sequence of limits is depicted in this diagram:

Zn path integral

n→∞
��

O(2) path integral
dt→0

// O(2) hamiltonian

The next few sections explain how to implement the two new arrows in this diagram:

Zn path integral dt→0 //

n→∞
��

Zn hamiltonian

n→∞
��

O(2) path integral
dt→0

// O(2) hamiltonian

Starting with the path integral formulation of the Zn model, sections 14-17 will
explain how take a continuous-time limit (dt→ 0) to get a hamiltonian formulation
of the Zn model. To check that this hamiltonian formulation of the Zn model is
natural,29 section 21 will show that it reproduces the hamiltonian formulation of
the O(2) model when n→∞.

29This is worth checking, because the dt→ 0 limit represented by the top arrow is a non-obvious generalization of
the dt→ 0 limit represented by the bottom arrow.

18
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14 The Zn model: single time-step

The hamiltonian generates evolution in continuous time. We need to allow the
coefficients of the time-derivative and spatial-derivative terms to be different so
that we can take a continuous-time limit while retaining a finite lattice spacing in
the spatial directions. For this purpose, write the action for a single time-step as

s[θ, θ′] = s0[θ, θ
′] + s1[θ] + constant (29)

with

s0[θ, θ
′] = 2κ

∑
x

(
1− cos

(
θ(x)− θ′(x)

))
(30)

s1[θ] = −dt εD−2R2
∑
{x,y}

cos
(
θ(x)− θ(y)

)
. (31)

θ(x) denotes the variables at one time, θ′(x) denotes the variables at the other
time, and D ≡ d−1 is the number of spatial dimensions. The relationship between
2κ and the other coefficients will be specified in section 16. When dt = ε and
2κ = εd−2R2, this reduces to the single time-step version of the original action (28).

If Ψ[θ] is the initial state, then the state after a single time step is30

Ψ′[θ′] =
∑
[θ]

e−s[θ,θ
′]Ψ[θ]. (32)

We can think of this as a matrix equation in which [θ] is a single index,31 Ψ and
Ψ′ are both single-column matrices, and T [θ′, θ] ≡ e−s[θ,θ

′] are the components of a
square matrix T called the transfer matrix. Written in matrix notation, equation
(32) is Ψ′ = TΨ.

30The square brackets in
∑

[θ] are a reminder that the sum is over an enormous number of variables (27), including

one discrete variable θ(x) for each site x of the spatial lattice.
31This index can take nm different values, where m is the number of sites in the spatial lattice (footnote 30).
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15 The Zn model: is it unitary?

Section 17 will use a continuous-time limit to obtain a hamiltonian formulation of
the Zn model. That will implicitly show that the Zn model is unitary when time
is continuous, after Wick rotation from euclidean signature to lorentzian siguature
as explained in section 9.

Using the Z2 model as an example, this section shows that time evolution is not
unitary when time is discrete. This is similar to the conclusion in section 9 about
the O(2) model, but here the analysis is easier.

As in section 9, suppose that the spatial lattice has only one point. Then the
function Ψ[θ] in equation (32) is just a pair of complex numbers, Ψ[0] and Ψ[π],
and the size of the transfer matrix is only 2× 2. Explicitly, the transfer matrix is

T =

[
e−s[0,0] e−s[π,0]

e−s[0,π] e−s[π,π]

]
=

[
e−s0[0,0] e−s0[π,0]

e−s0[0,π] e−s0[π,π]

][
e−s1[0] 0

0 e−s1[π]

]
=

[
1 e−2κ

e−2κ 1

][
e−s1[0] 0

0 e−s1[π]

]
After Wick rotation back to lorentzian signature, this becomes

T =

[
1 ei2κ

ei2κ 1

][
eis1[0] 0

0 eis1[π]

]
.

This is invertible (so time evolution is reversible) for all nonzero κ, but it’s not
unitary for most values of κ, not even after adjusting the overall normalization.
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16 The Zn model: continuous-time limit

The action for a single time-step, equations (29)-(31), has the same form as it did
in the O(2) model, equation (11). To derive the hamiltonian for the O(2) model,
we took the coefficient κ to be proportional to 1/dt. In that case, as dt → 0, the
factor e−s0[θ,θ′] pushes all components of the transfer matrix to zero except those in
which the differences θ(x)− θ′(x) approach zero at least as fast as dt does. That’s
fine when the allowed values of these variables form a continuum, like they do in
the O(2) model, because then the differences can approach zero without being equal
to zero.

In the Zn model, though, the variables are discrete, so the differences cannot
approach zero unless they all become equal to zero when the magnitude of dt
drops below some finite threshold. As a result, if we required κ ∝ 1/dt in the Zn
model, then all off-diagonal components32 of the transfer matrix would approach
zero exponentially (like e−1/dt) as dt→ 0. The transfer matrix would not have the
form T = e−H dt when dt is small, which is one of the conditions that is normally
used to define the hamiltonian H.

We can fix this by using a different relationship between κ and dt. To motivate
the relationship, write the components of the transfer matrix as

T [θ′, θ] = T0[θ
′, θ]e−s1[θ], (33)

where T0 is the matrix with components

T0[θ
′, θ] ≡ e−s0[θ,θ′] =

∏
x

exp
(
−2κ

[
1− cos

(
θ(x)− θ′(x)

)])
. (34)

The components of T0 with the largest magnitude are the diagonal components
(those with θ′(x) = θ(x) for all x): those components are equal to 1. The compo-
nents with the second-largest magnitude are equal to

exp
(
− 2κ

[
1− cos(2π/n)

])
, (35)

32The off-diagonal components are those with θ′(x) 6= θ(x) for at least one x.
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which occurs whenever the difference θ′(x) − θ(x) modulo 2π is equal to ±2π/n
for one point x and is equal to zero for all other points. If we choose κ so that the
quantity (35) is proportional to dt,33,34 then we can use

T = 1− dtH +O(dt2)

to define the hamiltonian H. This will be done in section 17.

33For the Z2 case, other accounts of this way of taking dt → 0 include Fradkin and Susskind (1978) and section
IV-A in Kogut (1979).

34With this choice, the components with the third-largest magnitude go to zero faster than (35) does. To check
this, use the fact that every component of T0 is equal to e−2κb with a κ-independent coefficient b ≥ 0. If b′ > b, then
e−2κb

′
goes to zero faster than e−2κb does.
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17 The Zn model: hamiltonian

This section derives the hamiltonian, the operator that generates time-translations
in the special continuous-time limit that was described in the previous section.
This is the limit dt→ 0 with the dt-dependence of κ given by the relationship

exp
(
− 2κ

[
1− cos(2π/n)

])
= α dt (36)

for some dt-independent constant α. To derive the hamiltonian, expand the transfer
matrix to first order in dt. According to equation (31), expanding the factor e−s1[θ]

in equation (33) to first order in dt gives

e−s1[θ] = 1 + dt λ
∑
{x,y}

cos
(
θ(x)− θ(y)

)
+O(dt2) (37)

with λ ≡ εD−2R2. According to equations (30) and (36), expanding the factor T0

in equation (33) to first order in dt gives

T0 = 1 + dt α
∑

x

X(x) +X†(x)

2
+O(dt2) (38)

where X(x) is the matrix whose component X(x)[θ′, θ] is equal to 1 whenever
ei(θ

′(x)−θ(x)) = e2πi/n and is equal to zero otherwise. For dt→ 0, the hamiltonian H
is related to the transfer matrix by T = e−dtH = 1 − dtH + O(dt2), so equations
(37)-(38) imply

H = −α
∑

x

X(x) +X†(x)

2
− λH1 (39)

where H1 is the diagonal matrix defined by

(H1Ψ)[θ] =

∑
{x,y}

cos
(
θ(x)− θ(y)

)Ψ[θ]. (40)
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18 Another way to write the hamiltonian

As in section 11, the matrix H1 may also be written

(H1Ψ)[θ] =

∑
{x,y}

Z(y)Z†(x) + Z†(x)Z(y)

2

Ψ[θ] (41)

with Z(x) defined by (25), as before. The difference is that now each of the variables
θ(x) takes only a finite number of values, so Z(x) can be viewed as a (diagonal)
matrix. The matrix X(x) that was defined in section 17 commutes with Z(y) and
Z†(y) when y 6= x, but not when y = x.

Altogether, the hamiltonian (39) may be written35,36

H = −α
∑

x

X(x) +X†(x)

2
− λ

∑
{x,y}

Z(y)Z†(x) + Z†(x)Z(y)

2
, (42)

with Z(x) defined by equation (25) and with X(x) defined as in section 17.
The matrices X(x) and Z(x) are unitary, and they satisfy Xn(x) = I and

Zn(x) = I. Their commutation relations are

X(x)Z(x) = e−2πi/nZ(x)X(x) X(x)X†(x) = X†(x)X(x)

X(x)Z†(x) = e2πi/nZ†(x)X(x) Z(x)Z†(x) = Z†(x)Z(x)

and A(x)B(y) = B(y)A(x) whenever x 6= y, for all pairs A ∈ {X,X†, Z, Z†} and
B ∈ {X,X†, Z, Z†}.

35Ortiz et al (2012), section 3.2
36Again, the sum over {x,y} means the sum over all unordered nearest-neighbor pairs of points in the spatial

lattice.
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19 Example: d = 1 with arbitrary n

For d = 1, the spatial lattice has only one point, so a state Ψ[θ] is a function of
only one discrete variable

θ = 2πk/n k ∈ {0, 1, 2, ..., n− 1}.

In this case, in the matrix representation defined in section 14, a state has only n
components:

Ψ[θ] =


Ψ[0]

Ψ[2π/n]
Ψ[2π2/n]

...
Ψ[2π(n− 1)/n]

. (43)

The sum in equation (40) is empty because nearest-neighbor pairs of points don’t
exist, so the matrix H1 is zero. The matrix X that was defined in section 17 is

X =



0 0 0 0 · · · 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
... . . . ...
0 0 0 0 0 0
0 0 0 0 · · · 1 0


, (44)

so the hamiltonian is

H ∝



0 1 0 0 · · · 0 1
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 0 0
... . . . ...
0 0 0 0 0 1
1 0 0 0 · · · 1 0


. (45)
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20 Example: n = 2 with arbitrary d

For n = 2, each variable θ(x) has only two possible values: 0 and π. In this case,
we can think of the system as a lattice of qubits,37 with one qubit for each site x.
This means that with each site x is associated a pair of operators Z(x) and X(x)
defined by

Z(x)Ψ[θ] =

{
Ψ[θ] if eiθ(x) = 1

−Ψ[θ] if eiθ(x) = −1
X(x)Ψ[θ] = Ψ

[
θ̂
]

with θ̂ defined by

eiθ̂(y) =

{
−eiθ(y) if y = x

eiθ(y) otherwise.

These satisfy

Z2(x) = I X2(x) = I X(x)Z(y) =

{
−Z(y)X(x) if y = x

Z(y)X(x) otherwise,

where I is the identity matrix. These operators Z(x) and X(x) are the n = 2
version of the operators Z(x) and X(x) that were defined in sections 11 and 17,
respectively, for arbitrary n. Both X(x) and Z(x) are self-adjoint when n = 2, so
in this case the hamiltonian (42) may be written more simply as

H = −α
∑

x

X(x)− λ
∑
{x,y}

Z(x)Z(y). (46)

This is the hamiltonian for the (quantum) Ising model38 Article 81040 uses this
model in one-dimensional space (two-dimensional spacetime) to study spontaneous
symmetry breaking.

37Article 36176
38Section 25 clarifies some terminology.
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21 From the Zn hamiltonian to the O(2) hamiltonian

The hamiltonian of the O(2) model (section 11) may be viewed as the n → ∞
limit of the hamiltonian of the Zn model (section 18). This is obvious for the terms
involving Z(x). This section explains how it works for the other terms.

The hamiltonian for the Zn model, equation (42), involves a sum of X(x) over
all lattice sites x, where X(x) is the matrix that was defined in section 17. The
corresponding term in the hamiltonian for the O(2) model is the operator H0(x)
defined by equation (24). The goal is to understand how H0(x) emerges from X(x)
when n→∞.

Consider a single point x, and let ψ(θ) be a function of the single discrete
variable θ ≡ θ(x). This function can be represented as a column-matrix ψ with
n components ψ(0), ψ(2π/n), ..., ψ(2π(n − 1)/n), as in equation (43). On ψ, the
operator X ≡ X(x) acts as the matrix (44), which implies(

X +X† − 2

(2π/n)2
ψ

)
(θ) =

ψ(θ + 2π/n) + ψ(θ − 2π/n)− 2ψ(θ)

(2π/n)2
.

When n→∞, this becomes(
X +X† − 2

(2π/n)2
ψ

)
(θ)→ −

(
d

dθ

)2

ψ(θ).

This shows that if we choose the coefficient α in (36) to be

α =
1

R2εD(2π/n)2
,

then the n→∞ limit of the hamiltonian (42) for the Zn model is the hamiltonian
(23) for the O(2) model.
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22 A generalization: nonlinear sigma models

The O(N) models with N ≥ 2 are examples of nonlinear sigma models: their
field variables can be viewed as coordinates on a smooth manifold called the target
space.39 In the O(N) model, the target space is the sphere SN−1 defined by (2).40

Section 23 will define a family of nonlinear sigma models in which the scalar
field satisfies a different kind of constraint (equation (47)). In these models, the
target space is a Lie group. Such models are called principal chiral models.41,42

The name includes principal because the target space (a Lie group) is a special kind
of homogeneous space43 that mathematicians call a principal homogeneous space.44

The name includes chiral because models of this type are often used to explore the
consequences of chiral symmetry breaking in QCD.45,46

Section 23 constructs the simplest examples of principal chiral models. Much of
the literature about principal chiral models includes another term called a Wess-
Zumino-Witten (WZW) term, which has interesting effects. When d = 2,
adding WZW term with the right coefficient turns the model into a conformal field
theory (CFT), even though it has a nonzero mass gap without that term.47 When
d = 4, adding a WZW term together with a Skyrme term modifies the model’s
spectrum of particles to include baryon-like bosons and fermions.48

39Fradkin (2021), section 16.5.3
40Using (2) to express one of the components of φ in terms of the others, as in section 6, gives a coordinate system

that covers half of the sphere (only half because we must choose a sign for the square-root in the solution).
41Schwarz (1995), section 2
42The name principle chiral model is most commonly used in the context of two-dimensional spacetime, but I’m

using it here for arbitrary d.
43The target space of the models defined in section 5 is a sphere SN−1, which is a homogeneous space but (for

N ≥ 3) not a principal homogenous space. Kaplunovsky (2022) concisely explains why most of the nonlinear sigma
models that people study have homogeneous target spaces, like spheres and Lie groups.

44Michiels (2013), section 2.3.1, definition 35
45Tong (2018), section 5.2
46The scalar field in a principal chiral model is sometimes called a chiral field. The same name is also used for a

type of spinor field.
47Witten (1984), text below equation (11)
48Tong (2018), section 5.3.2
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23 Principal chiral models: definition

In these models, the field variables at each spacetime point x are F-valued variables
Ujk(x) with j, k ∈ {1, 2, ..., N}, where F is either the field R of real numbers or the
field C of complex numbers. The field variables satisfy the constraints49

U †(x)U(x) = U(x)U †(x) = I detU(x) = 1, (47)

where U(x) is the matrix with components Ujk(x), U †(x) is its conjugate trans-
pose,50 and I is the identity matrix. In other words, these are models in which the
target space is a Lie group G, with G = SO(N) if F = R, or G = SU(N) if F = C.

A state is represented by a complex-valued function Ψ[U ] of the field variables
Uij(x). The structure of inner product and the evolution equation described in
section 3 still apply here, after replacing φ → U and adopting a new definition of
the measure. The measure is now [dU ] =

∏
x dU(x), where the measure dU(x) at

each spacetime point is the Haar measure over the group G, which is invariant
under multiplication by an arbitrary element of G.51

The action is

SX [U ] = εd
∑
x∈X

∑
a

1

2g2
Trace

((
∂aU

†(x)
)(
∂aU(x)

))
, (48)

with the lattice version of ∂ defined as usual. This defines the principal chiral
model with target space G = SO(N) or G = SU(N).

The measure and the action are both invariant under the transformation

U(x)→ gLU(x)gR

where gL and gR are arbitrary elements of (this matrix representation of) the group
G, so these transformations are symmetries of the model.

49The new symbol U is being used here for the scalar field as a reminder that the new set of constraints (47) has
a different structure than (2).

50If the components of M are Mjk, then the components of M† are M∗kj .
51Montvay and Münster (1997), equation (3.90)
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24 Principal chiral models: hamiltonian

This section derives the hamiltonian for principal chiral models with target space
G = SO(N) or G = SU(N). When G = SO(2), this derivation reduces to the one
in sections 7-8 for the O(2) model.

As in section 7, generalize the action (48) to use independent parameters dt
and ε for the step-sizes in the time and space directions, respectively. Let [U †U ′]
denote the collection of matrices U †(x)U ′(x), one for each x. Then the action for
a single time-step is

s[U,U ′] = s0[U
†U ′] + dt V [U ] (49)

with

s0[U ] ≡ −β
∑

x

Trace
(
U(x) + U †(x)

)
β ≡ εD

2g2 dt

V [U ] ≡ −εD−2
∑
{x,y}

1

2g2
Trace

(
U †(x)U(y) + U †(y)U(x)

)
+ constant. (50)

If Ψ[U ] is the initial state, then the state after a single time-step is proportional to

Ψ′[U ′] ≡
∫

[dU ] exp
(
− s[U,U ′]

)
Ψ[U ] =

∫
[dU ] exp

(
− s0[U

†U ′]
)
f [U ]

with
f [U ] ≡ e−dt V [U ]Ψ[U ]. (51)

Define Ũ(x) ≡
(
U ′(x)

)†
U(x) and use the fact that the Haar measure is invariant

under multiplication by arbitrary elements of the group to get

Ψ′[U ′] =

∫
[dŨ ] e−s0[Ũ ]f [U ′Ũ ].

Now define R[U ] to be the operator whose effect on every function f [U ] is

R[U1]f [U2] = f [U2U1].
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Then

Ψ′[U ′] =

∫
[dŨ ] e−s0[Ũ ]R[Ũ ]f [U ′]. (52)

This generalizes equation (17). So far, no approximations have been made.
The rest of the derivation will only be sketched here, enough to convey the basic

idea.52 Write
U(x) = ei

∑
k θk(x)τk

where τk are generators for the Lie group G, normalized so that τ †k = τk. Use this
expression for U(x) in equation (50) for s0 to get

s0[U ] = constant + β
∑

x

∑
j,k

θj(x)θk(x)Trace(τjτk) +O(θ4). (53)

Use the same parameters θk to write

R[U ] =
∏
x

ei
∑
k θk(x)`k(x)

where `k(x) are generators for the operators R[U ]. Now use the fact that dt → 0
implies β → ∞. For large enough β, the integral over Ũ in (52) is dominated by
values of U(x) close to the identity (θ close to zero), so we can use the approximation
(53) to turn the integral over Ũ into a gaussian integral over θ. Do this integral53

and write Ψ′[U ′] = (1−H dt+O(dt2))f [U ′] to get the hamiltonian

H = (constant)×
∑

x

∑
k

`2
k(x) + V.

52A more detailed version is given on pages 103-105 in Creutz (1983). That version is for gauge fields instead
of scalar fields, but this part of the derivation uses the same ideas. In the gauge-field case, the result is called the
Kogut-Susskind hamiltonian.

53The result shown here assumes the standard convention trace(τjτk) ∝ δjk.
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25 Terminology

Some of the models described in this article have other names, and some of those
other names are also used for other models. This section sorts out some of the
terminology, after reviewing a general mathematical relationship between quantum
models and classical statistical models.

In the path integral formulation of a quantum model, the vacuum expectation
value of a product of observables can be written as an integral equation with the
schematic form54 ∫

[dφ]Ψ∗[φ]finale
iS[φ]F [φ]Ψ[φ]init, (54)

where φ are the field variables, S[φ] is the action, F [φ] represents the product of
observables, Ψ is the vacuum state, the factors Ψ[φ]init and Ψ∗[φ]final depend only
on the field variables at the initial and final times, respectively. When treating
spacetime as a lattice, the real-valued quantity dt representing the lattice step-
size in the time direction can be generalized to a complex-valued quantity, and its
direction in the complex plane can be chosen (this is called Wick rotation) so
that the factor eiS[φ] becomes54 e−SE [φ]. The function SE[φ] is called the euclidean
action,55 because (at least in some cases) it has the same form as the original action
but with the original spacetime metric replaced by a new metric whose signature
is euclidean instead of lorentzian. In this formulation, even if the explicit factors
of the vacuum state Ψ are excluded, the factor e−SE automatically suppresses the
contributions of all other states, so vacuum expectation values can be reconstructed
from the simpler quantities54 ∫

[dφ]e−SE [φ]F [φ]. (55)

This is a euclidean path integral (section 3).

54Article 63548
55In all of the previous sections, the euclidean action was denoted S and was called the action (without the qualifier

euclidean), as indicated in section 3. The subscript X on SX was used for a different purpose (section 4).
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Mathematically, the quantities (55) look just like56 statistical expectation val-
ues for a classical model with hamiltonian SE[φ], where the factor e−SE acts as
the Boltzmann distribution. Thanks to this mathematical correspondence, re-
sults about the thermodynamic phase structure of classical statistical models in
d-dimensional euclidean space also apply to the vacuum-state phase structure of
quantum models in d-dimensional lorentzian spacetime.57 The correspondence is
only mathematical, though: quantum and classical models that are related to each
other through this correspondence live in different numbers of spatial dimensions
and have different hamiltonians.58

Quantum and classical models that are related to each other through this cor-
respondence often share the same name. The quantum Z2 model, the n = 2 case of
the Zn model that was defined in section 12, is also called the (quantum) Ising
model in d-dimensional spacetime.59 After re-interpreting d as the number of spa-
tial dimensions and re-interpreting SE as the hamiltonian, the same math describes
a classical statistical model called the (classical) Ising model. Notice that the
hamiltonian of the quantum Ising model (equation (46))60 is very different from
the hamiltonian of the classical Ising model (which is mathematically the same as
the euclidean action of the quantum Ising model, equations (28) with n = 2).

The quantum O(2) model that was defined in section 4 is also called the (quan-
tum) XY model in d-dimensional lorentzian spacetime,61 at least when d = 2.
After re-interpreting SE as the hamiltonian, the same math describes a classical
statistical model called the (classical) XY model in two-dimensional euclidean
space. Notice that the hamiltonian of the quantum XY model (equation (22))62 is

56Their physical interpretations are different, but the math looks the same.
57Using this correspondence, results about the phase structure of corresponding classical and quantum models are

interchangeable. Article 07246 exploits this interchangeability.
58Their hamiltonians are not even approximately equivalent to each other. This correspondence has nothing to

do with the fact that a quantum model can sometimes be approximated by a classical model in the same number of
spatial dimensions.

59Section IV-A in Kogut (1979)
60Also Fradkin (2022b), equation (18.18), published in Fradkin (2021)
61Example: equation (1) in Rana and Girvin (1993), which uses the name for arbitrary d.
62Also Fradkin (2022b), equation (18.19), published in Fradkin (2021)
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very different from the hamiltonian of the classical XY model (which is mathemat-
ically the same as the euclidean action (6) of the quantum XY model).

Beware that the same name is also used for a different quantum model, one that
is a special case of a family of quantum models called XYZ models or Heisenberg
models.63 In these models, the hamiltonian has the form

H =
∑
(x,y)

(
JXσX(x)σX(y) + JY σY (x)σY (y) + JZσZ(x)σZ(y)

)
(56)

where the sum is over all pairs of neighboring lattice sites, the Js are real-valued
coefficients, and the σs are self-adjoint operators satisfying64

σ2
X(x) = σ2

Y (x) = σ2
Z(x) = 1

σY (x) ∝ σX(x)σZ(x) = −σZ(x)σX(x)[
σanything(x), σanything(y)

]
= 0 if x 6= y.

The name XYZ model alludes to the fact that the coefficients JX , JY , JZ in (56)
may all be different. A model with JX = JY = JZ is called an XXX model to
indicate that all three coefficients are equal. A model with JZ = 0 is called an XY
model, and an XY model with JX = JY is sometimes called an XX model. The
important message here is that this quantum XY model is different than the one
that was described in the previous paragraph, even though both models have the
same name.

More generally, a common source of name-collisions is the existence of different
types of correspondences between classical and quantum models. One type of cor-
respondence is the one that was highlighted earlier in this section: the euclidean
path integral formulation for vacuum expectation values of a quantum model has

63Models like this are often called spin chains, at least in one-dimensional space. Even though I’m using them
here as examples of different models having the same names, a useful relationship between some spin chains and
some nonlinear sigma models does exist, at least in the large-spin limit. Equations (2), (5), (20), and (24) in Rao
(2006) give a quick view of the relationship.

64In an XYZ model, a single qubit (article 36176) is associated with each site x of the spatial lattice, and the
operators σX(x), σY (x), σZ(x) are observables associated with that qubit.
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the same mathematical structure as statistical expectation values over a classical
Boltzmann distribution. A different type of correspondence comes from prescrip-
tively replacing the variables in a classical model with operators on a Hilbert space
to get a “corresponding” quantum model.65 Yet another type of correspondence
comes from the fact that under some conditions, a quantum model may be well-
approximated by a classical model. These three types of correspondence are all
distinct. The name of a quantum model is sometimes inherited from a “correspond-
ing” classical model (or conversely), so the existence of multiple correspondences
is sometimes responsible for different quantum models having the same name.

65Example: the quantum Heisenberg model with hamiltonian (56) “corresponds” to the classical Heisenberg model
in which the σX,Y,Z(x)s are real numbers subject to the constraint σ2

X(x) + σ2
Y (x) + σ2

Z(x) = 1.
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