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Newton’s Model of Gravity
Randy S

Abstract A good way to learn physics is to start with
simple models and then to move on to better models that
have more uses and fewer limitations. This article in-
troduces a relatively simple model of gravity, Newton’s
model, which is good enough for many purposes. Students
who are already familiar with Newton’s model may still
benefit from reading this article, because the perspectives
used here are also useful when learning other subjects.

Contents

1 Notation 3

2 Newton’s model in D-dimensional space 4

3 Comments about the model 5

4 Example of an exact solution 6

5 Example of an approximate model 7

6 Preview of the action principle 8

7 Motivation for the D-dependence 9

© 2018-2024 Randy S
For the latest version and the revision history, visit cphysics.org/article/50710

1



cphysics.org article 50710 2024-07-11

8 Spherically-symmetric body with finite size 10

9 References 11

10 References in this series 11

2



cphysics.org article 50710 2024-07-11

1 Notation

This article considers a system of several objects in D-dimensional space. The
special case D = 3 corresponds to the real world. At any given time, the location
of one object can be described using a list of D numbers:

x = (x1, x2, ..., xD).

These D numbers are called the coordinates of the object or the components
of x. The object can move, so the components of x can change with time. We
can express this by writing x(t), but often I’ll just write x even though it depends
on time. The notation ẋ, with an overhead dot, denotes the derivative of x with
respect to time:

ẋ ≡ dx

dt
≡
(
dx1

dt
,
dx2

dt
, ...,

dxD
dt

)
.

If x is an object’s location, then ẋ is its velocity. Similarly, ẍ denotes the object’s
accelration, the derivative of its velocity ẋ with respect to time.

Given two points x and y, the quantity x + y or x− y is defined by the list of
D sums or differences:

x± y = (x1 ± y1, x2 ± y2, ..., xD ± yD).

This article uses a coordinate system in which the distance between two points x
and y is

|x− y| ≡
√∑

n

(xn − yn)2.

With this notation, we rarely need to write out the components explicitly. That’s
good, because we’ll also use subscripts for a different purpose, namely to label the
different objects. We’ll write xk for the location of the kth object. For each value
of the index k (each object), xk is a list of D components describing the location of
that object in D-dimensional space. Remember: the subscript on the non-boldface
symbol xn refers to the nth component of x, and the subscript on the boldface
symbol xk refers to the kth object.
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2 Newton’s model in D-dimensional space

Consider a system of several objects whose sizes are negligible compared to the
distances between them. Let xk be the location of the kth object. The objects can
move, so their locations xk can depend on time. Newton’s model of gravity is a set
of equations of motion that specify which motions are physically allowed.1 In
D-dimensional space for any D ≥ 3, the equations of motion are

ẍk =
∑
j 6=k

Mj
xj − xk
|xj − xk|D

. (1)

The sum is over all objects except the kth one, so the denominator is never zero as
long as the objects are all in different locations.

I’m using natural units (article 37431) in which Newton’s gravitational con-
stant G is equal to 1. In these units, the masses Mk have units of acceleration
× distanceD−1. If desired, we could write Mk = Gmk where mk has the conven-
tional units of mass (kilograms), but for the purposes of this article, that would
just clutter the equations without adding any new insight.

The jth term in the sum (1) has magnitude

Mj
|xj − xk|
|xj − xk|D

= Mj
1

|xj − xk|D−1
.

In the realistic case D = 3, this is inversely proportional to the square of the
distance between the jth and kth objects. We call this an inverse square law.
When D = 4, it’s an inverse cube law instead, and so on. The reason for this
D-dependence will be explained in section 7.

1Here, “physically allowed” means allowed in the simplified world that this simple model describes. For many
purposes, the world that Newton’s model describes is a good approximation to the real world. General relativity is
a better model, but Newton’s model is easier, so we might as well use Newton’s model whenever we can.
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3 Comments about the model

• The quantity xj − xk is a vector directed from the kth object toward the jth
object, so equation (1) says that gravity is attractive: the objects tend to
accelerate toward each other.2,3

• The acceleration of the kth object depends only on the masses of the other
objects, not on the mass of the kth object itself. This is what physicists mean
when they say that all objects “fall at the same rate” in Newton’s model of
gravity.

• Equation (1) says that the acceleration ẍk of the kth object at time t depends
on the locations of all of the other objects at the same time t. This is what
physicists mean when they say that Newton’s model involves “action at a
distance.” In Newton’s model, gravity propagates infinitely fast.4

• The model treats each object as a point. Real objects are not points, but
the model can still be a good approximation when the distances between the
objects are large compared to the sizes of the objects – in other words, when
the sizes are negligible compared to the distances.

• The right-hand side of (1) is undefined whenever two objects have the same
location. We don’t need to worry about that, because the model isn’t per-
fectly realistic anyway.

2This assumes that the masses are positive.
3The words “tend to” are in this sentence because in a system with multiple objects, the influences of different

objects compete with each other. In a system with only two objects, the words “tend to” can be omitted.
4In general relativity, gravity propagates at a finite speed, which is more realistic.
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4 Example of an exact solution

If we specify the locations and velocities of all of the objects at any one time,
then equation (1) implicitly tells us what their locations will be at all other times.
Making that implicit information explicit is called solving the equations of motion.
Solving a system of coupled differential equations like (1) is usually too difficult
for us. Much of the study of physics consists of finding special cases or special
conditions under which we can solve the equations, or finding ways to extract the
information we need from the equations without actually solving them. This section
highlights one special case in which can write down at least one exact solution of
the equations of motion.

In a system with only two objects, equations (1) reduce to the pair of equations

ẍ1 = M2
x2 − x1

|x2 − x1|D
ẍ2 = M1

x1 − x2

|x1 − x2|D
. (2)

For one example of an exact solution, let R be a positive constant and define

ω ≡
√
M1 +M2

RD
.

Then, for any constant (time-independent) point c, equations (2) are satisfied by5

x1(t) =
M2

M1 +M2

(
R cosωt, R sinωt, 0, 0, ..., 0

)
+ c

x2(t) =
−M1

M1 +M2

(
R cosωt, R sinωt, 0, 0, ..., 0

)
+ c.

This describes two objects in circular orbits about the point

c =
M1x1 +M2x2

M1 +M2
,

which is called their center of mass.6

5Notice that |x1 − x2| = R.
6The orbits are stable only if D = 3. This is one implication of Bertrand’s theorem, which is reviewed in

Goldstein (1980), Classical Mechanics (second edition), Addison-Wesley, section 3-6, page 93.
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5 Example of an approximate model

Consider a universe with N objects, and focus on objects 1 and 2. Suppose that:

• For k > 1, the kth objects are all either so far away or have so little mass
that their net influence on object 1 is negligible.

• For k > 2, the kth objects are all either so far away or have so little mass
that their net influence on object 2 is negligible.

• The influence of object 1 on object 2 is significant.

More precisely, suppose that we can choose a threshold A with units of acceleration
such that:

•
∑

k>1Mk/|xk − x1|D−1 � A

•
∑

k>2Mk/|xk − x2|D−1 � A

• M1/|x1 − x2|D−1 & A.

Each term in these inequalities is the magnitude of one of the terms in (1). Ne-
glecting terms with magnitude � A, equations (1) for objects 1 and 2 reduce to

ẍ1 ≈ 0 ẍ2 ≈M1
x1 − x2

|x1 − x2|D
. (3)

Instead of starting with the original N -object model and restricting to solutions
that satisfy this approximation, we can consider an approximate model (also
called an effective model) with only two objects whose equations of motion are

ẍ1 = 0 ẍ2 = M1
x1 − x2

|x1 − x2|D
(4)

so that the approximation (3) is built into the model itself. Most (if not all) of the
models we use in physics are like this – they are mere approximations to something
else that is more accurate and comprehensive, even if we haven’t discovered it yet.
The model that we started with in this article (equations (1)) is like this, too.

7



cphysics.org article 50710 2024-07-11

6 Preview of the action principle

If f(x) is a function of the location x, then ∇f will denote the gradient of f with
respect to x. It has components

∇f ≡
(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xD

)
.

If f depends on the locations of multiple objects, then ∇kf will denote the gradient
with respect to the location of the kth object (the gradient with respect to xk).

With this notation, equations (1) can also be written

Mk ẍk(t) = −∇kV, (5)

where V is this function of the locations of all of the objects:7

V ≡ −1

D − 2

∑
k

∑
j<k

MjMk

|xj − xk|D−2
. (6)

The sum is over all pairs of distinct objects: the condition j < k ensures that
each pair is counted only once. On the right-hand side of (5), the gradient ∇kV is
evaluated first using the definition (6) as though the xs were independent of time,
and then the xs are evaluated at time t.

This way of writing the equations of motion forshadows the action principle,
which is introduced in articles 33629 and 46044.

7The minus sign in equation (5) cancels the minus sign in equation (6), so we could make our lives slightly easier
by omitting the minus sign from both equations, but we’ll retain them to be consistent with a widespread convention.
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7 Motivation for the D-dependence

Space is 3-dimensional (D = 3) in the real world, so nature doesn’t tell us how
equations (1) or (6) should depend on D. The D-dependence that was used in this
article can be motivated by thinking of Newton’s model as an approximation to
general relativity.8 This section sketches the reasoning.9

Recall10 that we are considering a collection of objects whose sizes are negligible
compared to the distances between them. Their sizes are nonzero, though, so
we can describe the distribution of the j object’s mass at any given time by a
function ρj(x), the mass per unit volume at the point x. This function is nonzero
inside the jth object, and zero outside. For mathematical convenience, we can
suppose that the function is smooth. If we start with general relativity and assume
D ≥ 3, then appropriate approximations9 lead to an equation of motion of the form
ẍk(t) = −∇Vk(x)

∣∣
x=xk

for the kth object, where function Vk(x) satisfies

∇2Vk(x) ∝
∑
j 6=k

ρj(x) (7)

with ∇2 ≡
∑

n (∂/∂xn)
2. When the sizes of the objects are negligible compared

to the distances between them, we can take a limit in which each object’s mass is
concentrated at a single point. In that limit, equation (7) is satisfied by

Vk(x) ∝
∑
j 6=k

Mj

|xj − x|E
with E = D − 2, (8)

where xj is the location of the jth object. This leads to equations (5)-(6).
Even without working through the details of that limit, we can get some insight

into the D-dependence by checking that (8) satisfies (7) in places where the mass
density is zero. That’s a special property of the exponent E = D − 2. If we used
E = 1 instead, then (8) wouldn’t pass this test when D 6= 3.

8Unlike equation (1), general relativity doesn’t involve any prescribed functions of the objects’ locations.
9Robinson (2006) explains this in more detail.

10Section 2
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8 Spherically-symmetric body with finite size

In this article, we considered a system of several objects whose sizes are negligible
compared to the distances between them. This section reviews a result that can
be useful when an object’s size is not negligible. This is part of the shell theo-
rem, which says (among other things) that an object with a spherically symmetric
distribution of mass might as well be pointlike as far as its gravitational effect on
outside objects is concerned.

Consider a system of two objects, A and B, where object B has a continuous
mass density ρ(r) that depends only on the distance r from its center. This is what
spherical symmetry means. Suppose that the object has radius R, so ρ(r) = 0
for r > R. Equations (5)-(6) say that the equation of motion for object A is

ẍ ∝ ∇V

with11

V (x) ∝
∫
dDy ρ

(
|y − c|

)
|x− y|2−D (9)

where c is the location of the center of object B. Terms in V representing the
gravitational interaction between different parts of object B have been omitted
from V because they don’t contribute to the gradient of (6) with respect to x,
the location of object A. Spherical symmetry implies that the right-hand side of
(9) must be a function only of |x|. The identity ∇2|x − y|2−D = 0 (for x 6= y)
implies ∇2V = 0 thanks to the factor of ρ in the integrand, because object A is
outside object B. This shows that V is a function only of |x| that satisfies ∇2V = 0.
Together with suitable boundary conditions, this implies V ∝ 1/|x|D−2. This shows
that an object with a spherically-symmetric distribution of mass might as well be
pointlike as far as its gravitational effect on outside objects is concerned. Notice
that the special D-dependence highlighted in section 7 is important here, too.

11To see this, think of the integral over y as a sum over a continuum of values of the index j in equation (6), with
ρ being the continuous version of Mj .
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