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The Geometry of Spacetime
Randy S

Abstract Article 21808 explained how to define the geometry of
space by assigning a length to every finite path. This article intro-
duces the geometry of spacetime, with emphasis on flat spacetime
(special relativity). The geometry of spacetime includes a distinc-
tion between spacelike paths and timelike paths. A spacelike path
has an intrinsic length, but a timelike path has an intrinsic duration
instead. The journey of a physical object is represented by a path
with an intrinsic duration.
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1 The geometry of flat space: a quick review

Here’s a quick review of article 21808. In three-dimensional space, a coordinate
system labels each point with a unique triple of numbers x, y, z. Given a coordinate
system, we can specify an arbitrary path using three functions

x(λ), y(λ), z(λ) (1)

whose derivatives are not all zero for any λ. Different values of the real variable λ
specify different points along the path, and the functions (1) give the coordinates
of each of those points.

The geometry of space can be defined by assigning a length to every finite path.
The familiar geometry of flat space is defined by taking

length =

∫ λmax

λmin

dλ |ṡ| (2)

to be the length of the part of the path that goes from λmin to λmax, where s(λ) is
the function defined by

ṡ 2 = ẋ2 + ẏ2 + ż2, (3)

using an overhead dot to denote a derivative with respect to λ. Equation (3) is
more commonly written as the line element

ds2 = dx2 + dy2 + dz2. (4)

Intuitively, if dx, dy, dz are the changes in the coordinates x, y, z for some infinites-
imal segment of a path, then ds is the corresponding length of that segment. We
recognize (4) as the “Pythagorean theorem,” but for infinitesimal segments so that
we can use it to define the length of arbitrary curved paths. Equation (3) or (4)
implicitly defines the metric of flat three-dimensional space.
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2 Different kinds of worldlines in flat spacetime

The previous section reviewed the geometry of flat space. The geometry of flat
spacetime is defined similarly, with two differences. First, we need four coordinates
w, x, y, z instead of only three. We can specify an arbitrary path in spacetime
(called a worldline) using four functions w(λ), x(λ), y(λ), z(λ). Second, the quan-
tity ẋ2 + ẏ2 + ż2 on the right-hand side of equation (3) is replaced by

− ẇ2 + ẋ2 + ẏ2 + ż2. (5)

This can be positive, negative, or zero, so clearly the left-hand side of (3) also needs
to be generalized. This will be done in section 4. Each case has a different name:1

• A worldline is called spacelike wherever ẇ2 < ẋ2 + ẏ2 + ż2.

• A worldline is called timelike wherever ẇ2 > ẋ2 + ẏ2 + ż2.

• A worldline is called lightlike (or null) wherever ẇ2 = ẋ2 + ẏ2 + ż2.

A generic worldline can have segments that are spacelike, segments that are time-
like, and segments that are lightlike. If a worldline is spacelike everywhere, then
we simply call it spacelike, and likewise for a worldline that is timelike or lightlike
everywhere. More vocabulary:

• A worldline is called causal2 if it is not spacelike anywhere.

• A point in spacetime is often called an event, whether or not anything actu-
ally happens there.

These definitions refer to the causal structure of flat spacetime. The geometry
of flat spacetime will be defined in section 4.

1The definitions listed here are valid for flat spacetime in this special coordinate system. Section 19 gives a more
general version of these definitions, one that works in any spacetime (flat or curved) and any coordinate system.

2This is prounounced “cause-uhl.” The root word is cause, as in cause-and-effect (section 5).
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3 The light cone

Each event p in spacetime has an associated light cone, which is is the boundary
between those events that can be connected to p by a timelike worldline and those
that cannot. Those that can are said to be inside p’s light cone, and those that
cannot are outside p’s light cone.

As an example, consider the event p with coordinates (0, 0, 0, 0). Then an event
with coordinates (w, x, y, z) can be connected to p by a timelike worldline if and
only if3

w2 > x2 + y2 + z2. (6)

This light cone is the boundary of this, which is the set of events with w2 =
x2 + y2 + z2. The light cone separates spacetime into three regions:4

• Events inside p’s light cone are in the causal future of p if w > 0.

• Events inside p’s light cone are in the causal past of p if w < 0.

• Events outside p’s light cone are not in the causal future or causal past of
p, not even if w 6= 0. This replaces the näıve everyday concept of an event
being “simultaneous” with p.

The shape of the light cone is illustrated here, without the z-dimension:

future

past

neither y

w

x

3This assumes that we’re using the coordinate system that is used in section 2.
4These descriptions use a particular choice of time orientation (section 5).
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Depicting the light cone in all four dimensions is difficult to do on paper, but
we can easily picture it using a movie in which the w-coordinate is movie-time.
As before, consider the light cone of the event with coordinates (0, 0, 0, 0). At any
given movie-time w, the 3d picture shows the surface of the sphere with radius√
x2 + y2 + z2 = |w| centered on the origin (x, y, z) = (0, 0, 0). At movie-times

w < 0, the radius of the sphere is shrinking. At movie-time w = 0, the sphere is
reduced to a single point (x, y, z) = (0, 0, 0), which represents the event p itself. At
movie times w > 0, the radius of the sphere is growing. Events inside the w > 0
spheres are in the causal future of p, and events inside the w < 0 spheres are in the
causal past of p. Events outside the spheres are neither in the causal future nor past
of p, which replaces the näıve everyday concept of events being “simultaneous” with
p. (The following sections implicitly explain why the concept of “simultaneous” is
näıve, and why the concept of events being outside each other’s light cones is an
appropriate replacement.)

Depicting only two dimensions, say w and x, is often more convenient. Then
the light cone of a given event p consists of a pair of diagonal lines, as shown here:

neitherneither

future

past

x

w

In this picture,

• A worldline is lightlike wherever its slope has magnitude 45◦.

• A worldline is timelike wherever its slope is closer to vertical.

• A worldline is spacelike wherever its slope is closer to horizontal.

This type of picture is used in a few of the following sections.
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4 The geometry of flat spacetime

A spacelike worldline has an intrinsic length ∆s, called its proper length, with
s(λ) defined by

ṡ2 = −ẇ2 + ẋ2 + ẏ2 + ż2 (derivative notation) (7)

ds2 = −dw2 + dx2 + dy2 + dz2 (differential notation).

This replaces equations (3)-(4). A timelike worldline has an intrinsic duration ∆τ ,
called its proper duration, with τ(λ) defined by

c2 τ̇ 2 = ẇ2 −
(
ẋ2 + ẏ2 + ż2

)
(derivative notation) (8)

c2 dτ 2 = dw2 −
(
dx2 + dy2 + dz2

)
(differential notation),

where c is a units-conversion factor that allows s and τ to be expressed in different
units, such as meters and seconds.5 The rest of this article uses natural units
(article 37431) in which c = 1.

Equations (7) and (8) make sense only when their right-hand sides are non-
negative, so a timelike worldline doesn’t have a proper length, and a spacelike
worldline doesn’t have a proper duration. For a lightlike worldline, the proper
length and duration are both defined, and they’re both zero.

The (proper) length of a spacelike worldline is given by equation (2), but now
with ṡ defined by (7) instead of by (3). Similarly, the (proper) duration of a timelike
worldline is given by

duration =

∫ λmax

λmin

dλ |τ̇ | (9)

with τ̇ defined by (8). Equation (7) or (8) implicitly defines the metric of flat
spacetime.

5 c turns out to be the local speed of light in a vacuum. often (dangerously) abbreviated “the speed of light.”
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5 Physical principles

The previous section defined the geometry of flat spacetime, but physics needs more
than just mathematical definitions. Physics also needs principles that relate those
mathematical definitions to the real world. Here a few simple principles that we can
use for classical objects with negligible size and no structure (pointlike objects):6

• The principle of causality7 says that something which happens at one event
cannot affect (cause) anything at another event unless the two events can be
connected to each other by a causal (timelike or lightlike) worldline. This
principle implies that the journey of a physical object can only be represented
by a causal worldline, so every journey has a well-defined duration.

• The mathematical definition of duration introduced in the previous section
is consistent with the physical concept of duration measured by the object’s
internal clock.

• If two objects meet twice, then they agree about which meeting occurred
first. The equations in the previous section don’t specify the sign of τ̇ , so
they don’t specify which of the two directions along a causal worldline is
future and which is past. However, we can choose a time orientation8 that
specifies future and past along all causal worldlines so that they always agree
about the sequence – even though they don’t always agree about the duration,
as demonstrated in the next section.

6This is clearly an idealization, but it’s good enough for many applications.
7This is pronounced “cause-ality.”
8The future/past language in section 3 assumed a particular choice of time orientation.
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6 Comparing durations: a simple example

This section illustrates the use of equation (8) by showing that two different timelike
worldlines connecting the same pair of events can have different durations. This is
analogous to the familiar fact that two paths connecting the same pair of points in
three-dimensional space can have different lengths (section 1).

Consider these two causal worldlines:9

Worldline 1: (w, x, y, z) = (λ1, 0, 0, 0)

Worldline 2: (w, x, y, z) = (A sinhλ2, B − A coshλ2, 0, 0)

where A,B are constants with B > A > 0. The two worldlines are parameterized
by λ1 and λ2, respectively. These wordlines intersect each other at two events,10

namely (w, x, y, z) = (±(B2 − A2)1/2, 0, 0, 0), as illustrated here:

1 2 x

w

x

w

At the intersections, the w-coordinates of the two worldlines are equal to each
other, so the changes in their parameters are related to each other by

(λ1)max − (λ1)min = (A sinhλ2)max − (A sinhλ2)min. (10)

We want to compare the duration between the two intersections. We can calculate
the duration along each worldline using (9) with |τ̇ | given by equation (8). For the

9The functions sinh and cosh are reviewed in article 77597.
10These are the two events at which worldline 2 has x = 0.
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worldlines shown above, the derivatives are

Worldline 1: (ẇ, ẋ, ẏ, ż) = (1, 0, 0, 0) ⇒ |τ̇ | = 1

Worldline 2: (ẇ, ẋ, ẏ, ż) = (A coshλ2, −A sinhλ2, 0, 0) ⇒ |τ̇ | = A

Using these results for τ̇ in (9) gives

duration1 = (λ1)max − (λ1)min

duration2 = (Aλ2)max − (Aλ2)min.

Equation (10) implies
duration1 > duration2. (11)

This illustrates the fact that the duration depends on the worldline, not just on
the pair of events. That geometrically-obvious statement is sometimes called the
twin paradox, because the two worldlines could represent the journeys of two
identical twins – and we just demonstrated that they age different amounts between
consecutive meetings.11 It’s called a paradox because we don’t normally notice
it,12 so the intuition we developed as children doesn’t account for it, but now
we can understand it just as clearly as we understand the familiar fact that two
different paths connecting the same pair of points in three-dimensional space can
have different lengths.

Worldline 2 looks longer than worldline 1 as drawn on the page (contrary to the
inequality (11)), but that’s misleading. The picture only conveys the coordinates
of the events, not the geometry. The geometry is defined by equations (7)-(8),
not by the picture. The result (11) comes from using those equations. Spacetime
geometry is different than the purely spatial geometry of a page.

11The “aging” here is not a matter of physiology. It’s a matter of spacetime geometry. We’re not comparing how
old the twins look, we’re comparing how old they actually are.

12We don’t normally notice it because, between meetings, the macroscopic objects of everyday experience all have
nearly-identical worldlines: their relative speeds are all much less than the speed of light.
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7 Comparing durations when one worldline is kinked

The previous example compared the durations of two smooth worldlines that start
at the same event and end at the same event. We get a similar result if worldline
2 is replaced by a piecewise-smooth worldline, as illustrated here:

A

B

C

x

w
x

w

In this case, we want to compare the duration of segment AC (previously called
worldline 1) to the duration of the kinked worldline ABC. We can handle the kink
in worldline ABC just like we would when calculating the length of a path in 3d
space: we subdivide the worldline into smooth segments, AB and BC, and we add
their durations to get the total duration of ABC. The result is that the duration
of segment AC (previously called worldline 1) is greater than the total duration of
the kinked worldline ABC, just like we would have anticipated from the previous
result (11).
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8 Maximizing the duration

Given two events A and B that can be connected by a timelike worldline, which
timelike worldline from A to B has the longest (proper) duration?

We can answer this using the calculus of variations (article 46044). The details
are worked out in Martin (1988), starting in section 3.6. Here, I’ll just quote the
result, specialized to flat spacetime in a coordinate system where the proper time
is given by equation (8). In this special case, a necessary condition for a timelike
worldline to maximize the duration between a given pair of events is13

ẅ = ẍ = ÿ = z̈ = 0. (12)

Notice that the worldline that was called “worldline 1” in section 6 satisfies this
condition.

In contrast, if A and B are two events that can be connected by a spacelike
worldline, then no spacelike worldline with those endpoints maximizes the proper
length: the proper length can be made arbitrarily large.14 This is possible because
the right-hand side of equation (7) has three positive terms, so a spacelike worldline
can “turn around and go back to where it was” without becoming non-spacelike
anywhere (without making the right-hand side of (7) non-positive anywhere). A
timelike worldline cannot “turn around and go back to where it was” without
becoming non-timelike somewhere, because the right-hand side of equation (8) has
only one positive term. That’s why the duration of a timelike worldline with given
endpoints has an upper limit, even though the length of a spacelike worldline with
given endpoints does not.

13In an arbitrary coordinate system, or when spacetime is not flat, the condition (12) is replaced by the general
equation for a geodesic (section 11).

14This statement assumes that space is at least two-dimensional. If space were only one-dimensional (so that
spacetime is two-dimensional), then the length of a spacelike worldline with given endpoints would have a finite
upper limit, just like the duration of a timelike worldline with given endpoints has an upper limit.
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9 Minimizing duration or length: intuition

The previous section considered the maximum duration (which is finite) among all
timelike worldlines having the same endpoints, and the maximum length (which is
infinite) among all spacelike worldlines having the same endpoints.

What about the minimum duration or length? In both cases, the minimum –
actually the infimum15 – is always zero. For any smooth timelike (respectively spce-
like) worldline with given endpoints, we can always construct other smooth timelike
(respectively spcelike) worldlines with the same endpoints and whose durations (re-
spectively lengths) come arbitrarily close to zero. Intuitively, this is because any
pair of events can always be connected by a piecewise-lightlike worldline, whose
proper duration and length are both zero. To make that intuition precise, consider
these pictures:

x

w

The light cones of two events are shown in blue and green, respectively. In the
picture on the left (respectively right), the solid line shows a timelike (respectively
spacelike) worldline connecting the two events. The dashed line shows how we can
distort the original worldline, keeping it timelike (respectively spacelike) but push-
ing it closer and closer to the light cones in order to make its duration (respectively
length) arbitrarily close to zero.

15The infimum of a set S of real numbers is the largest real number that is ≤ every number in S. If the infimum
itself happens to be in S, then it’s called the minimum.
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10 Minimizing duration or length: calculation

This section confirms the intuition in the previous section by constructing an ex-
plicit family of timelike (respectively spacelike) worldlines, all with the same end-
points, whose durations (respectively lengths) come arbitrarily close to zero.

First consider the spacelike case. Suppose that the coordinates of events A and
B are

(w, x, y, z)A = (−a,−b, 0, 0) (w, x, y, z)B = (a, b, 0, 0) (13)

with a2 < b2 so that they can be connected by a smooth spacelike worldline. The
general case can be reduced to (13) by translations and rotations of the x, y, z
coordinates. For any Λ > 0, they are connected by the worldline

w(λ) = Sε sinhλ− Cε coshλ+ Cε cosh Λ y(λ) = 0

x(λ) = Cε sinhλ− Sε coshλ+ Sε cosh Λ z(λ) = 0

with −Λ < λ < Λ and C ≡
√
S2 + 1, where ε and S are chosen to satisfy the

conditions w(Λ) = a and x(Λ) = b, which imply

ε2 sinh2 Λ = b2 − a2 S/C = a/b. (14)

This worldline is spacelike because ẋ2 − ẇ2 = ε2 > 0, and equation (7) says that
its proper length is∫ Λ

−Λ

dλ | − ẇ2 + ẋ2| = 2Λ|ε| = 2Λ

sinh Λ

√
b2 − a2.

The right-hand side approaches zero as Λ→∞, so this completes the proof.
The proof in the timelike case is similar: simply exchange the roles of w and z.
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11 Straightest and shortest: two distinct concepts

The preceding sections showed that if two events can be connected by a smooth
spacelike worldline, then they can also be connected by other smooth spacelike
worldlines whose lengths are arbitrarily close to zero. How do we reconcile this
with the everyday idea that the distance between two points in space has a nonzero
minimum, namely the length of the straightest path? To resolve this, we need to
recognize that straightest and shortest are two distinct concepts. The distinction
doesn’t matter in space, but it does matter in spacetime.

In spacetime, the everyday concept of the straightest path is replaced by the con-
cept of a geodesic (article 33547).16 Section 8 mentioned that a timelike geodesic
has the maximum possible duration among all timelike worldlines with the same
endpoints. A spacelike geodesic has neither the maximum nor minimum possible
length among all spacelike worldlines with the same endpoints (sections 8 and 9),
but the length of the spacelike geodesic does correspond to the everyday concept
of the length of the straightest path. As in everyday life, we can use this as the
definition of the distance between two events.17,18 Of course, this only makes sense
if the two events can be connected by a spacelike worldline.

We should also distinguish between the concept of the distance between two
events (previous paragraph) and the concept of the distance between two objects,
because each object is represented by a whole timelike wordline, not by a single
event. The next section addresses concept of the distance between two objects.

16In flat spacetime, in a coordinate system where geometry is defined by (7)-(8), a geodesic is a worldline satisfying
(12). For other coordinate systems or in curved spacetime, the condition (12) is modified.

17Similarly, the everyday concept of the duration between two events corresponds to the length of the timelike
geodesic connecting those two events – because the objects everyday experience all have worldlines that are close
enough to being geodesics that we don’t notice the difference in their durations (section 6).

18 Any two events can be connected by a geodesic, and that geodesic is unique if spacetime is flat and topologically
trivial, as we are assuming here, and in more general spacetimes if one event is within a sufficiently small neighborhood
of the other (theorem 8.1.2 in Wald (1984), and page 8 in section 2 in Witten (2019)). Otherwise, two or more
geodesics connecting the same pair of events may exist (section 21).
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12 The distance between two objects

The previous section mentioned how a standard distance between two events can be
defined. The concept of the distance between two objects is different, because each
object is represented by a whole timelike wordline, not by a single event. To define
the everyday concept of the distance between two objects (two timelike worldlines),
we can use the time required for a lightlike signal to leave one object, reach the
other object, and return to the original object. This time interval is defined along
the first object’s worldline, as the duration between a transmission event and the
corresponding reception event. Of course, if the two objects are moving relative
to each other, then this distance depends on when the signal is transmitted, as
illustrated here:

A

C

B

D

x

w

The solid blue and green lines are the worldlines of the two objects. The dashed
lines represent lightlike signals. The duration between events A and C along the
first object’s worldline (blue line) provides one measure of the distance to the
other object, and the duration between events B and D along the first object’s
worldline provides another measure of the distance. Both measurements take time,
because the transmission and receptions events are separated by a finite duration.
This highlights the fact that the everyday concept of the instantaneous distance
between two objects is only approximately meaningful: it is meaningful only if the
distance is not changing too quickly. This isn’t just a limitation of the measurement
technology. It’s a limitation of the concept itself.

16



cphysics.org article 48968 2024-02-25

13 Linear coordinate transformations

The coordinate system w, x, y, z used in the previous sections is called Minkowski
coordinates. Now consider a new coordinate system u, v, y, z that is related to
the original one by

w = (u+ v)/2 x = (u− v)/2. (15)

Substitute this into equation (7) to get

ṡ2 = −u̇ v̇ + ẏ2 + ż2. (16)

This defines the same spacetime geometry as equation (7), but expressed in a
different coordinate system. This illustrates the fact that the same line element
can look different in different coordinate systems.

More generally, if M is any invertible 4 × 4 matrix with constant (coordinate-
independent) components, then19

(w x y z) = (w′ x′ y′ z′)M (17)

defines a new coordinate system (w′, x′, y′, z′). Substitute (17) into (7) to get

ṡ2 = −(ẇ′ ẋ′ ẏ′ ż′)MηMT (ẇ′ ẋ′ ẏ′ ż′)T

with η = diag(1,−1,−1,−1), and the superscript T means transpose. The previous
example (15)-(16) is a special case of this.

Another important family of special cases are the Lorentz transformations,
defined by the condition MηMT = η. After a Lorentz transformation, the equa-
tion for proper length (or proper time) looks just like (7) (respectively (8)) but
with the new letters in place of the old ones, so Lorentz transformations describe
symmetries of flat spacetime, just like rotations describe symmetries of flat space.
This symmetry of flat spacetime is called Lorentz symmetry.

19I’m using matrix notation: (w′ x′ y′ z′) is a matrix with one row, which when multiplied into the square matrix
M gives another matrix (w x y z) with one row.
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14 Comparing durations again

A coordinate transformation re-labels things, but it doesn’t change the geometry.
As an example, this section outlines how the analysis in section 6 can be expressed
in the u, v, y, z coordinate system defined by (15).

Equations (15) imply u = w+x and v = w−x, so the two worldlines in section
6 are described in the new coordinate system by

Worldline 1: (u, v, y, z) = (λ1, λ1, 0, 0)

Worldline 2: (u, v, y, z) =
(
B − A exp(−λ2), −B + A exp(λ2), 0, 0

)
.

These wordlines intersect each other at two events, namely those with u = v =
±(B2 − A2)1/2 and y = z = 0. Between these two events, the changes in the two
worldlines’ parameters are related to each other by (10), as before. We want to
compare the duration between the two intersections. We can calculate the duration
along each worldline using (9), as before, but now |τ̇ | given by

τ̇ 2 = u̇ v̇ − ẏ2 − ż2, (18)

which is the proper-time equation (in units for which c = 1) corresponding to the
proper-length equation (16). For the worldlines shown above, the derivatives are

Worldline 1: (u̇, v̇, ẏ, ż) = (1, 1, 0, 0) ⇒ |τ̇ | = 1

Worldline 2: (u̇, v̇, ẏ, ż) =
(
A exp(−λ2), A exp(λ2), 0, 0

)
⇒ |τ̇ | = A

Using these in equation (9) gives the same durations as in section 6.
Again: coordinates are just labels. The duration of a given timelike worldline

with given endpoints is the same no matter what coordinate system we use to
calculate it. On the other hand, the picture shown in section 6 is specific to the
original w, x, y, z coordinate system. If the picture were re-drawn for the u, v, y, z
coordinates, then vertical and horizontal lines would be lightlike, worldline 1 would
be diagonal, and worldline 2 would be tilted similarly. The picture only conveys
the coordinates of the events, not the geometry. The geometry is defined by (18).

18
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15 Other examples of coordinate transformations

Sometimes, using a coordinate system that is defined for only part of the spacetime
can be useful. A familiar example is the coordinate system w, r, φ, z related to the
original one by

x = r cosφ y = r sinφ (19)

with 0 ≤ φ < 2π. This is an example of polar coordinates. They are defined for
only part of the spacetime: the coordinate φ is undefined at x = y = 0, and it’s
not smooth across y = 0 when x > 0. We can still use them for worldlines that
avoid those parts of spacetime, and then substituting (19) into (7) gives

ṡ2 = −ẇ2 + ṙ2 + r2φ̇2 + ż2. (20)

as shown in article 21808.
Another important example is the coordinate system r, φ, y, z related to the

original one by
w = r sinhφ x = r coshφ (21)

with −∞ < r < ∞ and −∞ < φ < ∞. This is an example of Rindler co-
ordinates. They are not defined where w2 ≥ x2, but we can still use them for
worldlines that avoid those parts of spacetime. Use the product (Leibniz) rule to
get the identities

ẇ = (sinhφ) ṙ + (r coshφ) φ̇ ẋ = (coshφ) ṙ + (r sinhφ) φ̇,

and then use these in (7) to get

ṡ2 = −r2φ̇2 + ṙ2 + ẏ2 + ż2. (22)

This coordinate system is called Rindler coordinates.
Equations (20) and (22) both still define the same geometry as (7), at least for

the part of the spacetime where the new coordinates are defined. A coordinate
transformation merely re-labels things. It doesn’t change the geometry.
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16 Generic coordinate system

Instead of using different letters for the different coordinates, we can use an index,
like this (in the four-dimensional case):20

(w, x, y, z)→ (x0, x1, x2, x3).

The index notation is useful when we want the equations to be valid in arbitrary
coordinate systems instead of being specialized to one coordinate system. It also
facilicates the generalization to N -dimensional spacetime, simply by allowing the
index to take values in {0, 1, ..., N − 1}. A generic coordinate transformation can
be described by expressing the old coordinates xa as functions of new coordinates
Xa:

xa(X0, X1, ..., XN−1).

A worldline can be described by specifying either the old or new coordinates as
functions of another parameter λ that increases monotonically along the worldline.
Then the product (Leibniz) rule implies the useful identity

ẋa =
∂xa

∂Xb
Ẋb. (23)

I’m using the (Einstein) summation convention: a sum is implied over any
index that occurs both as a superscript and as a subscript in the same term, with
the understanding that a superscript (respectively subscript) in the denominator is
treated as though it were a subscript (respectively superscript) in the numerator.
In particular, a sum over b is implied in equation (23).

20Writing the index as a superscript is conventional, as explained at the end of article 21808.
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17 Flat spacetime in a generic coordinate system

Substitute (23) into equations (7)-(8) to get21

ṡ2 = −gab(X) Ẋa Ẋb (derivative notation) (24)

ds2 = −gab(X) dXa dXb (differential notation)

and

c2 τ̇ 2 = gab(X) Ẋa Ẋb (derivative notation) (25)

c2 dτ 2 = gab(X) dXa dXb (differential notation)

with

gab(X) ≡ ηcd
∂xc

∂Xa

∂xd

∂Xb
(26)

and

ηab ≡


1 if a = b = 0,

−1 if a = b ∈ {1, 2, ..., N − 1}
0 if a 6= b.

(27)

I’m using the mostly-minus convention, which is more convenient in contexts
where causal worldlines get more attention than spacelike worldlines do, because it
avoids an explicit minus sign in the proper-time equation (25). The price for this
is the explicit minus sign in the proper-length equation (24), which is awkward in
contexts where spacelike worldlines get more attention. The mostly-plus conven-
tion pushes the explicit minus sign to the proper-time equation instead, by flipping
the signs in the definition of η, equation (27).

Equations (24)-(27) define the same geometry as (7)-(8), at least for the part of
the spacetime where the new coordinates are defined. A coordinate transformation
merely re-labels things. It doesn’t change the geometry.

21Here, I’m using the letter X to represent the whole list of coordinates: X = (X0, X1, ..., XN−1).
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18 Generalization to curved spacetime

Suppose we are given the coefficients gab(x) in the equations

ṡ2 = −gab(x) ẋa ẋb (derivative notation) (28)

ds2 = −gab(x) dxa dxb (differential notation)

and

c2 τ̇ 2 = gab(x) ẋa ẋb (derivative notation) (29)

c2 dτ 2 = gab(x) dxa dxb (differential notation).

How do we know whether these equations define the geometry of flat spacetime?
Determining this can be tedious in practice, but the principle is simple: they define
the geometry of flat spacetime if and only if they can be obtained from equations
(7)-(8) by a coordinate transformation, as explained in the previous section.22

If no such coordinate transformation exists, then equations (28)-(29) may still
define a valid spacetime geometry, but one that is different than the geometry of
flat spacetime: the spacetime is curved instead of flat. To define a valid spacetime
geometry (curved or flat), the only requirement is that the metric23 with compo-
nents gab(x) has lorentzian signature. Section 20 explains what this means.

Article 24902 introduces one important example of a curved spacetime.

22The previous section used lowercase and uppercase letters to distinguish the two coordinate systems. We don’t
need to do that here, because here we’ll only be considering one (arbitrary) coordinate system.

23The concept of a metric does not rely on coordinates (article 09894), but a metric can be represented by its
components gab(x) in a particular coordinate system.
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19 Types of worldlines in curved spacetime

In a generic spacetime (including flat spacetime in a generic coordinate system), a
worldline is called24

• spacelike if the right-hand side of (28) is positive,

• timelike if the right-hand side of (29) is positive,

• lightlike (or null) if the right-hand sides are zero.

A spacelike worldline (with endpoints) has a proper length, and a timelike worldline
(with endpoints) has a proper duration. A lightlike worldline has both, and they’re
both zero. A worldline is called causal if it is not spacelike anywhere.

With these definitions, the principle of causality in section 5 still applies. And
just like in section 3, each event p has an associated light cone, defined as the
boundary between those events that can be connected to p by a timelike worldline
and those that cannot. The equation for the light cone depends on gab, but the
concept is the same for any gab.

24Recall (section 17) that I’m using the mostly-minus convention for the metric.
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20 The signature of the metric

The coefficients gab(x) in equations (28)-(29) might as well be symmetric, which
means

gab(x) = gba(x),

because only the symmetric part contributes to those equations. To define a valid
geometry, the matrix with components gab(x) should also be invertible (also called
nondegenerate) at every point x in spacetime.

If those requirements are both satisfied, then the metric has a signature, and
its signature is the same everywhere. To define the signature, first observe that for
any given point x in spacetime, the fact that the matrix with components gab(x)
is symmetric implies that we can choose a coordinate system in which it is diag-
onal at the given point x. The invertibility requirement (the second requirement
highlighted above) implies that the number of positive and negative components
of this diagonal matrix must add up to N , the number of spacetime dimensions.
The signature is the pair (N+, N−), where N+ and N− are the numbers of positive
and negative components, respectively, in this diagonal matrix. The signature is
the same at all points in spacetime, because the invertibility requirement does not
allow it to vary. These special cases have names:

• The signature (N, 0) is euclidean. In this case, the metric defines a geometry
of space.25 The signature is called euclidean even if the space is curved, even
though the words “euclidean geometry” typically refer to flat space.

• The signatures (N−1, 1) and (1, N−1) are called lorentzian, in the mostly-
plus and mostly-minus conventions, respectively. A metric with lorentzian
signature defines a geometry of spacetime. The signature is called lorentzian
even if the spacetime is curved, even though the words “Lorentz symmetry”
refer to a property of flat spacetime.

25The word space is often used more generally, not necessarily implying euclidean signature. Sometimes a space-
time (with lorentzian signature) is called a “space.” As always in physics, we must rely on the context to clarify the
meanings of the words.
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21 Topologically nontrivial spacetimes

Most of this article assumed that spacetime has trivial topology. For a simple
example of a spacetime with nontrivial topology, start with flat spacetime with
the geometry defined by equations (7)-(8), and compactify the x-dimension by
imposing the equivalence relation26

(w, x+ κ, y, z) ∼ (w, x, y, z) (30)

for some constant κ. This means that for all w, x, y, z, the point with coordinates
(w, x + κ, y, z) is considered to be the same point as the one with coordinates
(w, x, y, z). If we start with equations (7)-(8) and then impose the equivalence
relation (30), the resulting spacetime is still geometrically flat, but it is also topo-
logically nontrivial.

In this spacetime, consider two events A and B that can be connected by a
timelike worldline. These two events can be connected by a timelike worldline that
satisfies (12) and does not wrap around the x-dimension, but they can also be
connected by many other worldlines that satisfy (12) and do wrap around the x-
dimension. Most of these worldlines are spacelike, and some of them (the ones that
don’t wrap too many times) may be timelike if the maximum duration between A
and B is large enough compared to κ. This illustrates the reason for footnote 18
in section 11.

Mathematically, we could also consider imposing an equivalence relation on the
w-coordinate, but then the spacetime would have causal worldlines that close back
on themselves, so two events could both be in each other’s causal futures. Even in
areas of physics where topologically nontrivial spacetimes are routinely considered,
they are normally required to be globally hyperbolic so that such pathologies do
not occur. Section 3 in Witten (2019) gives a good introduction to this subject.

26In case this sounds mysterious, here’s a familiar analogy. Start with a flat two-dimensional piece of paper with
a coordinate system x, y, and curl it up into a cylinder of radius R so that points with coordinates (x+ 2πR, y) and
(x, y) coincide with each other. Mathematically, this doesn’t require any third dimension: the equivalence relation
(x+ 2πR, y) ∼ (x, y) can be imposed directly, without curling anything into a third dimension.
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22 The local flatness theorem

Most spacetimes are curved, not flat,27 but learning about the geometry of flat
spacetime is still an important part of understanding curved spacetime. This is
partly because flat spacetime is a relatively easy special case, but it’s also because of
the local flatness theorem:28 any spacetime is approximately flat in a sufficiently
small neighborhood of any given point.29 More precisely, for any given metric and
any given point p with coordinates xp, we can choose a coordinate system in which
the Taylor expansion30 of the components gab(x) of the metric has the form

gab(x) = ηab +O
(
(x− xp)2

)
, (31)

without any term linear in x− xp, where ηab is defined by (27).
The significance of not having a linear term becomes more clear after learning

how all of this mathematical formalism relates to gravity. That subject is beyond
the scope of this article, but I’ll mention the idea:31 the worldline of an object
in free-fall is a geodesic, and equation (31) implies that objects in free-fall are
not being “accelerated” in the relative sense32 at xp. This is the essence of the
equivalence principle, which is just the local flatness theorem applied to the
physics of gravity.

27Among the gab(x)s that define valid spacetimes, most of them don’t have the form (26). The euclidean-signature
version of this assertion is derived in article 21808, and the derivation for lorentzian signature is similar.

28This theorem is well-known, but the name doesn’t appear to be standard. I borrowed this name from Schutz
(1985), which states the result in equation (6.3) and proves it at the end of section 6.2. You can also learn about it
by searching online for Riemann normal coordinates. Beware that Schutz (1985) uses the name Riemannian
manifold for what most mathematicians would call a pseudo-Riemannian manifold: “Riemannian” usually
implies euclidean signature (except in Schutz’s book), whereas “pseudo-Riemannian” encompasses all signatures.

29Sometimes we consider spacetimes that have singularities, where the geometry is not well-defined. The equiv-
alence principle applies only in neighborhoods where the geometry is well-defined.

30The idea of a Taylor expansion is introduced in article 93169.
31Article 33547 gives a little more insight.
32Like many words in physics, the word “acceleration” is overloaded. An object that is being accelerated in the

absolute (or intrinsic) sense has a weight. Conversely, weightlessness is the absense of absolute acceleration. The
magnitude of an object’s absolute acceleration is the same no matter what coordinate system we use. In contrast,
acceleration in the relative (or extrinsic) sense refers to the second-derivative of the object’s coordinates, so it
clearly does depend on which coordinate system we use.
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