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Discretizing Curved Space(time)
for Quantum Field Theory

Randy S

Abstract In quantum field theory, the only known well-defined
nonperturbative constructions of many important models involve
discretizing space or spacetime. In flat space or spacetime, one
common scheme uses a hypercubic lattice, which has the virtue of
preserving a discrete version of exact translation symmetry. This
article describes a more general discretization scheme that is useful
when translation symmetry is either unimportant or absent in the
nominal smooth space or spacetime.
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1 Introduction

Quantum field theory (QFT) is a general framework that encompasses many differ-
ent models. The only known well-defined nonperturbative constructions of many
important models involve discretizing space or spacetime.1 We don’t have any rea-
son to think that space(time) really is discrete,2 but we can get away with treating
it that way as long as the discretization scale is much finer than the resolution of
any real-world observations.

Two different ways of discretizing space(time) are commonly used in quantum
field theory:

• Flat space(time) is often discretized using a scheme based on a (hyper)cubic
lattice that preserves a discrete version of translation symmetry.3

• Another way to discretize space(time), not limited to flat manifolds, is to use
a simplicial complex (section 8).

Section 4 will describe a generalization that includes both of these common schemes.
This generalization will be called a lattice. Mathematicians normally reserve the
word lattice for something more specific (section 7), and the names lattice QFT
and lattice gauge theory may have their roots in that more specific meaning, but
now these names are often used with any way of discretizing space or spacetime.4

1The beginning of section 8.2 in Argyres and Ünsal (2012) says, “Currently the only general non-perturbative
definition of QFTs is through a lattice formulation.”

2We do have good reasons to think that models based on the traditional concept of a spacetime continuum can
only be approximately valid in the real world, partly because a quantum model with gravity should exhibit some
version of the holographic principle, but discretizing spacetime doesn’t accomplish that.

3Examples: articles 51376 and 71852
4Examples that use the word lattice in this more general sense include Christ et al (1982); Dijkgraaf and Witten

(1990), text after equation 6.28; Gaiotto et al (2017), section 1.2; Brower et al (2017); and the quote in footnote 1.
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2 Perspective

The goal is to discretize a smooth n-dimensional manifold M . This manifold may
represent either space or spacetime. To encompass both applications, this article
calls it the underlying manifold. The discrete structure will be called a lattice.5

We can think of the lattice as something that stands on its own, but this article
will describe it as something that occupies the underlying manifold.

The lattice is more than just a special set of points in the underlying manifold.
It uses a hierarchy of k-cells to convey information about how those points are
connected to each other. This information is only topological, not geometric. Ge-
ometry (quantitative distances, areas, volumes) would be implicit in the coefficients
in the action or hamiltonian,6 which are not specified in this article. When they
are specified, each k-cell should be geometrically much smaller than the resolution
of any real-world observations that the model is meant to reproduce.

5Section 1
6The action or hamiltonian for QFT typically involves a prescribed metric tensor, either explicitly (like in article

26542) or implicitly (like in article 52890).
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3 Low-resolution limit in curved spacetime

In curved space(time), taking a strict smooth-spacetime limit would require pro-
gressively refining the lattice. Most (all?) models in quantum field theory aren’t
meant to be accurate at arbitrarily fine resolution, though, so we can do something
else instead: we can use a fixed lattice that is much finer than the resolution of
any practical measurement. Then the role of the smooth-spacetime limit can be
replaced by an agreement to consider only observables whose resolution is very
coarse compared the lattice scale.7 Their resolution may still be much finer than
the scale on which the curvature of space(time) is significant.

7In this article and other articles in this series, the purpose of discretizing space(time) is to provide unambiguous
nonperturbative constructions of quantum field models, and the purpose of having an unambiguous nonperturbative
construction is to have a solid foundation for everything else – including intuition, theorems, and perturbation theory,
not just for computer calculations. Using a lattice with 10100 points would not be helpful for computer calculations,
but it can still be helpful for those other purposes.
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4 A general discrete structure

Let M be an n-dimensional smooth manifold. The discrete structure consists of a
countable collection of 0-cells, 1-cells, 2-cells, ..., up to n-cells, with these properties:

• Each 0-cell is a point in M .

• For each k ∈ {1, 2, ..., n}:

– A k-cell is topologically a k-dimensional closed8 ball in M .

– The boundary of a k-cell is the union of distinct (k − 1)-cells.

– Each (k − 1)-cell is part of the boundary of at least one k-cell.

• If Ω is the set consisting of the 0-cells and the interiors of the k-cells for every
k ≥ 1, then the elements of Ω do not intersect each other, and their union is
the manifold M .

This structure will be called a lattice. The structure formed by just the 0-cells
and 1-cells is also called a graph.9 More language:

• A 0-cell is also called a site10 or a point.11

• A 1-cell is also called a link.10,11 It’s a line segment whose endpoints are
0-cells.

• A 2-cell is also called a plaquette.11 It’s a polygon whose sides are links.

For k ≥ 1, the interior of a k-cell is a k-dimensional manifold, so it can be assigned
either of two orientations.12 An oriented link is also called a directed link.13

8A closed ball includes its limit points. If k ≥ 1, then the boundary of a k-dimensional closed ball is a (k − 1)-
dimensional sphere, and its interior is an open ball.

9Articles 00951 and 11617
10Harlow and Ooguri (2021), section 3.2
11Montvay and Münster (1997), section 3.2
12Article 91116
13The book Montvay and Münster (1997) uses this language in the text above equation (3.51) even though it also

uses the language oriented plaquette in the text above equation (3.68).
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5 Examples

Using the structure described in section 4, a 2-sphere can be described in many
different ways, including these:

• It may be described as the surface of a cube, using six 2-cells (squares), twelve
1-cells, and eight 0-cells.

• It may be described as the surface of a tetrahedron, using four 2-cells (trian-
gles), six 1-cells, and four 0-cells.
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6 Comparison to cell complexes

The structure described in section 4 is essentially a special case of what topologists
call a cell complex or CW complex.14 A simplicial complex is a special case
in which each cell is a simplex,15 but the structure described in section 4 allows
each cell to be a more general polyhedron.

As an example, suppose the underlying manifold M is a 2-sphere. A 2-sphere
can be described as a cell complex in either of the two ways listed in section 5, but
it can also be described using only two cells: a single 2-cell (the interior of a disk)
and a single 0-cell, with an attaching map that collapses the disk’s boundary
onto the 0-cell.16 In contrast, the structure described in section 4 must use k-cells
of every dimension k ∈ {0, 1, 2}. This would be inefficient if the goal were to
calculate topological invariants, but the structure described in section 4 serves a
different purpose, namely to parameterize and organize the field variables in the
path integral formulation of quantum field theory (or the field operators in the
hamiltonian formulation where only space is discretized). The details of how it is
used for that purpose depend on the model.17

14Article 93875
15Section 8
16Hatcher (2001), exercise 0.3
17In article 51376, some 1-cells have associated link variables (the variables describing the gauge field), but 1-cells

whose endpoints are both on the boundary of M do not have associated link variables.
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7 A special case with translation symmetry

Sometimes the underlying smooth manifold M has translation symmetry with re-
spect to the given euclidean or lorentzian metric. In that case, using a discretization
scheme that preserves a discrete version of that translation symmetry has bene-
fits. A hypercubic lattice is the most common choice when M is topologically a
cartesian product of lines (copies of R) and/or circles (copies of S1).

In math, the word lattice is commonly used for a finitely generated free abelian
group.18 A discrete group of translations in a finite-dimensional manifold fits that
description. The name lattice is also used for the discrete array of points obtained
by applying those translations to one point. When the word lattice is used for a
space(time) discretization scheme in quantum field theory, though, something like
the structure described in section 4 is usually implied.19 In particular, a hypercubic
lattice includes k-cells such that each 2-cell is a square bounded by four 1-cells, each
3-cell is a cube bounded by six 2-cells, and so on.

18The same word is also commonly used for something else in math (a particular type of partially ordered set).
19Section 3.2 in Harlow and Ooguri (2021) says, “In mathematics the term ‘lattice’ refers to a regular set of points

in Rn, but in lattice gauge theory it also includes a graph connecting those points.”
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8 A common special case: simplicial complex

The structure described in section 4 may be viewed as a generalization of what
topologists call a simplicial complex.20,21 This may be used to discretize any un-
derlying smooth manifold, at least when the given metric has euclidean signature.22

The structure described in section 4 allows each cell to be a polyhedron that
is not necessarily a simplex. It reduces to a simplicial complex if each k-cell is a
k-dimensional simplex: each 2-cell is a triangle, each 3-cell is a tetrahedron, and so
on.23 One advantage of this specialization is that the orientation of a k-cell can be
defined as an ordering of its vertices (the 0-cells on its boundary) independently of
any underlying manifold.24

20Article 28539
21The distinction between CW complexes and simplicial complexes is described in Hatcher (2001) and in https:

//math.stackexchange.com/questions/1528005.
22Section 9 will consider lorentzian signature.
23Hatcher (2001), text after example 2.5
24Hatcher (2001), chapter 2, text before section 2.1
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9 Static spacetimes and prismatic cell complexes

Suppose the smooth n-dimensional spacetime manifold and its associated lorentzian-
signature metric has these properties:

• The manifold is homeomorphic to R × Ms. (Every globally hyperbolic
spacetime satisfies this condition.)

• The metric is static, which means it has a one-parameter group of isometries
whose orbits are timelike worldlines orthogonal to some spacelike hypersur-
face.25 In an appropriate coordinate system, the components of such a metric
satisfy |g00| = 1, g0k = 0, and ∂0gjk = 0, using 0 as the index of the time
coordinate and j, k for the space coordinates.

In that case, we can use a scheme in which the discrete version of Ms is a simplicial
complex and the spacetime lattice consists of a discrete set of time translations
of that simplicial complex. This type of lattice has been called a prismatic cell
complex because each n-cell is a prism obtained by translating a spacelike simplex
through one time-step.26 This scheme is convenient for a few reasons:

• It ensures that each link is either timelike or spacelike, never lightlike.

• Wick rotation is straightforward (works just like in articles 63548 and 89053).

• Taking a continuous-time limit of the path integral to derive a hamiltonian
formulation is straightforward (works just like in articles 63548 and 89053).

Sections 10-11 will consider how to apply this to the construction of quantum
models with scalar fields or gauge fields.

Literature about quantum field theory in discrete versions of non-static space-
times is scarce,27 so such spacetimes will not be considered here.

25Wald (1984), section 6.1.1
26Desbrun et al (2005), figure 22
27One exception is Cotler and Strominger (2022), which includes warnings about näıve discretizations when the

metric is time-dependent.
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10 Scalar fields

Consider a static spacetime discretized as described in section 9. The action for a
scalar field φ in smooth spacetime would be

S[φ] ∝
∫
dnx

√
| det g|

(
gab(∂aφ)(∂bφ) + V (φ)

)
(1)

where gab are the coefficients of the spacetime metric field. For any n and any
metric with euclidean or lorentzian signature, we can choose the discretized action
to have the form28

S[φ] ∝
∑
(x,y)

c(x, y)
(
φ(x)− φ(y)

)2
+
∑
x

V
(
x, φ(x)

)
. (2)

The first sum is over links, each represented as a pair (x, y) of points. The coeffi-
cients c(x, y) and the function V (x, φ(x)) are real-valued. Articles 63548 uses this
action for a hypercubic lattice in flat spacetime, where the fact that it approxi-
mates the smooth-spacetime action is relatively easy to understand intuitively. In
that special case, the function V (x, φ(x)) depends only on φ(x) and is otherwise
independent of x. Allowing V to depend on x (and c(x, y) to depend on x, y) is
important for accommodating inhomogeneous and anisotropic metrics. Even if the
metric is homogeneous and isotropic, allowing V to depend on x (and c(x, y) to
depend on x, y) can still be necessary to compensate for lattice artifacts.29,30

28Section 2.2 in Brower et al (2017) reviews how a discrete version of the calculus of differential forms can be used
to deduce the required values of the coefficients c(x, y) when V is a quadratic function of φ. Even though they’re not
about quantum field theory, Gillette (2008) and Gillette (2009) do a nice job of summarizing the key ideas involved
in discrete versions of the calculus of differential forms, including clarifying which aspects depend on a metric and
what choices are involved. Boissonnat et al (2018) highlights a complication that typically occurs in curved spaces.

29Brower et al (2016) and Brower et al (2018)
30Even in the simplest case of a scalar field in flat spacetime discretized using a hypercubic lattice, compensating

for lattice artifacts requires choosing the values of the coefficients in the action to make the correlation length very
large compared to the discretization scale (article 07246), because this is a prerequisite for the existence of useful
observables whose resolution is much coarser than the discretization scale.
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11 Gauge fields

The action for a gauge field A in smooth spacetime would be

S[A] ∝
∫
dnx

√
| det g| gabga′b′trace(Faa′Fbb′) (3)

where Fab are the components of the field-strength 2-form F = dA + A2. In flat
spacetime discretized using a hypercubic lattice, the standard action has the form31

S[A] ∝
∑
2

c(2)

(
1− w(2) + w∗(2)

2

)
(4)

where the sum is over oriented plaquettes (2-cells) 2. This is called the Wilson
action. The plaquette variable w(2) is essentially trace(e

∮
2A). This same form has

been proposed – with appropriate values of the real-valued coefficients c(2) – for
use in any static spacetime that is discretized as described in section 9.32 Section
12 will acknowledge the near-absence of studies in non-flat spacetimes. The case
of a hypercubic lattice in flat spacetime has been studied extensively, but for non-
flat spacetimes the form (4) and the proposed values of the coefficients should be
treated as a reasonably-motivated but not-well-tested conjecture. As a concession,
most articles in this series only rely on a few basic properties of the action, including
these:

• It depends on the gauge field only through the traced plaquette variables
w(2).

• Its Wick-rotated version31 (the euclidean action) has a finite lower bound.

• When the gauge field is treated as a classical (instead of quantum) field,
the discrete action 4 agrees with the smooth-spacetime action (3) in some
approximate sense.33

31Article 89053
32Brower et al (2017), equation (7.4); summarized in Brower et al (2022), J = 1 case of equation (2)
33Defining this approximate sense is one of the purposes of the formalism mentioned in section 12 and in footnote

28 in section 10.

13



cphysics.org article 46333 2025-10-25

12 The diagonal form of the action

The discrete-spacetime action (4) is diagonal in the sense that each term involves
only a single 2-cell (plaquette): cross-terms involving distinct 2-cells are absent.
We might question whether this diagonal form is sufficient, given that the links of
the lattice typically won’t be aligned with the axes of that coordinate system.

Its sufficiency might seem even less certain in view of a property of metrics
in smooth n-dimensional spacetime. If n ≤ 3, then any metric with euclidean or
lorentzian signature on an n-dimensional manifold can be locally diagonalized by a
coordinate transformation,34,35 so for those values of n, we don’t lose any generality
by supposing that gab is nonzero only for a = b. However, when n ≥ 4, most metrics
are not diagonal in any coordinate system, not even locally.34,36

Some evidence for the sufficiency of the diagonal form of the discretized action
is given in the review Desbrun et al (2005), which explains how a discrete version
of the calculus of differential forms could be used to justify the diagonal form if the
field were classical (instead of quantum) and the action were quadratic in A (text
after definition 12.5) like the smooth-spacetime action is. The references cited in
footnote 32 propose using the same coefficients in equation (4). Beware, though,
that the study of quantum field theory in discrete versions of non-flat spacetimes
has only barely begun, and definitive answers to some basic questions are not yet
available. This is true even for scalar fields,37 which are simpler than gauge fields.

34Tod (2019), section 1
35Here, locally means each point has a neighborhood in which such a coordinate system exists.
36Gauduchon and Moroianu (2020) describes some counterexamples with euclidean signature in n = 4.
37Brower et al (2018) uses the word conjecture several times.
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