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The Action Principle
in Newtonian Physics

Randy S

Abstract Article 33629 introduced conservation laws in newto-
nian physics. In that article, the action principle was expressed
by requiring that all of the forces be encoded in a single function
(the potential energy). This article introduces a more powerful
form the action principle: it requires that the whole system of
equations of motion be derivable from a single lagrangian.
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1 Introduction

Consider a system of objects, each of negligible size compared to the distances
between them. Let mk denote the mass of the k-th object, let xk(t) denote the
position of the k-th object in D-dimensional space at time t, let ẋk and ẍk(t) denote
its first and second derivatives with respect to t.

Any conceivable behavior of this system may be described by specifying the
position of each object as a function of time. However, not all conceivable behav-
iors are physically possible. The equations of motion specify which behaviors are
“physically” possible (according to the model). As in article 33629, suppose that
the equations of motion are

mkẍk(t) = −∇kV
(
x1(t), x2(t), ...

)
, (1)

where V is a function of the objects’ positions at time t, such as

V ∝
∑
j 6=k

mjmk

|xj − xk|N
,

and ∇kV is the gradient of V with respect to xk. This article shows how the whole
system of equations of motion (1) can be written in terms of a single function called
the lagrangian, denoted L, which will be described in section 2. Integrating the
lagrangian over an arbitrary finite time interval I gives the action

SI =

∫
I

dt L, (2)

and the whole system of equations of motion (1) is written simply as

δSI

δxk(t)
= 0 (3)

for all t ∈ I and all I. This is the action principle. The following sections explain
what this means and how it reproduces equations (1).
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2 The action and the lagrangian

The lagrangian L that gives the equations of motion (1) is

L =
1

2

∑
k

mkẋ
2
k(t)− V

(
x1(t), x2(t), ...

)
. (4)

This may be abbreviated

L =
1

2

∑
k

mkẋ
2
k − V. (5)

The lagrangian depends on the locations and velocities of the objects at a given
instant in time. The action is the integral of L over a finite time interval I:1

SI =

∫
I

dt

(
1

2

∑
k

mkẋ
2
k(t)− V

(
x1(t), x2(t), ...

))
. (6)

The action takes a collection of functions x1(t), x2(t), ... as input and returns a
single real number as output, namely the real number we get by evaluating the
integral in equation (6).2 We can think of the action as a function that assigns a
real number to each behavior. The action is defined for every conceivable behavior,
not just for behaviors that are physically allowed.

1 The subscript I is usually omitted, and the action is treated formally as though it were an integral over all time.
This article will be more careful.

2 The action is sometimes called a functional, because its input is a list of functions instead of a list of numbers.
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3 Recovering the equations of motion

This section explains the meaning of the variational derivative3

δSI

δxk(t)
(7)

in equation (3) and then shows how (3) reproduces (1).
The idea is that (7) is the “derivative” of SI with respect to xk(t). To make this

precise, we can think of the time t as a discrete parameter,4 restricted to integer
multiples of some tiny increment ε. Then the derivative ẋk(t) becomes a difference,

ẋk(t) ≡
xk(t+ ε)− xk(t)

ε
,

and the integral that defines SI becomes a sum over the discrete list of times t ∈ I,∫
I

dt L(t) ≡ ε
∑
t∈I

L(t).

With these replacements, the action SI is an ordinary function of a long but finite
list of positions xk(t), namely one for each object at each time t ∈ I. The list of
positions is finite because the list of times t ∈ I is finite.

Now the quantity (7) is just the usual gradient of SI with respect to xk(t). With
this definition, straightforward calculation (appendix A) gives

δSI

δxj(t)
= −mjẍj(t)−∇jV

(
x1(t), x2(t), ...

)
(8)

for all t ∈ I and all I, where ẍj is a discrete version of the second derivative with
respect to t. Use this in the action principle (3) to recover the equations of motion
(1).

3 To find more information about this, the keywords are calculus of variations.
4 This device of artificially discretizing a continuous parameter avoids a distracting mathematical digression.
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4 Relation to the colloquial “action principle”

A loose popular translation of the action principle says “For every action, there is
an equal and opposite reaction.” We can make that statement more meaningful by
relating it to the real action principle.

Recall equation (3), which is a set of equations governing the system’s behavior
(the equations of motion), all expressed in terms of a single quantity SI (the action).
The fact that partial derivatives commute with each other implies the identity

δ

δxj(t)

δ

δxk(s)
SI =

δ

δxk(s)

δ

δxj(t)
SI . (9)

To translate this into words, think of the k-th equation (3) as governing the behavior
of the k-th object. Then the left-hand side of (9) is an indication of how the behavior
of the k-th object depends on the j-th object, and the right-hand side of (9) is an
indication of how the behavior of the j-th object depends on the k-th object. The
identity (9) says that these two influences are equal to each other. This gives a
precise meaning to the loose popular translation of the action principle.
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5 Reformulation of the action principle

The next section shows how to derive the equations of motion from a more general
version of the action. To prepare for that generalization, this section introduces
another way of writing equation (3).

Suppose we have a function f(x, y) of just two variables x, y. Instead of working
with the partial derivatives

∂f

∂x
and

∂f

∂y
,

sometimes we can make things easier by working with the combination

δf ≡ ∂f

∂x
δx+

∂f

∂y
δy.

Intuitively, this describes the change δf in the function f that results from making
small changes δx and δy in the variables x and y, in the limit where the changes
are so small that higher-order terms like (δx)2 and (δx)(δy) are negligible.

Similarly, instead of calculating the variational derivative (7), we can work with
the overall variation

δSI ≡
∫
I

dt
∑
k

δSI

δxk(t)
· δxk(t). (10)

Intuitively, this describes the change δSI in the action that results from making
small changes δxk(t) in the behaviors of the objects, in the limit where the changes
are so small that higher-order terms are negligible. More formally, the quantity
(10) is a convenient way of packaging all of the partial derivatives (7). When they
are packaged this way, the action principle (3) can be expressed like this:

Within the time interval I, a behavior xk(t) is physically
allowed if and only if it satisfies δSI = 0 for all variations
δxk(t) that are zero at the endpoints of I.
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6 The Euler-Lagrange equations, part 1

Now, suppose the action SI is

SI =

∫
I

dt L
(
x1(t), x2(t), ..., ẋ1(t) ẋ2(t) ...

)
(11)

where the lagrangian L(x1, x2, ..., y1, y2, ...) is an ordinary function. In the inte-
grand of SI , the second half of L’s inputs are populated by the time-derivatives
of the first half of L’s inputs, but the function L is defined without assuming any
such relationship between its inputs (section 7).

The action principle highlighted in section 5 involves variations that are zero
at the endpoints of the time-interval I. The next section shows that the variation
(10) of the action is

δSI ≡
∫
I

dt
∑
k

(
∂L

∂xk(t)
− d

dt

∂L

∂ẋk(t)

)
· δxk(t) (12)

for all variations δxk(t) that are zero at the endpoints of I. The functions xk(t)
describe an arbitrary behavior of the system of objects, whether or not the behavior
is allowed, and the variations δxk(t) describe a small deviation from that behavior.
The deviations are arbitrary, except for the restriction that they be small so that
higher-order terms may be neglected as explained in section 5.

Now impose the action principle, which says that the behavior x1(t), x2(t), ...
is allowed if and only if δSI = 0 for all time-intervals I. Compare the condition
δSI = 0 to the identity (12) to see that the action principle is equivalent to the
condition

d

dt

∂L

∂ẋk(t)
=

∂L

∂xk(t)
. (13)

These equations (one for each k) are the Euler-Lagrange equations. They are
the equations of motion for a system defined by the given lagrangian L. They are
the conditions that a behavior xk(t) must satisfy in order to be allowed.
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7 The Euler-Lagrange equations, part 2

To derive equation (12), recall the identity

d

dx
L(x, x) =

[
∂

∂y
L(y, z) +

∂

∂z
L(y, z)

]
y=x, z=x

(14)

where L is any function of two variables. The generalization to more than two
variables should be clear. Using the multi-variable version of this identity together
with equation (11), the variation of SI is

δSI =

∫
I

dt
∑
k

(
∂L

∂xk(t)
· δxk(t) +

∂L

∂ẋk(t)
· δẋk(t)

)
. (15)

As in (14), the partial derivatives of L are evaluated as though xk and ẋk were
independent variables. Only after evaluating these partial derivatives do we take
ẋk to be the time-derivative of xk. In the last term of (15), we can use integration-
by-parts to remove the time-derivative from δẋk (appendix B). Use this to see that
the identity (15) may also be written

δSI =

∫
I

dt
∑
k

(
∂L

∂xk(t)
− d

dt

∂L

∂ẋk(t)

)
· δxk(t)

+

∫
I

dt
d

dt

[
∂L

∂ẋk(t)
· δxk(t)

]
. (16)

The last term has the form ∫
I

dt
d

dt
Λ(t).

Thanks to the fundamental theorem of calculus, this is equal to Λ(t1)−Λ(t0), where
t0 and t1 are the initial and final endpoints of the interval I. The action principle
highlighted in section 5 involves variations that are zero at the endpoints of the
time-interval I, so last term in (16) is zero. This leaves (12).
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8 Example

With the lagrangian

L =
1

2

(∑
k

mkẋ
2
k

)
− V (x),

we have
∂L

∂ẋk
= mkẋk

∂L

∂xk
= − ∂V

∂xk
≡ −∇kV.

Use this to see that for this lagrangian L, the Euler-Lagrange equation (13) is
equivalent to the original equations of motion (1).
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A Appendix: derivation of (8)

The action SI in equation (8) depends on several functions of time, namely the D
components of xk for each object-index k. To explain how equation (8) is derived,
this appendix works it out explicitly for a simplified action

SI =

∫
I

dt

(
mẋ2

2
− V (x)

)
that depends on only one function of time, namely x(t). After discretizing the
integration variable t, the derivative becomes a finite difference and the integral
becomes a sum:

SI = ε
∑
t

(
m

2

(
x(t+ ε)− x(t)

ε

)2

− V
(
x(t)

))
.

To evaluate the variational derivatives δS/δx(t), think of t as an index, so that
x(t) is a list of ordinary real variables, one for each value of the index t. Then
straightforward calculation gives

1

ε

δSI

δx(t)
= m

2x(t)− x(t+ ε)− x(t− ε)
ε2

−∇V
(
x(t)

)
.

In the continuum limit, we can absorb the factor ε on the left-hand side into the
definition of the variational derivative, and we recognize the first term on the right-
hand side as the discrete version of −ẍ(t), so we get

δSI

δx(t)
= −mẍ(t)−∇V

(
x(t)

)
.

The generalization to multiple functions x(t) is straightforward.
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B Appendix: discretized integration-by-parts

Section 3 defined the variational derivatives by temporarily discretizing time, but
section 7 used integration-by-parts. This appendix shows that integration-by-parts
still works when the integral is a discrete sum.

Consider an integral of the form∫
I

dt ẋ(t)y(t).

After discretizing the integration variable t, the derivative becomes a finite differ-
ence and the integral becomes a sum:∫

I

dt ẋ(t)y(t)→ ε
∑
t∈I

x(t+ ε)− x(t)

ε
y(t), (17)

where now t is a discrete index. The term∑
t∈I

x(t+ ε)y(t)

can also be written∑
t∈I

x(t)y(t− ε) +
(
x(t1 + ε)y(t1)− x(t0)y(t0 − ε)

)
where t0 and t1 are the endpoints of the interval I. Using this identity, the right-
hand side of (17) may be written

−ε
∑
t∈I

x(t)
y(t)− y(t− ε)

ε
+
(
x(t1 + ε)y(t1)− x(t0)y(t0 − ε)

)
.

In the continuum limit ε→ 0, this becomes

−
∫
I

dt x(t)ẏ(t) + x(t1)y(t1)− x(t0)y(t0),

which matches the result of integrating-by-parts on the left-hand side of (17).
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