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The Free Scalar Quantum Field
in Continuous Spacetime
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Abstract This article describes a manifestly Poincaré-symmetric way
to construct a simple example of a relativistic quantum field theory.
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1 Motive

Relativistic1 quantum field theory is the foundation for our current understanding
of almost everything we know about nature. Learning relativistic quantum field
theory is challenging, because the easiest models are not very realistic and the most
realistic models are not very easy. This article introduces a model that is not very
realistic, but it is easy, at least compared to most other relativistic models.

In quantum field theory, observables are expressed in terms of field operators.
This article introduces a simple model in which the field’s time dependence is
described by a linear equation of motion. This makes the math relatively easy. It
also means that the corresponding particles don’t interact with each other (article
30983), but the model is still useful as a step toward the study of other models
that do include interactions.

One important theme in quantum field theory is that Poincaré symmetry can
emerge at sufficiently low resolution even if a model is defined in a way that doesn’t
have that symmetry exactly,2 as in lattice quantum field theory. Models with
exact Poincaré symmetry do exist, but constructing them in a way that makes
their Poincaré symmetry manifest is usually not easy. The free scalar model is the
easiest example. This article shows how to construct the free scalar model in a way
that respects Poincaré symmetry exactly. This is not necessarily the easiest way
to construct the free scalar model,3 but it is at least a relatively easy example of
exact Poincaré symmetry in quantum field theory.

1The name relativistic refers to Poincaré symmetry. A model that has Galilei symmetry instead is called (strictly)
nonrelativistic. These are just names, not good descriptions, because motion is relative in both cases.

2This is a special case of a more general theme called effective field theory.
3The approach used in article 52890 is arguably easier, and it’s also more widely applicable, but it doesn’t respect

Poincaré symmetry exactly.
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2 Preview and notation

Ideally, we would like to associate one or more field operators φ(x) with each point
x of spacetime, using x as an index. Then the set of observables associated with
a given region R of spacetime would be contructed from field operators φ(x) with
x ∈ R. However, trying to associate operators with individual points in continuous
spacetime causes mathematical trouble. One way to avoid trouble is to discretize
spacetime, or at least space, but that’s messy and artificial.4

For the free scalar field, we have a more pleasant option.5 Instead of using a
point x in spacetime as an index, we can use a smooth function f(x) as an index.
The corresponding field operator is denoted φ(f). The association between field
operators and regions of spacetime can be expressed in terms of the index functions,
and so can the commutation relations. The whole construction respects Poincaré
symmetry exactly. Sections 15-16 will explain how this approach relates to the
more traditional approach that tries to use a point in spacetime as an index.

In this article, spacetime is flat (article 48968). The spacetime coordinates are
denoted xa with a ∈ {0, 1, 2, ..., D}. The standard abbreviations ∂a ≡ ∂/∂xa and
∂a ≡ ηab∂b are used, with an implied sum6 over b, where ηab are the components of
the inverse metric tensor:

ηab =


1 if a = b = 0,

−1 if a = b > 0,

0 otherwise.

(1)

An alternative notation that treats the time coordinate t ≡ x0 differently than the
others will be used for some things, starting in section 8.

4It’s messy and artificial, but it’s also even easier – both conceptually and mathematically – than the approach
used in this article, and it works for a much larger variety of models. Article 52890 shows how to construct a
discrete-space version of a family of models that includes the free scalar model as a special case.

5The approach used here only works in models whose equations of motion are linear. More information about
this approach is given in section 2.1 in Hollands and Wald (2014) and the references it cites.

6A sum is implied over any spacetime index that is repeated in the same term.
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3 The field operators

We could start with a Hilbert space and then describe the field operators as things
that act on the Hilbert space. This article does the opposite: it starts with the
field operators and then gives them a Hilbert space to act on (section 13).

A field operator will be denoted φ(f), where the function f is used an index.
Let F denote the set of allowed “values” of this index. The set F will be specified
in sections 4 and 6. For each f ∈ F , we have a field operator φ(f). The map from
index functions to field operators is linear, which means

φ(z1f1 + z2f2) = z1φ(f1) + z2φ(f2) (2)

for all functions f1, f2 ∈ F and all complex numbers z1, z2. In particular, if f = 0,
then φ(f) = 0. The adjoint of φ(f) will be denoted φ∗(f) and is given by

φ∗(f) = φ(f ∗) (3)

where f ∗ denotes the complex conjugate of the function f . The commutation
relations for the free scalar model are[

φ(f), φ∗(g)
]

= (f, g), (4)

where (f, g) is a complex number that will be defined in section 5.7,8

7The right-hand side of (4) is an abbreviation for the complex number (f, g) times the identity operator.
8The fact that the right-hand side of equation (4) is proportional to the identity operator implies the field operators

must be unbounded (theorem III.2 in Speicher (2020)), which means that they are defined only on a dense subset of
the Hilbert space instead of on the whole Hilbert space.
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4 The index functions, part 1

Section 3 referred to a set F of index functions. As a step toward defining the
set F , this section defines two related sets: a larger set F1 that contains F , and a
smaller set F0 that is contained within F . In symbols:

F0 ⊂ F ⊂ F1. (5)

To define the larger set F1, choose a positive real number m > 0.9 The larger set F1

is the set of all smooth complex-valued functions f that satisfy the Klein-Gordon
equation

∂a∂af(x) +m2f(x) = 0, (6)

using the notation that was defined in section 2.
To define the smaller set F0, let Σ be a spacelike hypersurface,10 and let n be

a future-pointing unit vector field that is orthogonal11 to Σ everywhere on Σ. For
any complex-valued function f , its initial data consists of its values at all points
of Σ together with its normal derivative na∂af at all points of Σ. The smaller set
F0 consists of functions f ∈ F1 whose initial data have compact support on Σ.12

Article 98038 shows that equation (6) has the causality property, so if f is a
solution whose initial data have compact support on Σ, then its initial data have
compact support on every spacelike hypersurface Σ. As a result, F0 may also be
described as the set of solutions of (6) whose initial data have compact support on
every spacelike hypersurface Σ.

This section defined the sets F0 and F1 in (5). The middle set F in (5) – the
set of index functions – will be defined in section 6.

9This will turn out to be the mass of a single particle (article 30983).
10A hypersurface is a submanifold with one less dimension than the ambient manifold (Berger (2003), section

4.1.3.1). Space at time t = 0 is a hypersurface in spacetime.
11Orthogonal is defined by the Minkowski metric (1). The normal vector n must be timelike, because Σ is spacelike.
12This means that f and na∂af are both zero everywhere on Σ except within a bounded subset of Σ.
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5 The invariant product of index functions, part 1

The quantity (f, g) on the right-hand side of equation (4) will be defined in section
9 for all index functions. This section defines it for index functions in the smaller set
F0. These functions are solutions of (6) whose initial data have compact support
on every spacelike hypersurface Σ.

For any two complex-valued functions f, g, define

ja(f, g) ≡ i
(
f ∗∂ag − g∂af ∗

)
(7)

where i is the imaginary unit (i2 = −1). Both sides of (7) are functions of the
spacetime coordinates x, so equation (7) is an abbreviation for

ja(f, g)(x) ≡ i
(
f ∗(x)∂ag(x)− g(x)∂af

∗(x)
)
.

As in section 4, let Σ be a spacelike hypersurface, and let n be a future-pointing
unit vector field that is orthogonal to Σ everywhere on Σ. If either f or g is in F0,
then ja(f, g) has compact support on Σ, so the integral

(f, g)Σ ≡
∫

Σ

naja(f, g) (8)

is finite. If f and g are both in F1, then equation (6) implies

∂aja(f, g) = 0. (9)

Now supppose that f and g are both in the larger set F1 and that at least one of
them is also in the smaller set F0. In this case, we can use (9) to prove that the
quantity (8) is the same for all spacelike hypersurfaces Σ. To do this, letM be any
region of spacetime bounded by two spacelike hypersurfaces Σ1 and Σ2. Equation
(9) implies ∫

M
∂aja(f, g) = 0,
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and since ja(f, g) has compact support withinM, we can use integration-by-parts
to get ∫

∂M
naja(f, g) = 0, (10)

where ∂M denotes the (oriented) boundary of M. This boundary consists of Σ1

and Σ2, oriented so that their contributions to the integral have the opposite sign,
so equation (10) may also be written∫

Σ1

naja(f, g)−
∫

Σ2

naja(f, g) = 0. (11)

This says that the quantity (8) is the same no matter which spacelike hypersurface
we use, so we can write it as

(f, g) (12)

without the subscript Σ, at least if f, g satisfy the assumed conditions.
The quantity (12) will be called the invariant product, because it’s invariant

under Poincaré transforms (section 12). Poincaré symmetry and the Σ-independence
property (11) are both preserved when the definition of (f, g) is extended to all in-
dex functions in F , which will be done in section 9. That extension is the quantity
on the right-hand side of (4).
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6 The index functions, part 2

This section defines the set F of index functions, as promised in section 4.
A function in F0 can be written like this:

f(x) =

∫
d1+Dk

(2π)1+D
2πδ(kak

a −m2) exp
(
− ikaxa

)
f̃(k), (13)

for some complex-valued f̃(k), where δ(· · · ) is the Dirac delta distribution13 defined
by the relationship ∫ ∞

−∞
du g(u)δ(u) = g(0) (14)

for all sufficiently well-behaved functions g(u) of a single real variable u. The
integral (13) may be written as a sum of two terms, one involving only k0 > 0
and one involving only k0 < 0. These two terms will be called the positive- and
negative-frequency parts of f(x), respectively. Let K and K ≡ 1 − K be the
projections onto these two parts, so

f = Kf +Kf (15)

K2 = K. (16)

Now we can finally define F : it is the set of all linear combinations of functions
from KF0 and KF0.

The set F is larger than F0. Even if f has compact support on every spacelike
hypersurface, Kf might not have compact support on any spacelike hypersurface.
Section 9 will explain how the definition of the invariant product introduced in
section 5 can be extended to the larger set F .

13It is occasionally called a “function,” but it is technically a tempered distribution (article 58590), not a
function.
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7 Some properties of the projection

• The decomposition into positive- and negative-frequency parts is not affected
by Poincaré transforms, because it depends only on the sign (not the value)
of the timelike component of k. This shows that the set F is self-contained
under Poincaré transforms.

• Equation (13) says that taking the complex conjugate of f(x) is the same as
replacing f̃(k)→ f̃ ∗(−k) in the integrand, so the projection K satisfies

(Kf)∗ = Kf ∗. (17)

Equations (15) and (17) imply

Kf + (Kf)∗ = Kf +Kf = f if f ∗ = f.

This shows that if f ∈ F0 is real, then f is uniquely determined by Kf .

10
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8 A more explicit formulation

Using a notation that separates the time and space components makes Poincaré
symmetry less obvious, but it can also have advantages. Use the notation x = (t,x)
and k = (k0,k) and

ω(k) ≡
√

k2 +m2 (18)

and the identity14

δ(kak
a −m2) =

δ
(
k0 − ω(k)

)
+ δ
(
k0 + ω(k)

)
2ω(k)

(19)

to write the positive- and negative-frequency parts as

Kf(t,x) ≡
∫

dDk

(2π)D 2ω
exp

(
− iωt

)
exp

(
− ik · x

)
f̃(ω,k) (20)

Kf(t,x) ≡
∫

dDk

(2π)D 2ω
exp

(
iωt
)

exp
(
− ik · x

)
f̃(−ω,k)

=

∫
dDk

(2π)D 2ω
exp

(
iωt
)

exp
(
ik · x

)
f̃(−ω,−k).

14Here’s an outline of a proof of (19). One of the criteria for a function g(u) in (14) to be “sufficiently well-behaved”
is that it allows using integration-by-parts with no contributions from u = ±∞. For such functions,

−
∫ ∞
0

du
d

du
g(u)−

∫ ∞
−∞

du θ(u)
d

du
g(u) = g(0),

where θ(u) equals 1 for u > 0 and equals 0 for u < 0. Compare this to (14) to get δ(u) = d
duθ(u), with the

understanding that both sides belong inside an integrand with a sufficiently well-behaved function. Now apply d/dx
to the straightforward identity

θ(x2 − ω2) = θ(x− ω) + 1− θ(x+ ω)

to get
2x δ(x2 − ω2) = δ(x− ω)− δ(x+ ω).

Divide both sides by 2x and then use the δs on the right-hand side to replace x with ±ω. This gives (19).
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9 The invariant product of index functions, part 2

Section 5 defined the invariant product (f, g) when the functions f and g are both
in the larger set F1 and at least one of them is in the smaller set F0. This section
extends the definition of (f, g) to all index functions f, g ∈ F . This will be used in
section 13 to construct a Hilbert space for the field operators to act on.

The projection K that was defined in section 6 satisfies15

(Kf, g) = (f,Kg) (21)

for all pairs f, g ∈ F for which (f, g) was defined in section 5. This says that
(f,Kg) is independent of Kf , so we can define

(Kf,Kg) ≡ (f,Kg). (22)

This extends the definition of the invariant product to all f, g ∈ F . Equations
(21)-(22) may be used together with (16) to deduce

(Kf,Kg) = 0. (23)

These equations may also be used to show that the Σ-independence property that
was derived in section 5 holds for all f, g ∈ F .

15To derive this, start with the definition (7) of ja(f, g) and write f and g as in (13). Doing the integral over x
reduces the two k-integrals (with different ks) to a single k-integral (with the same k). The δ in (13) implies that k
is timelike. If either of the functions f and g is restricted to positive frequencies, then the resulting single k-integral
inherits this restriction. The resulting k-integral is the same whether the restriction was inherited from f or g, and
equation (21) is just another way of expressing this statement.

12
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10 The sign of the invariant product

This section derives the result

(Kf,Kf) > 0 if Kf 6= 0, (24)

which can then be used to deduce16

(Kf,Kf) ≤ 0 (25)

(Kf,Kf) = −(Kf,Kf) if f is real. (26)

To derive (24), remember that the quantity (8) is independent of Σ, so we might
as well choose Σ to be a hypersurface of constant x0. This gives

(f, g) =

∫
dDx j0(f, g)

= i

∫
dDx

(
f ∗ġ − gḟ ∗

)
(27)

where the integral is only over the “spatial” coordinates of x, and an overhead
dot denotes a derivative with respect to the “time” coordinate t ≡ x0. Use the
definition (22) together with equations (20) and (27) to get

(Kf,Kf) ≡ (f,Kf) =

∫
dDk

(2π)D
∣∣f̃(ω,k)

∣∣2,
which is positive if f̃(ω,k) 6= 0. This implies (24).

16To deduce (25), use equation (7) to get (f, g)∗ = −(f∗, g∗), then use (17) and (24). To deduce (26), use equation
(7) to see that (f, f) = 0 when f is real, and then use f = Kf +Kf and (23).
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11 Observables

To specify a model, we need to specify its observables. First, here are some defini-
tions:

• A causal worldline is a worldline that is not spacelike anywhere (article
48968).

• For any region R of spacetime, its causal complement R′ consists of all
points in spacetime that cannot be connected to any point in R by any causal
worldline.

• Let F(R) consist of all functions in F such that f(x) = 0 for all x ∈ R′.
Article 98038 relates this to the causality property of equation (6).

• Let Ω(R) be the algebra generated by the field operators φ(f) with f ∈ F(R).

Here is the key principle:

For any region R of spacetime, observables
localized in R are represented by operators
in Ω(R).

In particular, if φ(f) is self-adjoint and f ∈ F(R), then the field operator φ(f)
itself represents an observable localized in R.

We can take R to be an arbitrarily small open17 neighborhood of a point. We
can’t take R to be a single point, because then the only smooth function in F(R)
would be f = 0, but section 15 describes a devious way to formalize the idea of an
observable at a point. Article 52890 describes a more straightforward way.

17Open is defined by the topological structure (article 93875).
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12 Some properties of the model

We haven’t yet constructed a Hilbert space for the field operators to act on (that
will be done in section 13), but the model constructed in the preceding sections
already satisfies these general principles of relativistic quantum field theory:

• Poincaré symmetry. If f ∈ F and if x → Λx is a Poincaré transform,
then the function fΛ defined by fΛ(x) ≡ f(Λx) is also in F . More concisely:
F is self-contained under Poincaré transforms. Combine this with (11) to
deduce that (fΛ, gΛ) = (f, g) for every Poincaré transform Λ. In other words,
the quantity (f, g) on the right-hand side of the commutation relation (4) is
invariant under Poincaré transforms.

• The time-slice principle (article 22871). Suppose that every causal world-
line through R also goes through R1. Then R′1 ⊂ R′, which implies Ω(R) ⊂
Ω(R1) (because if f(x) = 0 for all x ∈ R′, then f(x) = 0 for all x ∈ R′1 ⊂ R′).
This is the local version of the time-slice principle (article 21916).

• Microcausality (article 21916). This is clear from the fact that (f, g) = 0
whenever a spacelike hypersurface Σ exists on which the supports of f and g
do not overlap.

Section 13 constructs representation of the algebra of field operators on a Hilbert
space, and section 14 shows that it satisfies the spectrum condition (article
21916).

15
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13 The Hilbert space

The same algebra of field operators has various Hilbert-space representations that
are not all unitarily equivalent to each other. This section constructs a special
representation in which the spectrum of the generator of time translations has a
finite lower bound. This is called the vacuum representation.

To construct the Hilbert space, start with a state |0〉 defined by these two
conditions:18

〈0|0〉 = 1 φ(Kf)|0〉 = 0 for all f ∈ F . (28)

The rest of the Hilbert space is generated by applying field operators to this one
state-vector. The inner product between any two state-vectors can be worked out
using the algebra of field operators (equation (4)), because the Hilbert space is
spanned by states of the form

φ∗(f1)φ
∗(f2) · · ·φ∗(fN)|0〉 with fj ∈ KF , (29)

with any numberN ∈ {0, 1, 2, ...} of factors in the product. As an example, consider
the state-vectors |a〉 ≡ φ∗(Kf)|0〉 and |b〉 ≡ φ∗(Kg)|0〉. Use equations (4) and (28)
to get

〈a|b〉 = 〈0|φ(Kf)φ∗(Kg)|0〉 = 〈0|
[
φ(Kf), φ∗(Kg)

]
|0〉 = (Kf,Kg).

Thanks to the inequality (24), this is positive when f = g.
To qualify as a Hilbert space, the inner product of every state-vector with itself

must be positive, and the general principles of quantum theory also require the
Hilbert space to be separable. To confirm that these conditions are both satisfied,
start with the fact that we can choose a countable sequence of positive-frequency
functions g1, g2, ... ∈ KF whose linear combinations are dense19 in KF . One

18K is the projection defined in section 6.
19In other words, any function in KF can be arbitrarily well-approximated by linear combinations of the gjs.
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example of such a sequence is

gj(t,x) ∝
∫

dDk

(2π)D
exp

(
− iωt

)
ω−1/2g̃j(k) exp

(
− ik · x

)
where each g̃j(k) is exp(−k2/2) times a product of powers of the components of k.
These functions are not mutually orthogonal with respect to the invariant product
(·, ·), but we can use the Gram-Schmidt process to derive a sequence of mutually
orthogonal functions fj whose linear combinations are dense in KF . State-vectors
of the form (29) still span the Hilbert space when the functions fj are restricted to
this set, and now equations (4) and (28) imply that the inner product of any two
such states is a product of factors of the form (fj, fk), which is positive if j = k and
is zero otherwise. As a result, any two such states are either proportional to each
other or orthogonal to each other, and the inner product of any one of them with
itself is positive. Every state-vector is (arbitrarily well-approximated by) a linear
combination of these, so this implies that the inner product of any state-vector with
itself is positive, as required. The fact that the sequence of orthogonal functions fj
is countable also implies that the Hilbert space is separable, as required.

17
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14 The spectrum condition

This section sketches a proof that the model constructed in the previous sections
satisfies the spectrum condition. The spectrum condition says that the hamiltonian
H, the operator that generates translations in time, should be such that 〈ψ|H|ψ〉
has a finite lower bound among all unit state-vectors |ψ〉. The construction in the
preceding sections didn’t refer to a hamiltonian, but it’s implicit in the relationship

〈ψ|H|ψ〉 = 〈ψ|i d
dt
|ψ〉, (30)

which holds for all time-dependent state-vectors in the Schrödinger picture.
Translating a state of the form (29) forward in time by an amount t′ is the

same as inserting a factor of exp(−iωt′) into the integrand of (20) for each of the
functions fj in (29), so for those states, the right-hand side of (30) involves factors

of the form (fj, ḟk).
20 To handle this, partition k-space into nonoverlapping cells

C and suppose that the functions fj in (29) all have the form21

fj(t,x) =

∫
k∈Cj

dDk

(2π)D
exp(−iωt− ik · x)√

2ω
,

where each Cj is a cell in the partition. The key property of these functions is that

if the cells that define fj and fk don’t overlap, then (fj, fk) and (fj, ḟk) are both
zero. Combine this with ω > 0 to deduce that the right-hand side of (30) is positive
for all linear combinations of such states. By making the sizes of the k-space cells
arbitrarily small, any state can be approximated arbitrarily well by such a linear
combination, so this implies that the spectrum condition is satisfied.

20In this sentence, the functions fj can be any index functions, not necessarily the special set of index functions
constructed at the end of section 13.

21Because of the simplistic way F was defined in this article, these functions might not belong to F , but they are
effectively incorporated when the inner product space constructed in section 13 is completed (in the sense described
in article 90771) to obtain a Hilbert space.

18
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15 Field operators at a point

The construction described in the preceding sections is manifestly Poincaré sym-
metric, but it also has a disadvantage: it only works for free fields (no interactions!).
Most traditional introductions to quantum field theory use a different approach,
one that associates a pseudo-operator φ(x) with each individual point x in space-
time. This section, together with section 16, explains how the two approaches are
related to each other.

I’m calling φ(x) a pseudo-operator because it is not well-defined as an oper-
ator on the Hilbert space, not even on a dense subset of the Hilbert space,22 but
we can manipulate it in some ways as though it were. Most quantum field theory
textbooks just call it an operator, which is fine as long as we remember that it
really isn’t.

The pseudo-operators φ(x) = φ(t,x) are self-adjoint, the equation of motion
that defines their time-dependence is

∂a∂aφ(x) +m2φ(x) = 0, (31)

and they satisfy the equal-time commutation relations

[φ(t,x), φ(t,y)] = 0 [φ(t,x), φ̇(t,y)] = iδD(x− y), (32)

where φ̇ is the derivative of φ with respect to t. The δD(x− y) on the right-hand
side is not a function (it doesn’t have a value at x = y), so φ(t,x) cannot be a
well-defined operator on the Hilbert space. To see why these formal rules can still
be useful, suppose f ∈ F0 and write the field operator φ(f) as23

φ(f) = −i(f, φ) ≡
∫
dDx

(
f ∗(t,x)φ̇(t,x)− φ(t,x)ḟ ∗(t,x)

)
. (33)

22We can make it a legitimate operator on (a dense subset of) the Hilbert space by treating space as a lattice, as
in articles 52890 and 00980. That approach ruins exact Poincaré symmetry, but it can be used for a large variety of
models.

23This corresponds to equation (10) in Hollands and Wald (2014), which uses the term symplectically smeared
for this way of expressing φ(f) in terms of φ(t,x). The factor of i is needed so that φ(f) is self-adjoint when f is
real-valued. Despite appearances, the right-hand side is actually independent of t. This fact is derived below.

19
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Then equations (32) and (33) can be used to reproduce the commutation relation
(4). They also imply [

φ(t,x), φ∗(f)
]

= i f(t,x), (34)

which is zero when x is outside the support of f at time t, so the interpretation
of φ(f) established in section 11 is consistent with interpreting φ(t,x) as being
localized at x at time t.

On the right-hand side of (33), the integrand is a function of t, but the integral
is independent of time. To confirm this, take the time-derivative and use equations
(6) and (31) to get

d

dt
φ(f) =

∫
dDx

(
f ∗(t,x)∇2φ(t,x)− φ(t,x)∇2f ∗(t,x)

)
(35)

and then use integration-by-parts to confirm that the integral is zero.
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16 Using plane waves as index functions

Sections 4-6 defined the set F of index functions so that the invariant product (f, g)
is a finite complex number for all f, g ∈ F . If we relax that requirement, then we
can relate the approach used in this article to the plane-wave formalism used in
many introductions to quantum field theory. Specialize equation (33) to

a(k) ≡ φ(pk) with pk(t,x) ≡
exp

(
− iω(k)t+ ik · x

)
i
√

2ω(k)
. (36)

The previous section showed that these operators are actually independent of t.
Formally, equation (27) gives

(pk, pk′) = (2π)DδD(k′ − k).

Use this in the commutation relation (4) to get24[
a(k), a(k′)

]
= 0

[
a(k), a∗(k′)

]
= (2π)DδD(k′ − k). (37)

Use this to confirm that the equation of motion (31) and the commutation relations
(32) are both satisfied by

φ(t,x) =

∫
dDk

(2π)D
e−iωt+ik·xa(k) + adjoint√

2ω
. (38)

Substituting this into the right-hand side of (33) with f = pk reproduces the
definition (36). The construction of the Hilbert space described in section 13 can
be expressed in terms of the pseudo-operators a(k) by using the fact that any
positive-frequency index function f ∈ KF may be expressed in the form

f(t,x) =

∫
dDk

(2π)D
f̃(k)pk(t,x)

for some f̃(k), with pk defined by (36).
24I’m writing a∗(k) for the adjoint of a(k). This notation is common in the mathematical literature.
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17 A generalization

The plane-wave formalism shown in the previous section can be generalized. Let
M ⊂ KF1 be a collection of positive-frequency solutions of equation (6),25 and
write

φ(x) =
∑
g∈M

(
iφ(g)g(x) + adjoint

)
. (39)

If we takeM to be the set of positive-frequency plane-wave functions pk, then (39)
reduces to (38).26 The ansatz (39) is manifestly self-adjoint, and it automatically
satisfies the equation of motion (31) because M ⊂ F1 (section 4). Requiring
consistency with (34) gives the condition∑

g∈M

(f, g)g∗(x)−
∑
g∈M

(f, g∗)g(x) = f ∗(x).

If f ∈M, then equations (17) and (23) say that this reduces to27∑
g∈M

(g, f)g(x) = f(x) if f ∈M. (40)

Requiring consistency with (32) gives28∑
g∈M

(
g(t,x)g∗(t,y)− cc

)
= 0 (41)∑

g∈M

(
g(t,x)ġ∗(t,y)− cc

)
= iδD(x− y), (42)

where “cc” means the complex conjugate of the preceding term. The choice of M
used in section 16 satisfies conditions (40)-(42).

25Mnemonic: M stands for modes.
26In this case, the formal sum over g ∈M is an integral over k.
27To deduce this, use (f, g)∗ = (g, f).
28To deduce this, use equations (4), (27), and (40).

22



cphysics.org article 44563 2023-11-12

18 References

(Open-access items include links.)

Berger, 2003. A Panoramic View of Riemannian Geometry. Springer

Hollands and Wald, 2014. “Quantum fields in curved spacetime” https://

arxiv.org/abs/1401.2026

Speicher, 2020. “Mathematical Aspects of Quantum Mechanics” https://

www.uni-saarland.de/fileadmin/upload/lehrstuhl/speicher/Math_of_

QM/MathematicalAspects.pdf

23

https://arxiv.org/abs/1401.2026
https://arxiv.org/abs/1401.2026
https://www.uni-saarland.de/fileadmin/upload/lehrstuhl/speicher/Math_of_QM/MathematicalAspects.pdf
https://www.uni-saarland.de/fileadmin/upload/lehrstuhl/speicher/Math_of_QM/MathematicalAspects.pdf
https://www.uni-saarland.de/fileadmin/upload/lehrstuhl/speicher/Math_of_QM/MathematicalAspects.pdf


cphysics.org article 44563 2023-11-12

19 References in this series

Article 00980 (https://cphysics.org/article/00980):
“The Free Scalar Quantum Field: Vacuum State”

Article 21916 (https://cphysics.org/article/21916):
“Local Observables in Quantum Field Theory”

Article 22871 (https://cphysics.org/article/22871):
“Time Evolution in Quantum Theory”

Article 30983 (https://cphysics.org/article/30983):
“The Free Scalar Quantum Field: Particles”

Article 48968 (https://cphysics.org/article/48968):
“The Geometry of Spacetime”

Article 52890 (https://cphysics.org/article/52890):
“Defining Scalar Quantum Fields on a Spatial Lattice”

Article 58590 (https://cphysics.org/article/58590):
“Fourier Transforms and Tempered Distributions”

Article 90771 (https://cphysics.org/article/90771):
“Introduction to Hilbert Space”

Article 93875 (https://cphysics.org/article/93875):
“From Topological Spaces to Smooth Manifolds”

Article 98038 (https://cphysics.org/article/98038):
“Causality in Classical Field Theory”

24

https://cphysics.org/article/00980
https://cphysics.org/article/21916
https://cphysics.org/article/22871
https://cphysics.org/article/30983
https://cphysics.org/article/48968
https://cphysics.org/article/52890
https://cphysics.org/article/58590
https://cphysics.org/article/90771
https://cphysics.org/article/93875
https://cphysics.org/article/98038

	Motive
	Preview and notation
	The field operators
	The index functions, part 1
	The invariant product of index functions, part 1
	The index functions, part 2
	Some properties of the projection
	A more explicit formulation
	The invariant product of index functions, part 2
	The sign of the invariant product
	Observables
	Some properties of the model
	The Hilbert space
	The spectrum condition
	Field operators at a point
	Using plane waves as index functions
	A generalization
	References
	References in this series

