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Submanifolds and Boundaries
Randy S

Abstract Article 93875 reviews the definitions of topological manifold and smooth
manifold for manifolds that don’t have boundaries. This article explains how those
definitions may be extended to allow boundaries. This article also introduces the
concept of a submanifold, a manifold S that is a subset of another manifold M with
a special relationship between the (topological or smooth) structures of S and M .
If M is an n-dimensional manifold and S is an (n − 2)-dimensional submanifold
without boundary, then S may or may not be the boundary of an (n−1)-dimensional
submanifold Σ of M . When such a Σ exists, it is called a Seifert hypersurface
for S. This article uses the concept of a Seifert hypersurface to define the linking
number of S with a given a closed loop in M . This generalizes the more familiar
concept of linking number between two closed loops (knots) when n = 3.
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1 Conventions

In this article, the unqualified word map means continuous map, and the unqualified
word manifold means a finite-dimensional topological manifold with boundary. The
boundary may be empty,1 in which case it’s a manifold without boundary. This
language convention can be summarized in a Venn diagram:

Manifolds

Manifolds without Boundary

Many math texts – including many of the sources cited in this article – use a
different convention in which the word manifold by itself implies without boundary.
Beware of this when consulting those sources for more details.

In this article, the statement A ⊂ B is synonymous with A ⊆ B. (The case
A = B is not automatically excluded.)

Some references to Lee (2011) are paired with references to the earlier edition
Lee (2000), because the earlier edition is freely accessible online.

1Badzioch (2018), example 13.17
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2 Topological spaces and subspaces

A topological space M is a set together with a topological structure, also
called a topology. The topological structure consists of a collection of subsets of
M designated as open sets, satisfying the conditions reviewed in article 93875.

If M is a topological space, then any subset S ⊂ M may be promoted to a
topological space by giving it the subspace topology, defined by declaring a
subset of S to be an open set if and only if it has the form S ∩U for some open set
U ⊂M in M ’s topology.2,3,4 With that topology, S is called a subspace of M .

If U is an open set in M ’s topology, then a set of the form S ∩U is often called
relatively open to remind us that it is not necessarily an open set in M ’s topology
even though it is an open set (by definition) in the topology of the subspace S ⊂M .5

The next paragraph describes an example.
A topological manifold is a special kind of topological space, and the extra

conditions associated with those special spaces allow the concept of a boundary to
be defined. This will be done in section 3. To prepare, here’s an important example
of a subspace. Choose a positive integer n, and start with the topological space
M = Rn. Define the half-space Hn to be the subset

Hn ≡
{

(x1, ..., xn) ∈ Rn | x1 ≥ 0
}

equipped with the subspace topology.6 For any r > 0, the subset U ⊂ Rn defined
by U ≡

{
(x1, ..., xn) ∈ Rn | x2

1 + · · ·+ x2
n < r

}
is an open set in the topology of Rn,

so the intersection Hn ∩ U is a open set in the subspace topology for Hn (in other
words, it’s a relatively open set), even though it’s not an open set in the topology
of Rn.

2Lee (2011), chapter 3, page 49 (also Lee (2000), chapter 3, pages 39-40)
3It’s also called the relative topology.
4This collection of open sets of S automatically satisfies the required conditions (Lee (2011), exercise 3.1).
5Lee (2013), appendix A, page 601
6Lee (2013), page 25; Cohen (2023), definition 3.9
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3 Topological manifolds with boundaries

A topological manifold is a topological space whose topological structure sat-
isfies some additional conditions. Article 93875 reviews the additional conditions
for topological manifolds without boundaries. To allow boundaries, one of those
conditions must be modified. This section explains how it must be modified.

For a topological space M to be an n-dimensional topological manifold without
boundary, every point of M must have a neighborhood that is homeomorphic7 to
Rn. The condition for a topological manifold with boundary is similar except
that now every point has a neighborhood that is homeomorphic to a (relatively)
open set in the subspace Hn ⊂ Rn that was defined in section 2.8 This still allows
a point to have a neighborhood homeomorphic to an open set of Rn, but it doesn’t
require all points to have such neighborhoods. Points that do are called interior
points, and points that don’t are called boundary points.9 The set of all interior
points is the manifold’s interior, and the set of all boundary points is the manifold’s
boundary and is denoted ∂M .10

If M is an n-dimensional manifold, then its interior is an n-dimensional manifold
without boundary,11 and M ’s boundary ∂M is an (n−1)-dimensional manifold that
does not have a boundary:12

dim(∂M) = dim(M)− 1 (1)

∂(∂M) = ∅. (2)

In words, equation (2) says that the boundary of a boundary is empty.

7Article 93875 defines homeomorphism (equivalence of topological manifolds) and diffeomorphism (equivalence of
smooth manifolds).

8Tu (2011), definition 22.6; Badzioch (2018), definition 13.11
9Lee (2013), theorem 1.37

10Badzioch (2018), definition 13.14
11Badzioch (2018), proposition 13.19
12Lee (2013), proposition 1.38; Tu (2011), section 22.3
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4 Compact spaces and closed manifolds

A topological space X is called compact if any collection of open sets that covers
X includes a finite number of open sets that already cover X.13 Examples: an
n-dimensional sphere Sn is compact, but n-dimensional infinite space Rn is not.
Compactness is a topological invariant: if two spaces are homeomorphic to each
other, then either they are both compact or they are both non-compact.14

A compact manifold without boundary is often called a closed manifold:15,16

Topological Spaces

Manifolds

Compact Topological Spaces

Manifolds without Boundary

Closed Manifolds

The n-dimensional sphere Sn an example of a closed manifold. Deleting a single
point from a closed manifold gives a non-compact manifold that still doesn’t have
a boundary. Example: deleting a point from Sn gives Rn.

The Heine–Borel theorem says that a subset of Rn is compact if and only if
it satisfies both of these conditions:17 it’s a closed set, and it’s bounded.18

13Tu (2011), section A.8; Eschrig (2011), section 2.4
14Lee (2011), corollary 4.33 (also Lee (2000), theorem 4.18); Tanaka (2020)
15Lee (2013), text above proposition 1.38; Badzioch (2018), note 20.10
16This usage of the word “closed” should not be confused with the more basic concept of a closed set : a topological

structure is defined in terms of open sets, and a closed set is the complement of an open set (article 93875).
17Lee (2011), theorem 4.40 (also Lee (2000), proposition A.6 and theorem A.8); Tanaka (2020)
18A subset of Rn is called bounded if it is contained in some open ball (Tu (2011), section A.9).
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5 Topological submanifolds

If M is a manifold, then any subset S ⊂ M may be endowed with the subspace
topology. That makes S a subspace of M , but it doesn’t necessarily make S a
manifold.19 If it does – if the subspace topology for S satisfies the additional
conditions required for a manifold – then the subspace S is called a topological
submanifold of M , or just a submanifold if the qualifier topological is already
clear from the context.

The manifold M is called the ambient manifold for S.20 If the submanifold
S is k-dimensional and the ambient manifold is n-dimensional, then k ≤ n. The
difference n− k is called the codimension of S. If a manifold M has a nonempty
boundary ∂M , then ∂M is a submanifold of M with codimension 1.21

Let X and M be topological spaces. An injective map f : X → M is called
a topological embedding if its image f(X) is homeomorphic to X when the
subspace topology is used for f(X) ⊂M .22,23 A subspace S ⊂M of a manifold M
is a submanifold if and only if it is the image of a topological embedding.24

19A subspace S of a manifold M automatically satisfies two of the conditions required for manifolds (proposition
3.11 in Lee (2011) says that it’s automatically Hausdorff and second countable, properties that it inherits from the
manifold M through the subspace topology), but it doesn’t necessarily satisfy the third required condition (it might
not be necessarily locally euclidean, even though M is). Article 93875 mentions an example.

20Lee (2013) introduces the name ambient in the context of smooth manifolds (chapter 5, page 99), but it can also
be applied more generally in the context of topological manifolds.

21Lee (2000), problem 2-18
22Lee (2011), chapter 3, page 54 (and Lee (2000), chapter 3, page 40); Daverman and Venema (2009), page xiv
23The remark after definition 11.11 in Tu (2011) explains why using the subspace topology is important. When

the topological structure of f(X) is not specified, the subspace topology is usually intended.
24Proof: Suppose that S is the image of a topological embedding f : X → M . Then S is homeomorphic to X,

which is a manifold, so S is also a manifold. Conversely, suppose that S is a submanifold. Then the inclusion map
i : S →M is a topological embedding whose image is S.
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6 Smooth manifolds with boundaries

An n-dimensional smooth manifold M is an n-dimensional topological manifold
equipped with a smooth structure, which is enough extra structure for defining
derivatives.25 The data that defines M ’s smooth structure is a collection of charts
satisfying the conditions reviewed in article 93875 for manifolds without boundary.
When M doesn’t have a boundary, each chart is a pair (U, σ), where U ⊂ M is
an open set in M ’s topological structure, and σ is a homeomorphism from U to
an open subset of Rn. When M has a boundary, σ is a homeomorphism from U
to an open subset of the half-space Hn instead.26 This is consistent with how the
boundary is accommodated in the definition of topological manifold.27

If M is a smooth manifold with boundary, then its boundary ∂M is also a
smooth manifold.28 Equations (1) and (2) still hold.

Every smooth manifold M admits a boundary defining function. This is a
smooth function

f : M → [0,∞) ⊂ R
for which ∂M = f−1(0) and for which df 6= 0 at all points in the interior of M .29

If M is an n-dimensional smooth manifold with boundary, then two copies of
M can be glued together along ∂M to obtain an n-dimensional smooth manifold
without boundary called the double of M .30 More generally, if A and B are
smooth manifolds whose boundaries are diffeomorphic to each other, then A and B
can be glued together along their boundaries to obtain a smooth manifold without
boundary.31

25Article 93875
26Tu (2011), section 22.2, page 251; Michor (2008), section 10.8; Lee (2013), pages 27-28
27Section 3
28Tu (2011), section 22.3; Michor (2008), section 10.8
29Lee (2013), theorem 5.43
30Lee (2013), example 9.32 (for smooth manifolds); Badzioch (2018), definition 20.11 (for topological manifolds)
31Lee (2013), theorem 9.29 (for smooth manifolds); Badzioch (2018), proposition 20.12 (for topological manifolds)
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7 Manifolds with corners

If A and B are topological manifolds, then their cartesian product A×B is also a
topological manifold, and its boundary is32

∂(A×B) = (∂A×B) ∪ (A× ∂B).

For smooth manifolds, boundaries and the cartesian product don’t always play
quite so nicely together.

They do play nicely together if no more than one of the two manifolds in the
product has a boundary. If A and B are smooth manifolds, at least one of which
doesn’t have a boundary, then their cartesian product A × B is also a smooth
manifold.33 As an example, consider a two-dimensional disk D and a circle S1.
The boundary ∂D of D is another circle, and S1 does not have a boundary. The
product D × S1 is a solid torus, which is a smooth manifold with boundary. Its
boundary (∂D)× S1 = S1 × S1 is a two-dimensional torus, which is also a smooth
manifold.

In contrast, if A and B are smooth manifolds that both have non-empty bound-
aries, then A×B is not a smooth manifold with boundary. Instead, it is something
called a smooth manifold with corners.34 As an example, consider a two-
dimensional disk D and a line segment I. The boundary of I is a pair of points.35

Their cartesian product, D × I, is a cylinder. The subset (∂D) × (∂I) is a pair
of circles on which the boundary of D × I is not smooth: on those circles, the
boundary of the cylinder has a corner in one of its two dimensions.

Beware that the boundary of a smooth manifold with corners is typically not a
smooth manifold with corners.36

32Badzioch (2018), text below example 13.18, and exercise E13.5
33Lee (2013), proposition 1.45
34This is defined in chapter 16 in Lee (2013) and in https://ncatlab.org/nlab/show/manifold+with+boundary.
35A point is a zero-dimensional smooth manifold. Any finite number of points is a zero-dimensional smooth

manifold with that many disconnected components.
36Lee (2013), text above equation (16.7)
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8 Immersions and embeddings: preview

Section 10 will define a concept of submanifold appropriate for the category of
smooth manifolds. As prerequisites for that definition, section 9 will define a special
kind of smooth map called a (smooth) immersion, and section 10 will define a
further specialization called a smooth embedding. Roughly, a smooth map X →M
that inserts a copy of X into M is a smooth immersion if it allows that copy to
intersect itself (but not to be tangent to itself), and it’s a smooth embedding if it
doesn’t. This Venn diagram summarizes the relationships:

Continuous Maps

Smooth Maps

Topological Embeddings

Immersions

Smooth Embeddings

As indicated by the diagram, some topological embeddings are not smooth,37 and
some topological embeddings that are smooth maps are not smooth embeddings.38

Every smooth immersion is locally a smooth embedding. More precisely, if
f : X → M is a smooth immersion, then every point p ∈ X has a neighborhood
U ⊂ X for which f : U →M is a smooth embedding.39

37One example is a map S1 → R2 whose image is a square.
38Lee (2013), example 4.18
39Lee (2013), theorem 4.25 (also proposition 5.22); Cohen (2023), proposition 3.4
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9 Immersions and submersions

For a smooth manifold M without boundary, article 09894 defines a scalar field
to be a smooth map from M to R and defines a (tangent) vector field to be a
special kind of map v (called a derivation) from the set of scalar fields to itself.
Those definitions also work for a smooth manifold with boundary. A tangent
vector at a point p ∈M can be defined as the map from scalar fields to R given by
applying the map v and then evaluating the resulting scalar field at p.40 At each
point p of an m-dimensional smooth manifold M , the set of tangent vectors forms
an m-dimensional vector space, even if p is on the boundary of M .41

Let M and N smooth manifolds with m and n dimensions, respectively. Two
special types of smooth map are defined by what they do to tangent vectors:42

• A (smooth) immersion is a smooth map f : M → N that maps the tangent
space at each point p ∈ M to an m-dimensional space of tangent vectors at
the point f(p) ∈ N . This requires m ≤ n.

• A (smooth) submersion is a smooth map f : M → N that maps the
tangent space at each point p ∈ M to an n-dimensional space of tangent
vectors at the point f(p) ∈ N . This requires m ≥ n.

One example of an immersion is a smooth map S1 → R2 whose image is a figure-
eight (intersects itself).43 One example of a submersion is the smooth map R→ S1

defined by identifying all points of R that differ from each other by an integer. More
generally, the bundle projection π : E → B of a fiber bundle44 is a submersion from
the total space E to the base space B.45

40Lee (2013), text surrounding equation (3.4)
41Lee (2013), proposition 3.12
42Lee (2013), text above proposition 4.1; Tu (2011), section 8.8; Gallot et al (2004), paragraph 1.18
43Lee (2013), example 4.19
44Article 70621 reviews the concept of a fiber bundle.
45Gallot et al (2004), paragraph 1.92
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10 Smooth embedded submanfolds

Consider two smooth manifolds X and M and a map f : X → M . Even if f is
an injective immersion, the subspace f(X) ⊂ M might not be a manifold,46 and
even if it is a manifold, it might not be homeomorphic to X, because points that
are separated from each other in X might not be separated from each other in
f(X) ⊂M .47 This section defines a more restricted type of smooth map for which
X and f(X) are homeomorphic to each other and that allows f(X) to inherit a
smooth structure from X, making them diffeomorphic to each other.

Let X and M be smooth manifolds. A map f : X → M is called a smooth
embedding if it is both a topological embedding and a smooth immersion.48,49

Given a smooth embedding f : X → M , we can define a smooth structure for
its image S ≡ f(X) like this:50 for each of X’s charts (U, σ), we can define a chart
for S by (

f(U), σ
(
f−1(·)

))
.

Section 11 will show that these charts for S are all smoothly compatible with each
other, so they define a smooth structure for S. When equipped with this smooth
structure, S is called a smooth embedded submanifold of the ambient manifold
M .51

The smooth structure defined above makes S diffeomorphic to X,52 but calling
S a submanifold of M suggests that the smooth structures of S and M should also
be consistent with each other. Section 11 will show that they are.

46One example is an immersion R→ R2 whose image is a figure-eight with limr→∞ f(r) = limr→−∞ f(r) = f(0).
This is described more explicitly in Lee (2013), example 4.19. Example 11.9 in Tu (2011) is similar.

47One example is an immersion R→ R2 whose image is a circle with limr→∞ f(r) = limr→−∞ f(r).
48Lee (2013), chapter 4, page 85; Tu (2011), definition 11.11
49Some authors write imbedding/imbedded instead of embedding/embedded (Kirby and Siebenmann (1977), essay

I, section 2, page 6). They are synonymous.
50Section 6 introduced this notation. Section 11 will describe this smooth structure for S in more detail.
51Section 12 will show that this definition is equivalent to the one in Lee (2013). That’s important because this

article cites Lee (2013) for several results.
52Lee (2013) shows this in the proof of proposition 5.2 for ∂S = ∅, and the same proof works for ∂S 6= ∅.
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11 Consistency of S’s and M ’s smooth structures

Let S be a smooth embedded submanifold of M as defined in section 10. This
section describes the smooth structure of S more carefully and shows that it is
consistent with the smooth structure of the ambient manifold M , as the name
submanifold suggests.

The smooth structure of the n-dimensional manifold M is a maximal smooth
atlas αM

53 consisting of charts (UM , σM), where:

• UM is an open set in the topological structure of M ,

• σM is a homeomorphism from UM to a relatively open subset of Hn ⊂ Rn.

Define X and f as in section 10. The smooth structure of the k-dimensional
manifold X is a maximal smooth atlas αX consisting of charts (UX , σX), where:

• UX is an open set in the topological structure of X,

• σX is a homeomorphism from UX to a relatively open subset of Hk ⊂ Rk.

The topology of S = f(X) ⊂M is the subspace topology. This means that if UM is
an open subset of M , then UM ∩S is an open subset of S whenever it’s not empty.
The fact that f is continuous then implies that f−1(UM ∩ S) is an open subset of
X. For each chart in αM with domain UM , let UX be the open subset of X given
by UX = f−1(UM ∩ S), and define a chart (US, σS) by54

US = f(UX) σS(·) = σX(f−1(·)),

as in section 10. To show that this defines a smooth structure for S, we need to
show that these charts are all smoothly compatible with each other.55 If (US, σS)
and (U ′S, σ

′
S) are any two of these charts, then

σ′S
(
σ−1
S (·)

)
= σ′X

(
f−1

(
f
(
σ−1
X (·)

)))
= σ′X

(
σ−1
X (·)

)
,

53Mnemonic: α stands for “atlas.”
54The definition of σS implies σS(US) = σX(UX).
55Pages 12 and 28 in Lee (2013) define smoothly compatible for manifolds with boundary.
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so the fact that X’s charts are smoothly compatible with each other implies that
these charts for S are also smoothly compatible with each other. This shows that
they define a smooth atlas for S. Denote this smooth atlas by αS,f . To show that
this smooth structure for S is consistent with the smooth structure of the ambient
space M , use the premise that the map f : X → M is smooth. The premise that
f is smooth means56 that σM(f(σ−1

X (·))) is a smooth map from σX(UX) ⊂ Hk to
σM(UM) ⊂ Hn. The definition of σS implies

σM(f(σ−1
X (·))) = σM(σ−1

S (·)),

so σM(σ−1
S (·)) is also a smooth map from σS(US) = σX(UX) to σM(UM). The fact

that σM(σ−1
S (·)) is smooth shows that the smooth structure αS,f for S is consistent

with the smooth structure αM for M .57

To reinforce this conclusion, remember that the purpose of giving a manifold a
smooth structure is to allow defining the concept of a smooth function from that
manifold to R. Saying that a function g : M → R is smooth means58 that the
composite function g(σ−1

M (·)) from σM(UM) ⊂ Hn to R is smooth, for each chart
(UM , σM) in M ’s smooth structure. We already deduced that the function

h(·) ≡ σM(σ−1
S (·))

is smooth, so the composite function

g(σ−1
S (·)) = g(σ−1

M (σM(σ−1
S (·)))) = g(σ−1

M (h(·)))

is a smooth function from σS(US) to R. This shows that if g : M → R is smooth
with respect to M ’s smooth structure, then g restricted to S ⊂M is smooth with
respect to S’s smooth structure, too.59 In other words, the smooth structure αS,f
for S is consistent with the smooth structure αM for M .

56Lee (2013), page 34
57Theorem 5.8 in Lee (2013) expresses this consistency another way when ∂S = ∂M = ∅.
58Lee (2013), pages 32-33
59This conclusion is a special case of theorem 5.53(a) in Lee (2013).
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12 Equivalence to the definition in Lee (2013)

In Lee (2013),60,61 a smooth embedded submanifold of M is defined to be a subset
S ⊂M together with a topology and smooth structure for which the inclusion map
is a smooth embedding. The inclusion map i : S →M is defined by i(s) = s ∈M
for all s ∈ S.

That definition of smooth embedded submanifold is equivalent to the one in
section 10. Proof:

• Proposition 5.49(b) in Lee (2013) says that if S satisfies the definition in
section 10, then it satisfies the one in Lee (2013).62

• Conversely, suppose that S satisfies the definition in Lee (2013). Take the
map f in section 10 to be the inclusion map i, and give S a topology and
smooth structure that makes i a smooth embedding. (This is logically sound,
because the existence of such a topology and smooth structure for S is a
premise of the definition in Lee (2013).) Then S manifestly satisfies the
definition in section 10.

For later use, here’s a related result that I’ll call the inclusion-embedding lemma:
if S is any subset of M and has any smooth structure αS (not necessarily related
to the smooth structure of M), then αS is the same as the smooth structure αS,f
defined in section 10 when X = S and when f is the inclusion map i : S →M .63

60Lee (2013), chapter 5, page 120
61Chapter 5 in Lee (2013) starts with a definition that assumes ∂S = ∅ (pages 98-99), but the definition on page

120 allows both ∂S 6= ∅ and ∂M 6= ∅.
62Proposition 5.49(b) in Lee (2013) allows both ∂S 6= ∅ and ∂M 6= ∅.
63To prove this, let (US , σS) be a chart in αS . When X = S and f = i, US is also the domain of a chart (US , σ̃S)

in αS,f with σ̃S(·) ≡ σX(f−1(·)), which satisfies σ̃S(p) = σX(f−1(p)) = σS(i−1(p)) = σS(p) for all p ∈ US , so the
two charts are equal. These charts generate the smooth structure αS,f , so αS,f and αS are equal.

16
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13 The boundary as an embedded submanifold

If M is a smooth manfold, then its boundary ∂M admits a smooth structure that
makes it a smooth embedded submanifold of M .64 This section describes that
smooth structure.

To construct an appropriate smooth structure for ∂M , let (UM , σM) be a chart
in M ’s smooth atlas. If UM intersects ∂M , then define

U∂M ≡ UM ∩ ∂M σ∂M = σM
∣∣
U∂M

,

where σ
∣∣
U

denotes the restriction of the map σ to the domain U . If (U∂M , σ∂M)
and (U ′∂M , σ

′
∂M) are any two of these charts, then

σ′∂M
(
σ−1
∂M(·)

)
= σ′M

(
σ−1
M (·)

)
,

so the fact that M ’s charts are smoothly compatible with each other implies that
these charts for ∂M are also smoothly compatible with each other. This shows
that they define a smooth structure for ∂M .

To relate this to the definition of smooth embedded submanifold in section 10,
we need to show that ∂M is the image of a smooth embedding f : X → M . We
can do this by setting X = ∂M and taking f to be the inclusion map i : ∂M →M .
Then the fact that ∂M has the subspace topology implies that f is a topological
embedding.65 To show that it’s also a smooth immersion (and therefore a smooth
embedding), use the fact that σM and σ∂M are homeomorphisms from UM and U∂M
to Hn and ∂Hn, respectively. Now the fact that the inclusion map ∂Hn → Hn is a
smooth immersion implies that f is, too. This shows that f is a smooth embedding.
Finally, when X = ∂M has the smooth structure α∂M that was constructed above,
the inclusion-embedding lemma66 says that α∂M is the same as the smooth structure
α∂M,f defined in section 10. This shows that the boundary is a smooth embedded
submanifold.

64Lee (2013), theorem 5.11 (and the sentence after this says it’s unique); Hirsch (1976), chapter 1, section 4
65Lee (2013), proposition A.17(d)
66Section 12
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14 Neat submanifolds: preview

When the ambient manifold M has a non-empty boundary ∂M , a submanifold S
may be situated relative to ∂M in a variety of ways. A few of them are illustrated
here,67 using a blue 2-dimensional disk for M (so that ∂M is a circle) and a black
1-dimensional arc for S (so that ∂S is a pair of points):

In the left picture, S does not intersect ∂M . In the middle picture, the interior
of S is tangent to ∂M . In the right picture, the interior of S approaches ∂M
tangentially. Another possibility is S ⊂ ∂M (not illustrated here), which includes
the important case S = ∂M that was treated in section 13. Section 15 will explore
a different important case called a neat submanifold, illustrated here:

A neat submanifold is one for which ∂S = S∩∂M , and the interior of S approaches
∂M only transversely, not tangentially.68

67Figure 5.3 in Kupers (2019) and figure 1-6 in Hirsch (1976) use similar illustrations.
68A neat embedding is a smooth embedding whose image is a neat submanifold (Kupers (2019), definition 5.2.5).
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15 Neat submanifolds

As in section 2, define Hn to consist of all points (x1, ..., xn) in Rn with x1 ≥ 0.
For any k in the range 1 ≤ k ≤ n, define Hk,n to consist of all points (x1, ..., xn) in
Hn with xk+1 = xk+2 = · · · = xn = 0. Calling S a neat submanifold of M means
roughly that the relationship S ⊂M looks locally like the relationship Hk,n ⊂ Hn.

One way to make this precise is to start with a subset S ⊂M and then construct
a smooth structure αS,M for S directly from M ’s smooth structure, assuming that
the subset S satisfies a special condition to ensure that the construction will work.
This section uses that approach to define neat submanifold.69,70 This section also
shows that a neat submanifold defined this way is the image of a smooth embedding
f and that the smooth structure αS,M is the same as the smooth structure αS,f
that was defined in section 11.

Start with an n-dimensional smooth manifold M and a subset S ⊂ M . Given
any chart (UM , σM) in M ’s smooth structure, define

US ≡ UM ∩ S σS = σM
∣∣
US
.

For most choices of the subset S ⊂M , the “charts” (US, σS) do not give a smooth
structure for the subset S, but they do if S satisfies this special condition:71,72 each
point p ∈ S has a neighborhood of the form US = UM ∩ S for which73

σS(US) ≡ σM(US) ⊂ Hk,n. (3)

69This approach is used in Hirsch (1976), chapter 1, section 4; Cohen (2023), definition 3.11; and Freed (2013),
definition 3.1. For manifolds without boundaries, this approach is used in Crainic (2017), definition 3.20; Gorodski
(2012), page 113; and Adachi (1993), chapter 1, page 10.

70Kirby and Siebenmann (1977) use a similar approach to define clean submanifold, a generalization of neat
submanifold that works for manifolds with corners (essay I, section 2, pages 12-13).

71Lee (2013) calls this the k-slice property (text above theorem 5.51, for ∂M = ∅), and Tu (2011) uses the
name regular submanifold for a subset S ⊂M with this property (definition 9.1, for ∂S = ∂M = ∅).

72When ∂M = ∅, every smooth embedded submanifold satisfies this condition (Lee (2013), theorem 5.51).
73Here, a smooth structure is understood to be defined by a maximal smooth altas, one that includes every chart

that is smoothly compatible with it (article 93875). We could define the same smooth structure of M using a smooth
atlas with fewer charts, but that might exclude charts that satisfy (3).
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For the rest of this section, suppose that S satisfies this special condition.
Promote S to a topological space by giving it the subspace topology derived

from M ’s topology. When combined with the condition (3), the fact that σM is a
homeomorphism onto its image in Hn implies that σS is a homeomorphism onto its
image in Hk,n. To show that the charts (US, σS) define a smooth structure for S,
we need to show that they are all smoothly compatible with each other. If (US, σS)
and (U ′S, σ

′
S) are any two of these charts, then

σ′S
(
σ−1
S (·)

)
= σ′M

(
σ−1
M (·)

)
when both sides are regarded as a map from σS(US) to σ′S(U ′S), so the fact that
M ’s charts are smoothly compatible with each other implies that these charts for
S are also smoothly compatible with each other. This shows that they define a
smooth structure for S. A subset S ⊂ M equipped with this smooth structure is
called a neat submanifold of S.

The smooth structure constructed above will be denoted αS,M . It is manifestly
consistent with M ’s smooth structure.

To relate this to the definition of smooth embedded submanifold in section 10,
we need to show that S is the image of a smooth embedding f : X →M . We can
do this by setting X = S and taking f to be the inclusion map i : S → M . Then
the fact that S has the subspace topology (as a subset of M) implies that f is a
topological embedding,74 and (3) implies that f is a smooth immersion because
the inclusion map Hk,n → Hn is a smooth immersion. This shows that f is a
smooth embedding. Finally, when X = S has the smooth structure αS,M , the
inclusion-embedding lemma75 says that the smooth structures αS,f and αS,M are
equal. This shows that a neat submanifold as defined above is a special case of a
smooth embedded submanifold as defined in section 10.76

74Lee (2013), proposition A.17(d)
75Section 12
76In the special case ∂S = ∂M = ∅, this is theorems 11.13 and 11.14 in Tu (2011).
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16 Realizing manifolds as submanifolds of Rk

Every (topological or smooth) manifold is equivalent to a submanifold of Rk for
some k. This section reviews some results that bound the required value of k.

• Every n-dimensional topological manifold is homeomorphic to a topological
submanifold of R2n+1.77,78

• For n ≥ 2, every n-dimensional smooth manifold can be smoothly immersed
in R2n−1.79,80,81 This is the (strong) Whitney immersion theorem.

• For n ≥ 1, every n-dimensional smooth manifold is diffeomorphic to a smooth
embedded submanifold of R2n.82,83,84,85 This is the (strong) Whitney em-
bedding theorem.

Related results: any smooth map from an n-dimensional smooth manifold without
boundary into R2n can be approximated arbitrarily well by an immersion,86 and
any smooth map of a compact n-dimensional smooth manifold into R2n+1 can be
approximated arbitrarily well by a smooth embedding.87

77Davis and Petrosyan (2012), page 2; and https://mathoverflow.net/questions/34658/
78This is true even though some topological manifolds are not smoothable (article 93875), so this implies that some

topological submanifolds of Rk are not smoothable (at least for some k).
79Lee (2013), theorem 6.20. Example: a Klein bottle can be smoothly immersed in R3. This is the usual picture

of a Klein bottle in three-dimensional euclidean space (Lee (2011), figure 6.5), which necessarily intersects itself.
80For most n, the ambient manifold can have even fewer dimensions (theorem 6.11 in Cohen (2023), also mentioned

in the text below theorem 6.20 in Lee (2013)). Example: every 3-dimensional smooth manifold can be smoothly
immersed in R4.

81Harrison (2020) reports an analogous theorem for totally non-parallel immersions.
82Lee (2013), theorem 6.19. Example: a Klein bottle can be smoothly embedded in R4.
83Theorem 4.3 in Hirsch (1976) says that every n-dimensional smooth manifold with n ≥ 1 is the image of a neat

embedding into the half-space H2n+1, and theorem 6.3 in Cohen (2023) tightens this to H2n.
84The text below theorem 6.20 in Lee (2013) mentions that for some n, the ambient manifold can have even fewer

dimensions: Example: every 3-dimensional smooth manifold can be smoothly embedded in R5.
85Results about isometric embeddings of riemannian manifolds into flat euclidean space (and generalizations to

other signatures) are also known, like the Nash embedding theorem mentioned on page 66 in Lee (1997).
86Adachi (1993), theorem 2.5
87Lee (2013), corollary 6.17
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17 Seifert surfaces

Let M be a smooth manifold, and define a closed curve to be the image of a
smooth embedding c : S1 → M . When M = Rn with n ≥ 2, every closed curve in
M is the boundary of a two-dimensional submanifold88 of M . This is intuitively
clear when n = 2, and it’s also intuitively clear when n ≥ 4 because a closed
curve in a four-dimensional euclidean space cannot be knotted. It might be more
surprising when n = 3, because then a closed curve can be knotted, but it’s still
true: every closed curve in R3 is the boundary of a two-dimensional submanifold
of R3. When n = 3, such a submanifold is called a Seifert surface for the given
closed curve.89,90

This remains true when the n-dimensional ambient manifold M is generalized
from Rn to any other simply-connected manifold, liks Sn. This is intuitively clear,
because saying that M is simply connected means that any closed curve can be
continuously morphed so that it’s contained in an arbitrarily small neighborhood
of a point,91 so we can take that neighborhood to be homeomorphic to Rn.

88References about Seifert surfaces tend to use the word submanifold by itself, without specifying which type of
submanifold they mean (footnote 92 in section 18). They presumably mean embedded submanifold (as opposed to
immersed submanifold, which would allow self-intersections), but to be safe, this article avoids using the explicit
qualifier embedded when the cited sources don’t use it.

89More generally, every collection of knots (which may be linked with each other) has a Seifert surface. A concise
review of the proof is shown in Collins (2016), theorem 2.3. Several examples are depicted in van Wijk and Cohen
(2006).

90The topology of a Seifert surface is not unique, because if one Seifert surface is given, then many other Seifert
surfaces for the same knot may be constructed by adding more “handles” to it (https://en.wikipedia.org/wiki/
Handle_decomposition). Hayden et al (2022) describes an example of a knot with two different Seifert surfaces that
have the same intrinsic topology but that are not isotopic to each other, not even after adding an extra dimension
the ambient space.

91Article 61813
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18 Seifert hypersurfaces

This section reviews a nice generalization of the more familiar result that was
reviewed in section 17. In this section, all manifolds are smooth.92

If an n-dimensional manifold M is closed, oriented, and 2-connected,93 then
any closed, oriented, codimension-2 submanifold Mn−2 ⊂M is the boundary of an
oriented and connected codimension-1 submanifold Mn−1 ⊂M .94 Such an Mn−1 is
called a Seifert hypersurface for the given Mn−2.

95

The n-sphere Sn is (n − 1)-connected,96 so when n ≥ 3, the n-sphere M = Sn

is one example of an ambient manifold that satisfies the theorem’s premise. In
particular, when n ≥ 3, every codimension-2 sphere Sn−2 embedded in Sn has a
Seifert hypersurface.97 This is true even though the embedded (n− 2)-dimensional
sphere may be knotted.98,99

Seifert hypersurfaces answer the question: is the given submanifold a boundary
of another submanifold inside the given ambient manifold? We could also ask
whether a given manifold is the boundary of another compact manifold without
confining it to any given ambient manifold. That’s one of the questions addressed
by the subject called cobordism.100

92This convention is used in Michel and Weber (2014) (section 1.5), which is the source of the main result cited
here. In that source, submanifold presumably means (smooth) embedded submanifold, but they don’t specify this,
and that convention is not universal. Page 10 in Adachi (1993) uses the shorter name submanifold for an embedded
submanifold, but page 109 in Lee (2013) uses the shorter name submanifold for an immersed submanifold.

93A topological space is called k-connected if its first k homotopy groups are trivial (article 61813). The case
k = 1 has a special name: simply connected means 1-connected.

94Michel and Weber (2014), theorem 11.0.1
95Michel and Weber (2014), definition 11.0.1
96Wright (2007), first corollary (page 5)
97Ranicki (2014), top of page XX (in the Introduction)
98For any n ≥ 3, the image of an embedding Sn−2 → Sn may be knotted (Kervaire and Weber (1978)).
99Page XXI in Ranicki (2014) says, “Seifert [hyper]surfaces are in fact the main geometric tool of high-dimensional

knot theory...”
100Examples: a single point cannot be the boundary of any compact one-dimensional manifold, and the real

projective space RP2 is not the boundary of any compact 3d manifold (Freed (2013), proposition 1.32; May (2007),
pages 194 and 202). More generally, a smooth closed manifold is a boundary if and only if all of its Stiefel-Whitney
numbers are zero (Milnor (1974), corollary 4.11; Freed (2013), theorem 2.24; May (2007), pages 194, 220, 228).
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19 Intersection number

Fix an n-dimensional ambient smooth manifold M ≡ Rn with n ≥ 2. Let C be an
oriented one-dimensional closed loop in M , and let Σ be an oriented submanifold
of codimension 1 in M with boundary ∂Σ. Think of C’s orientation as a choice
of a direction in which to travel around the curve C, and think of Σ’s orientation
as a choice of which side is the front. If C is not tangent to Σ anywhere, then we
can define the intersection number η(C,Σ) ≡ n+ − n−, where n+ (resp. n−) is
the number of times the oriented curve C passes through the oriented manifold Σ
from back-to-front (resp. front-to-back).101,102 The sign of η(C,Σ) depends on the
orientations of C and Σ.

Examples:

• If n = 3, then Σ is an oriented two-dimensional surface with one-dimensional
boundary ∂Σ. Suppose that Σ is a disk, with a circle as its boundary, and
suppose that the loop C wraps around ∂Σ once. Then η(C,Σ) = ±1, where
the sign depends on whether C pierces Σ from back-to-front or from front-to-
back. If C wraps k times around ∂Σ in the same direction, then η(C,Σ) = ±k.

• If n = 2, then Σ is a curve with endpoints, and ∂Σ is the pair of endpoints. If
the loop C encircles one of these endpoints exactly once and doesn’t encircle
the other one, then the general definition implies η(C,Σ) = ±1, where the
sign depends on which of the two endpoints is encircled and on the direction
(clockwise or counterclockwise) in which it is encircled. If C circles k times
around one of the endpoints, then η(C,Σ) = ±k. If C circles around both
endpoints without ever passing between them, then η(C,Σ) = n+ − n− = 0.

101Singer (2022)
102Definition 8.2 in Cohen (2023) defines the intersection number of two closed submanifolds P and Q of another

closed manifold M , with dimP+dimQ = dimM , assuming that P and Q intersect each other in only a finite number
of points (which can always be arranged by adjusting P or Q slightly). The definition described in this section is
essentially a special case of that one, with dimP = 1 and M = Sn (because topologically, Rn may be obtained from
Sn by deleting a single point).
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20 Linking number

The intersection number η(C,Σ) that was defined in section 19 doesn’t depend on
Σ except through its oriented boundary, if the orientation of ∂Σ is consistent with
the orientation of Σ.103 The number η(C,Σ) is also invariant under smooth defor-
mations of the C and ∂Σ, if they don’t intersect each other during the deformation
process.104

Since it depends only on the boundary ∂Σ, we could call it the linking number
of C and ∂Σ. When the ambient manifold Rn is three-dimensional (n = 3), this is
the same105 as the usual linking number of two closed curves in knot theory.106,107

When n ≥ 4, two tame108 closed curves cannot be linked with each other,109 but
the one-dimensional loop C can be linked with the (n − 2)-dimensional boundary
∂Σ of a (n− 1)-dimensional manifold Σ.

103Robbin et al (2018), theorem 4.2.8; Seifert and Threlfall (1980), section 77
104Intuitively, this can be inferred from the preceding property.
105Meilhan (2018), theorem 2.2
106Livingston (1993) introduces knot theory. The ambient three-dimensional space is usually taken to be the

three-sphere S3.
107Pages 132-136 in Rolfsen (1976) list several ways to define the linking number of two closed curves in R3. Section

2 in Meilhan (2018) reviews some properties of the linking number of two closed curves in R3 that are not obvious
from (some of) the definitions.
108A tame closed curve S1 ⊂ R4 is one that has a neighborhood homeomorphic to (3-ball) × S1. Without that

restriction, things are less intuitive (https://math.stackexchange.com/questions/1426501).
109Intuitively, this should be obvious: given two closed curved that are linked in 3d euclidean space, add a fourth

dimension and “lift” one of the curves into the fourth dimension to unlink them.
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21 Linking number: generalizations

Section 19 defined the intersection number η(C,Σ) of a closed curve C with a
codimension-1 submanifold Σ of Rn with n ≥ 2, and section 20 used that to define
the linking number of C with ∂Σ. That works because η(C,Σ) depends on Σ only
through its boundary ∂Σ.

That property of the intersection number η(C,Σ) doesn’t necessarily hold if
we replace the ambient space Rn with another manifold M , so the concept of the
linking number between C and ∂Σ isn’t always well-defined in that more general
setting. As an example, suppose M = S1× S1, and consider two circles in M : one
circle C that wraps once around one of the S1 factors, and one circle C ′ that wraps
once around the other S1 factor. The circles C and C ′ intersect each other at a
single point p. Take Σ to be a short segment of C ′ containing p, so that C and
Σ intersect each other. The boundary ∂Σ is a pair of points on C ′. Take Σ̃ to be
the part of C ′ that has those same endpoints but excludes the rest of Σ. Then Σ
intersects C, but Σ̃ does not, so η(C, Σ̃) 6= η(C,Σ) even though ∂Σ̃ = ∂Σ.110

That problem does not occur if the ambient space M is a compact oriented
manifold without boundary and the closed curve C is the boundary of a two-
dimensional surface. More generally, if M is a compact oriented manifold without
boundary and if S and Σ are submanifolds of M with dimS + dim Σ = dimM + 1
such that the boundary C ≡ ∂S intersects Σ in a finite number of points, then we
can use the intersection number η(C,Σ) to define the linking number of C with ∂Σ
without any ambiguity.111 That definition assumes that the linked submanifolds
are both boundaries.112,113 The example in the previous paragraph violates this
condition, because the loop C in that example was not the boundary of any surface
in M .

110The text below equation (1.1) in Horowitz and Srednicki (1990) describes a higher-dimensional example.
111Horowitz and Srednicki (1990), paragraph leading to equation (1.1)
112A submanifold which is a boundary of another submanifold is called homologically trivial in Horowitz and

Srednicki (1990).
113Another way to define the linking number of two non-intersecting closed submanifolds of Rn whose dimensions

sum to n− 1 is reviewed in chapter 11 of Madsen and Tornehave (1997) and definitions 9.4 and 9.5 in Cohen (2023).
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