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Energy and Momentum
at All Speeds: Derivation

Randy S

Abstract Article 77597 introduced equations that
describe the relationships between an object’s energy
E, momentum p, mass m, and velocity v in special
relativity. This article shows how those equations can
be derived from something deeper.
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1 Introduction

Article 77597 introduced these relationships between an isolated object’s energy E,
momentum p, (rest) mass m, and velocity v in special relativity:

m2 = E2 − p2 (1)

v =
p

E
. (2)

This article motivates equations (1)-(2) by showing how they can be derived from
an action principle,1 where the object is part of a larger system with which it may
interact.

Equations (1)-(2) assume that we’re using a coordinate system in which the
equation for an object’s proper time τ is

dτ 2 = gab dx
a dxb (3)

using the notation conventions introduces in article 48968, with

gab = diag(1,−1,−1,−1). (4)

These are the components of the metric of flat spacetime, the context for special
relativity.

1 Article 98002
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2 Origin of equations (1)-(2), preview

Article 77597 focused on the energy and momentum of an isolated object for sim-
plicity, but energy and momentum are not really useful concepts for an isolated
object. They become more useful in a more complicated system, because then
their conservation can tell us something about the system’s behavior without re-
quiring a full solution of the equations of motion. This article starts with the
conservation law ∂aT

ab = 0, where T ab is called the stress-energy tensor. This
conservation law holds in flat spacetime, in any coordinate system where the com-
ponents of the metric are (4), for any system (however complicated it may be) that
respects the symmetries of flat spacetime. In terms of the stress-energy tensor, the
components P a of the system’s total momentum (which includes the total energy
as the component P 0) are

P a =

∫
d3x T 0a (5)

where the integral is over the “spatial” coordinates.2 This article shows that for
any isolated object within the system, that object’s contribution to P a is

pa = m
dXa

dτ
(6)

where m is the mass of that object, Xa are the coordinates along the object’s
worldline, and τ is the object’s proper time. Equations (3), (4), and (6) imply

(p0)2 −
∑
k

(pk)2 = m2 pk

p0
=
dXk

dX0
.

Use the notation E ≡ p0 to see these equations are the same as equations (1) and
(2), where pk are the components of p and dXk/dX0 are the components of the
velocity v.

2 Under Lorentz transformations, the P a transform just like the components of (E,p) as described in article
77597.
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3 Origin of equations (1)-(2), part 1

To derive equation (6), we need an explicit expression for the stress-energy tensor.
The general definition of the stress-energy tensor starts with the action, a function
of the dynamic variables (such as the objects’ coordinates) that summarizes all of
the model’s equations of motion. The action S depends on the spacetime metric
gab, and the stress-energy tensor is defined by3

T ab(x) =
−2√
|g|(x)

δS

δgab(x)
(7)

where |g| is the determinant of the metric. For a system involving an object of
mass m in a spacetime with a generic metric, the action is4

S = −m
∫
dλ

√
gab(X)ẊaẊb + · · · (8)

where “· · · ” are terms representing other objects and fields and the interactions
between them. For this derivation, we are only interested in the individual object’s
contribution to T ab, so we don’t need to write those other terms explicitly. The
Xs in this part of the action are the coordinates along the object’s worldline, as
functions of the parameter λ, and Ẋa is the derivative of Xa with respect to λ.

To use the definition (7), we need to write the action in terms of the metric
gab(x) as a function of the coordinates x everywhere in spacetime, not just on the
object’s worldline. We can do this by writing (8) as

S = −m
∫
d4x

∫
dλ

√
gab(x)ẊaẊb δ4

(
x−X(λ)

)
+ · · · (9)

where the coordinates x are unconstrained.

3 Article 11475, or equation (20.27) on page 389 in Blau (2021)
4 This is motivated in section 4
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4 Equation of motion for an object

To help motivate the expression (8) for the action, recall the action principle: a
given behavior is allowed (in the simplified world described by this model) if and
only if it is an extremum of the action. This criterion leads to the Euler-Lagrange
equations

d

dλ

δS

δẊa
=

δS

δXa
, (10)

which are the equations of motion for the object of interest. Using the action (8)
gives

δS

δẊa
= −m

2

gabẊ
b√

gabẊaẊb

+ · · ·

and
δS

δXa
= −m

2

(∂agbc)Ẋ
aẊb√

gabẊaẊb

+ · · ·

Specializing to the flat metric (4) gives ∂agbc = 0, and taking the worldline’s pa-
rameter λ to be its proper time τ gives gabẊ

aẊb = 1. With these simplifications,
the equation of motion (10) reduces to

−m
2
gabẌ

b = · · · ,

and we can use the fact that the metric is invertible to further reduce this to

mẌb = · · · .

This looks like the familiar equation of motion for an object with mass m subject to
the influences described by the “· · · ” on the right-hand side, but with the object’s
motion parameterized by its own proper time instead of coordinate time.
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5 Origin of equations (1)-(2), part 2

Use equation (9) in the definition (7) of the stress-energy tensor to get

T ab(x) =
m√
|g|

∫
dλ

ẊaẊb√
gab(x)ẊaẊb

δ4
(
x−X(λ)

)
+ · · · . (11)

This integral is invariant under reparameterizations of the worldline, so we can
specialize the parameter λ to be the object’s proper time τ . Then the δ-factor
together with definition of proper time makes the square-root factor equal to 1. Now
specialize to flat spacetime, using the coordinate system with |g| = 1. Altogether,
equation (11) reduces to

T ab(x) = m

∫
dτ ẊaẊb δ4

(
x−X(τ)

)
+ · · · . (12)

Use (12) in (5) to get

P a(x0) = m

∫
dτ Ẋ0Ẋa δ

(
x0 −X0(τ)

)
+ · · · ,

after using the δ-factor to evaluate the integral over the “spatial” coordinates. To
finish, use the identity∫

dτ Ẋ0 δ
(
x0 −X0(τ)

)
f(τ) = f(τ)

∣∣∣
X0(τ)=x0

where the subscript on the right-hand side meanes to evaluate f(τ) at the value of
τ for which X0(τ) = x0. The final result is

P a(x0) = mẊa
∣∣∣
X0(τ)=x0

+ · · · .

Again, the “· · · ” represents the contributions of other objects, fields, and their
interactions. If we consider only the contribution of this one object, then we are
left with (a more careful version of) equation (6). This completes the derivation.
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