Langlands Duals of Compact Lie Groups

Randy S

Abstract This article provides a table of Langlands duals of compact connected simple Lie groups. References are provided for the definition of **Langlands dual** and for the entries in the table.

Contents

1	Some group theory background	2
2	The Langlands dual of a Lie group	3
3	The Langlands dual of a Lie group: examples	4
4	References	5
5	References in this series	6

1 Some group theory background

This section summarizes some group theory material that will be used either implicitly or explicitly in the following sections.

A compact connected Lie group is called **semisimple** if its center is finite.^{1,2} A Lie algebra with at least 2 dimensions is called **simple** if it has no nonzero ideals.³ A Lie group is called **simple** if its Lie algebra is simple.⁴ A Lie group is called **reductive** if its Lie algebra is a product of an abelian Lie algebra with a direct sum of simple Lie algebras.⁵ The compact Lie groups with such Lie algebras are precisely the compact connected Lie groups,⁴ so isomorphism classes of compact connected Lie groups correspond (bijectively) to isomorphism classes of complex reductive groups.⁶

Each locally compact abelian group has a **Pontryagin dual**,⁷ defined to be the group of continuous group homomorphisms from the original group to U(1).⁸ The Pontryagin dual is used in the general theory of Fourier transforms. The groups U(1) and \mathbb{Z} are each other's Pontryagin duals, and \mathbb{Z}_n is its own Pontryagin dual.⁹

A Lie group G is, among other things, a smooth manifold. The **fundamental group**¹⁰ of G, denoted $\pi_1(G)$, is trivial if and only if every closed curve in G is contractible. Roughly, the number of elements of $\pi_1(G)$ is the number of closed curves in G that are not isotopic¹¹ to each other (cannot be continuously deformed into each other within G).

¹Niblo *et al* (2014), section 2.2

²Example: SU(n) is semisimple, but U(1) is not.

³Fulton and Harris (1991), text after exercise 9.2

⁴Article 92035

 $^{^5}$ Fulton and Harris (1991), exercise 9.25, combined with the fact that a semisimple Lie algebra is a direct sum of simple Lie algebras (article 91563)

⁶Kamnitzer (2011), section 5.2

⁷Pontryagin is also spelled Pontrjagin.

⁸Ben-Zvi (2021), equation (3.34)

⁹https://ncatlab.org/nlab/show/Pontrjagin+dual, examples 2.1 and 2.3

¹⁰Article 61813

¹¹Section 4.5 and chapter 8 in Hirsch (1976) both define **isotopic**.

2 The Langlands dual of a Lie group

Let G be a compact connected Lie group, so G is also a reductive group.¹² Every such group has a corresponding **Langlands dual group** or **GNO dual group**,^{13,14} denoted G^{\vee} (or LG),^{15,16} which is again a compact connected Lie group. The group G^{\vee} is characterized by these properties¹⁷

- The root data of G and G^{\vee} are dual to each other.
- If G is compact and simple, then $Z(G^{\vee})$ is naturally isomorphic to $\pi_1(G)$.¹⁸ More generally, $Z(G^{\vee})$ is isomorphic to the **Cartier dual**^{19,20} of $\pi_1(G)$.

In particular, if G is simply connected, then G^{\vee} has trivial center.²¹ The converse is also true, thanks to the identity²²

$$(G^{\vee})^{\vee} = G. \tag{1}$$

In physics, one of the most important properties of G^{\vee} is that its irreducible representations correspond to conjugacy classes of homomorphisms $U(1) \to G^{23,24}$

¹²Section 1

¹³Debray (2021), lecture 28; Kapustin and Witten (2007), section 1

¹⁴Some non-compact Lie groups also have Langlands duals. Examples are shown in Frenkel (2009), page 1010-05; and Debray (2021), text after equation (29.1).

¹⁵The Langlands dual group is often denoted LG in the physics literature (example: Kapustin (2010), section 0.1). According to https://mathoverflow.net/a/475646, mathematicians use the notation LG for something else.

¹⁶Beware that the notation G^{\vee} is also used for the *Cartier dual* and *Pontryagin dual* of an abelian group G (Ben-Zvi (2021), equations (3.34) and (3.77)).

¹⁷Ben-Zvi (2021), text above equation (11.124); Debray (2021), text after theorem 28.5 and above equation (29.1); Daenzer and Van Erp (2014), section 2.4 (for complex Lie groups)

¹⁸Kapustin and Witten (2007), text before equation (6.10) (the condition *compact* is stated in the first paragraph of section 2.1, and the condition simple is stated in the text after equation (2.3))

¹⁹Debray (2021), text after theorem 28.5

²⁰In the present context, Cartier dual may be replaced with Pontryagin dual (https://ncatlab.org/nlab/show/Cartier+duality).

 $^{^{21}}$ Ben-Zvi (2021), text below equation (11.132); Debray (2021), text above equation (29.1).

²²Gukov and Witten (2006), text after equation (A.15); Debray (2017), last Remark in lecture 24 (calls $G \to G^{\vee}$ an *involution*)

²³Kapustin and Witten (2007), text after equation (6.9)

²⁴Section 0.1 in Kapustin (2010) uses this as the definition of G^{\vee} .

3 The Langlands dual of a Lie group: examples

The group U(n) is its own Langlands dual.²⁵ This table lists the Langlands duals of the compact connected simple Lie groups:^{26,27,28}

root system of G	root system of G^{\vee}	G	G^{\vee}	
A_n	same	$SU(km)/\mathbb{Z}_k$	$SU(km)/\mathbb{Z}_m$	
$\overline{B_n}$	C_n	SO(2n+1)	$\operatorname{Sp}(n)$	
		$\operatorname{Spin}(2n+1)$	$\operatorname{Sp}(n)/\mathbb{Z}_2$	
$\overline{D_n}$	same	SO(2n)	SO(2n)	
		Spin(2n)	$SO(2n)/\mathbb{Z}_2$	
		$\operatorname{Spin}(8k)/\mathbb{Z}_2'$	$\operatorname{Spin}(8k)/\mathbb{Z}_2'$	
		$\operatorname{Spin}(8k)/\mathbb{Z}_2''$	$\operatorname{Spin}(8k)/\mathbb{Z}_2''$	
		$\operatorname{Spin}(8k+4)/\mathbb{Z}_2'$	$\operatorname{Spin}(8k+4)/\mathbb{Z}_2''$	
E_6	same	E_6	E_6/\mathbb{Z}_3	
E_7	same	E_7	E_7/\mathbb{Z}_2	
E_8, F_4, G_2 same		self-	self-dual	

The first row includes this important case: the groups SU(n) and $SU(n)/\mathbb{Z}_n$ are each other's Langlands duals.²⁵ Thanks to the relationship (1), this table includes every compact connected simple Lie group.²⁹ The B_n - C_n cases are the only ones for which the Lie algebras of G and G^{\vee} are not isomorphic to each other.^{30,31}

Based on this list and the relationships in section 2, we can infer that if G is semisimple (no U(1) factors), then the universal cover of G^{\vee} is $(G/Z(G))^{\vee}$.

²⁵Kapustin and Witten (2007), table 1

²⁶Compiled from table 6.4 in Figueroa-O'Farrill (1998) and table 1 in Kapustin and Witten (2007)

²⁷Different authors use different notations for the groups Sp(n). Article 92035 defines the notation used here, which agrees with Kapustin and Witten (2007).

 $^{{}^{28}}G/\mathbb{Z}_n$ is the quotient of G by an \mathbb{Z}_n subgroup of Z(G). In the A_n row, km=n+1. In the last three D_n rows, 8k=2n. \mathbb{Z}'_2 and \mathbb{Z}''_2 denote distinct subgroups of the center of $\mathrm{Spin}(\cdot)$ for which the quotient is not isomorphic to $SO(\cdot)$ (article 92035). The groups denoted E_6 and E_7 are the compact 1-connected groups with those root systems.

²⁹Article 92035

³⁰Kapustin and Witten (2007), text after equation (2.17)

³¹For the A, D, E root systems, Langlands duality is a form of **T-duality** (Daenzer and Van Erp (2014)).

cphysics.org article **40094** 2025-10-25

4 References

(Open-access items include links.)

- Ben-Zvi, 2021. "Between electric-magnetic duality and the Langlands program" https://jacksontvandyke.com/lecture_notes.html
- Daenzer and Van Erp, 2014. "T-duality for Langlands dual groups" Adv. Theor. Math. Phys. 18: 1267–1285, https://arxiv.org/abs/1211.0763
- Debray, 2017. "M392C notes: representation theory" https://adebray.github.io/lecture_notes/m392c_RT_notes.pdf
- Debray, 2021. "M390C notes: geometric Langlands" https://adebray.github.io/lecture_notes/m390c_GL_2021_notes.pdf
- Figueroa-O'Farrill, 1998. "Electromagnetic Duality for Children" https://www.maths.ed.ac.uk/~jmf/Teaching/Lectures/EDC.pdf
- Frenkel, 2009. "Gauge theory and Langlands duality" https://arxiv.org/abs/0906.2747
- Fulton and Harris, 1991. Representation Theory: A First Course. Springer
- Gukov and Witten, 2006. "Gauge theory, ramification, and the geometric Langlands program" Current Developments in Mathematics 2006: 35-180, https://intlpress.com/JDetail/1806709570892447746
- Hirsch, 1976. Differential Topology. Springer-Verlag
- Kamnitzer, 2011. "Representation theory of compact groups and complex reductive groups, Winter 2011" https://www.math.toronto.edu/jkamnitz/courses/reptheory/reptheory.pdf

- **Kapustin, 2010.** "Langlands Duality and Topological Field Theory" https://www.icmat.es/seminarios/langlands/school/handouts/kapustin.pdf
- Kapustin and Witten, 2007. "Electric-Magnetic Duality And The Geometric Langlands Program" Communications in Number Theory and Physics 1: 1-236, https://link.intlpress.com/JDetail/1805800346326876162
- Niblo et al, 2014. "Affine Weyl groups and Langlands duality" https://eprints.maths.manchester.ac.uk/2172/1/AffineWeyl11C.pdf

5 References in this series

```
Article 61813 (https://cphysics.org/article/61813):
"Homotopy, Homotopy Groups, and Covering Spaces"

Article 91563 (https://cphysics.org/article/91563):
"Characterizing the Irreducible Representations of Compact Simple Lie Groups"

Article 92035 (https://cphysics.org/article/92035):
"The Topology of Lie Groups: a Collection of Results"
```