cphysics.org article 40094 2025-10-25

Langlands Duals
of Compact Lie Groups
Randy S
Abstract  This article provides a table of Langlands duals of

compact connected simple Lie groups. References are provided for
the definition of Langlands dual and for the entries in the table.
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1 Some group theory background

This section summarizes some group theory material that will be used either im-
plicitly or explicitly in the following sections.

A compact connected Lie group is called semisimple if its center is ﬁnite.ﬂﬂ A
Lie algebra with at least 2 dimensions is called simple if it has no nonzero ideals
A Lie group is called simple if its Lie algebra is Simpleﬂ A Lie group is called
reductive if its Lie algebra is a product of an abelian Lie algebra with a direct
sum of simple Lie algebrasP| The compact Lie groups with such Lie algebras are
precisely the compact connected Lie groups? so isomorphism classes of compact
connected Lie groups correspond (bijectively) to isomorphism classes of complex
reductive groups [

Each locally compact abelian group has a Pontryagin dual[| defined to be the
group of continuous group homomorphisms from the original group to U (l)ﬁ The
Pontryagin dual is used in the general theory of Fourier transforms. The groups
U(1) and Z are each other’s Pontryagin duals, and Z,, is its own Pontryagin dual)’]

A Lie group G is, among other things, a smooth manifold. The fundamental
group’] of G, denoted 71(G), is trivial if and only if every closed curve in G is
contractible. Roughly, the number of elements of 71(G) is the number of closed
curves in GG that are not isotopi@ to each other (cannot be continuously deformed
into each other within G).

INiblo et al (2014), section 2.2
2Example: SU(n) is semisimple, but U(1) is not.
3Fulton and Harris (1991), text after exercise 9.2

4 Article

SFulton and Harris (1991), exercise 9.25, combined with the fact that a semisimple Lie algebra is a direct sum of

simple Lie algebras (article[91563)

SKamnitzer (2011), section 5.2

" Pontryagin is also spelled Pontrjagin.

8Ben-Zvi (2021), equation (3.34)
9nttps://ncatlab.org/nlab/show/Pontrjagin+duall, examples 2.1 and 2.3
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HSection 4.5 and chapter 8 in Hirsch (1976) both define isotopic.


https://ncatlab.org/nlab/show/Pontrjagin+dual
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2 The Langlands dual of a Lie group

Let G be a compact connected Lie group, so G is also a reductive group.@ Every
such group has a corresponding Langlands dual group or GNO dual group,ﬂﬂ
denoted GV (or © G)ﬂ@ which is again a compact connected Lie group. The group
GV is characterized by these propertie

e The root data of G and GV are dual to each other.

e If G is compact and simple, then Z(G") is naturally isomorphic to Wl(G).H
More generally, Z(G") is isomorphic to the Cartier dual™| of m(G).

In particular, if G is simply connected, then GV has trivial Center.@ The converse
is also true, thanks to the identity

(GY)Y = G. (1)

In physics, one of the most important properties of GV is that its irreducible rep-
resentations correspond to conjugacy classes of homomorphisms U(1) — GE}@

12Gection

13Debray (2021), lecture 28; Kapustin and Witten (2007), section 1

14Some non-compact Lie groups also have Langlands duals. Examples are shown in Frenkel (2009), page 1010-05;
and Debray (2021), text after equation (29.1).

15The Langlands dual group is often denoted “G in the physics literature (example: Kapustin (2010), section 0.1).
According to https://mathoverflow.net/a/475646, mathematicians use the notation “G for something else.

16Beware that the notation GV is also used for the Cartier dual and Pontryagin dual of an abelian group G
(Ben-Zvi (2021), equations (3.34) and (3.77)).

1"Ben-Zvi (2021), text above equation (11.124); Debray (2021), text after theorem 28.5 and above equation (29.1);
Daenzer and Van Erp (2014), section 2.4 (for complex Lie groups)

18Kapustin and Witten (2007), text before equation (6.10) (the condition compact is stated in the first paragraph
of section 2.1, and the condition simple is stated in the text after equation (2.3))

9Debray (2021), text after theorem 28.5

20In the present context, Cartier dual may be replaced with Pontryagin dual (https://ncatlab.org/nlab/show/
Cartier+duality).

21Ben-Zvi (2021), text below equation (11.132); Debray (2021), text above equation (29.1).

22Gukov and Witten (2006), text after equation (A.15); Debray (2017), last Remark in lecture 24 (calls G — GV
an involution)

ZKapustin and Witten (2007), text after equation (6.9)

248ection 0.1 in Kapustin (2010) uses this as the definition of GV.


https://mathoverflow.net/a/475646
https://ncatlab.org/nlab/show/Cartier+duality
https://ncatlab.org/nlab/show/Cartier+duality
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3 The Langlands dual of a Lie group: examples

The group U(n) is its own Langlands dual.

This table lists the Langlands duals
of the compact connected simple Lie groups{[F >

root system of G \ root system of G H G GV

A, same SU(km)/Zy, SU(km)/Z,

B, Ch SO(2n+1) Sp(n)
Spin(2n + 1) Sp(n)/Zsy

D, same SO(2n) SO(2n)

Spin(2n) SO(2n)/Zs
Spin(8k)/Zj, Spin(8k)/Zj,
Spin(8k)/Z4 Spin(8k)/Z4
Spin(8k + 4)/Z, | Spin(8k + 4)/Z4
Es same Es FEs/Zs
b same by Eq/Z
Es, Fy, Gy same self-dual

The first row includes this important case: the groups SU(n) and SU(n)/Z, are
each other’s Langlands duals2¥ Thanks to the relationship , this table includes
every compact connected simple Lie group.@ The B,-C, cases are the only ones
for which the Lie algebras of G and G are not isomorphic to each other PUP]]
Based on this list and the relationships in section [2, we can infer that if G is
semisimple (no U(1) factors), then the universal cover of G¥ is (G/Z(G))".

Z>Kapustin and Witten (2007), table 1

26Compiled from table 6.4 in Figueroa-O’Farrill (1998) and table 1 in Kapustin and Witten (2007)

2"Different authors use different notations for the groups Sp(n). Article defines the notation used here,
which agrees with Kapustin and Witten (2007).

28G /7, is the quotient of G by an Z,, subgroup of Z(G). In the A, row, km = n + 1. In the last three D,, rows,
8k = 2n. Z} and ZY denote distinct subgroups of the center of Spin(:) for which the quotient is not isomorphic to
SO(-) (article . The groups denoted Eg and E; are the compact 1-connected groups with those root systems.

29 Article

30Kapustin and Witten (2007), text after equation (2.17)

31For the A, D, E root systems, Langlands duality is a form of T-duality (Daenzer and Van Erp (2014)).
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