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Lorentz Transforms from Reflections
Randy S

Abstract Every Lorentz transform that preserves the origin
in N -dimensional spacetime can be expressed as the composition
of N or fewer reflections. This is a special case of the Cartan-
Dieudonné theorem. This article shows some examples and
uses the theorem to demonstrate that null rotations can be ex-
pressed in terms of ordinary rotations and boosts.

Contents

1 Introduction 3

2 Reflections 4

3 Examples of isometries in lorentzian signature 5

4 Planes 6

5 Ordinary rotations from reflections 7

6 Boosts from two spacelike reflections 8

7 Boosts from two timelike reflections 9

8 Null rotations from reflections 10

© 2018-2023 Randy S
For noncommercial use only

1



cphysics.org article 39430 2023-04-30

9 Null rotations from ordinary rotations and boosts 11

10 Connected components of the Lorentz group 12

11 Generalizations 13

12 References 14

13 References in this series 14

2



cphysics.org article 39430 2023-04-30

1 Introduction

Let V be an N -dimensional vector space V over the real numbers. The components
of a vector v ∈ V will be denoted vn, where the index n can take N different
values.1 Partition the set of allowed index-values into two disjoint subsets S and
T , and define

〈a, b〉 ≡
∑
n∈S

anbn −
∑
n∈T

anbn (1)

with a, b ∈ V . Equation (1) defines an inner product on the N -dimensional
vector space. Let |S| and |T | be the number of elements in S and T , respectively,
so |S| + |T | = N . The pair |S|, |T | will be called the signature of the inner
product.2 An isometry of (1) is a linear transform σ : V → V that satisfies〈

σa, σb
〉

= 〈a, b〉

for all a, b ∈ V . Special cases:

• If either |S| or |T | is equal to 0, then the signature is called euclidean, and
the group3 of isometries is called the orthogonal group. This is the group
of origin-preserving4 symmetries of N -dimensional flat space.

• If |S| and |T | are both nonzero and one of them is equal to 1, then the signa-
ture is called lorentzian, and the group of isometries is called the Lorentz
group. This is the group of origin-preserving symmetries of N -dimensional
flat spacetime (article 48968).

For any signature, every isometry of (1) can be expressed as a composition of (N
or fewer) reflections. This is the Cartan-Dieudonné theorem.5 This article uses
that theorem to illuminate the structure of the Lorentz group.

1In this article, every index is written as a subscript, in contrast to articles 09894 and 48968.
2Mnemonic: |S| and |T | are the numbers of space and time dimensions, respectively.
3Article 29682 reviews the axioms of group theory.
4The condition origin-preserving excludes translations.
5Lam (2005), chapter 1, theorem 7.1; and Varadarajan (2004), section 5.2. Pages 18-22 in Lam (2005) give a

relatively friendly proof.
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2 Reflections

Two vectors a, b are called orthogonal to each other if 〈a, b〉 = 0. An individual
vector a ∈ V will be called

• spacelike if 〈a, a〉 > 0,

• timelike if 〈a, a〉 < 0,

• lightlike (or null or isotropic)6 if 〈a, a〉 = 0.

For every non-lightlike vector a, we can define a corresponding reflection, which
is the linear transform ρ(a) : V → V defined by

ρ(a)v = v − 2
〈v, a〉
〈a, a〉

a (2)

for all v ∈ V . The vector a is the direction of the reflection.7 We can write
v = v⊥ + v‖, where the two terms are orthogonal and parallel to a, respectively.
Then ρ(a)v = v⊥ − v‖. In words: the reflection changes the sign of the component
parallel to a.

Every reflection is an isometry:〈
ρ(a)x, ρ(a)y

〉
= 〈x, y〉

for all x, y ∈ V . To prove this, use the definition (2) together with the linearity
property

〈x+ x′, y + y′〉 = 〈x, y〉+ 〈x′, y〉+ 〈x, y′〉+ 〈x′, y′〉,
which follows from the definition (1).

6The names lightlike and null are more common in the physics literature. The name isotropic is common in the
mathematics literature.

7An ordinary mirror in 3-dimensional space reflects a single direction, namely the direction orthogonal to the
mirror. When you look at yourself in a mirror, front and back are switched (this is why you see your eyes instead
of the back of your head), whereas left, right, up, and down all remain the same. Words look backward in a mirror
because front and back are switched. Left and right are not interchanged.
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3 Examples of isometries in lorentzian signature

For the rest of this article, suppose that the signature is lorentizan, and take the
sets S and T of allowed index-values in (1) to be

S = {1, 2, ..., N − 1} T = {0}.

Call v0 the time component of a vector v, and call vn with n ∈ S the space
components. Given a linear transform σ : V → V , let (σv)n denote the nth
component of the transformed vector σv.

One example of an isometry is the (ordinary) rotation8[
(σv)1

(σv)2

]
=

[
cos θ − sin θ

sin θ cos θ

][
v1

v2

]
(3)

with (σv)n = vn for n /∈ {1, 2}. Another example is the null rotation(σv)0

(σv)1

(σv)2

 =

1 + θ2/2 −θ2/2 θ

θ2/2 1− θ2/2 θ

θ −θ 1


v0

v1

v2

 (4)

with (σv)n = vn for n ≥ 3. Another example is the boost (or hyperbolic rota-
tion)9 [

(σv)0

(σv)1

]
=

[
cosh θ sinh θ

sinh θ cosh θ

][
v0

v1

]
(5)

with (σv)n = vn for n ≥ 2. The following sections show that each of these can
be expressed as a pair of reflections, which in turn proves that they really are
isometries.

8I’m using matrix notation here (article 18505).
9The functions cosh θ and sinh θ are defined in article 77597.
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4 Planes

If two nonzero vectors are not parallel to each other, then they span a plane. When
the signature is lorentzian, a plane P can be one of three types:

• A space-space plane does not contain any lightlike lines. Such a plane can
only be spanned by two spacelike vectors.10

• A null plane contains exactly one lightlike line. Such a plane is tangent to
the light cone.

• A time-space plane contains two lightlike lines. Such a plane contains both
timelike and spacelike vectors.

Examples of each type are depicted below. The plane is shown in green. The
shaded blue surface is the light cone, the set of lightlike vectors from the origin.
Red lines indicate where the plane touches the light cone.

The following sections consider isometries σ : V → V that can be expressed as
pairs of reflections, σ = ρ(b)ρ(a), where a and b are not lightlike.

10Each other type of plane can also be spanned by two spacelike vectors, but for a space-space plane, this is the
only option.
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5 Ordinary rotations from reflections

Let a, b be linearly independent vectors that span a space-space plane, so that all
linear combinations of a, b are spacelike. Then the isometry ρ(b)ρ(a) is called an
ordinary rotation, or just rotation.

To illustrate this, consider the spacelike vectors

a = (a0, a1, a2, a3, ...) = (0, 1, 0, 0, ...)

b = (b0, b1, b2, b3, ...) = (0, C, S, 0, ...)

with C ≡ cos(θ/2) and S ≡ sin(θ/2), and the components not shown are all zero.
The plane spanned by a and b does not contain any lightlike lines, so ρ(b)ρ(a) is
an ordinary rotation. In fact, ρ(b)ρ(a) is the rotation shown in equation (3). To
prove this, use 〈a, a〉 = 1 = 〈b, b〉 to get11

ρ(b)ρ(a)v = v − 2〈v, a〉a− 2〈v, b〉b+ 4〈v, a〉〈a, b〉b.

Evaluate the inner products to get

ρ(b)ρ(a)v = v − 2v1a+ 2(Cv1 − Sv2)b. (6)

Clearly
(
ρ(b)ρ(a)v

)
n

= vn for n /∈ {1, 2}, and the 1,2 components of (6) can be
written in matrix form like this:[(

ρ(b)ρ(a)v
)

1(
ρ(b)ρ(a)v

)
2

]
=

[
2C2 − 1 −2CS

2CS 1− 2S2

][
v1

v2

]
.

Finally, use the identities

2C2 − 1 = 1− 2S2 = C2 − S2 = cos θ 2CS = sin θ

to recover the rotation (3).

11Notice that ρ(a) and ρ(b) don’t commute with each other: ρ(a)ρ(b) 6= ρ(b)ρ(a).
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6 Boosts from two spacelike reflections

Let a, b be linearly independent vectors that span a time-space plane as defined in
section 4. If a and b are both spacelike or both timelike, then the isometry ρ(b)ρ(a)
is called a boost.12

To illustrate this, consider the spacelike vectors

a = (a0, a1, a2, a3, ...) = (0, 1, 0, 0, ...)

b = (b0, b1, b2, b3, ...) = (S, C, 0, 0, ...)

with C ≡ cosh(θ/2) and S ≡ sinh(θ/2), and the components not shown are all
zero. The plane spanned by a and b contains two lightlike lines, so ρ(b)ρ(a) is a
boost. In fact, ρ(b)ρ(a) is the boost shown in equation (5). To prove this, use
〈a, a〉 = 1 = 〈b, b〉 to get

ρ(b)ρ(a)v = v − 2〈v, a〉a− 2〈v, b〉b+ 4〈v, a〉〈a, b〉b, (7)

just like in the previous section. Evaluate the inner products to get

ρ(b)ρ(a)v = v − 2v1a+ 2(Sv0 + Cv1)b. (8)

Clearly
(
ρ(b)ρ(a)v

)
n

= vn for n /∈ {0, 1}, and the 0,1 components of (8) can be
written in matrix form like this:[(

ρ(b)ρ(a)v
)

0(
ρ(b)ρ(a)v

)
1

]
=

[
2S2 + 1 2CS

2CS 2C2 − 1

][
v0

v1

]
.

Finally, use the identities

2S2 + 1 = 2C2 − 1 = C2 + S2 = cosh θ 2CS = sinh θ

to recover the boost (5).

12Section 10 addresses the case where one is timelike and one is spacelike.
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7 Boosts from two timelike reflections

A time-space plane can be spanned either by a pair of spacelike vectors (as in the
previous section) or by a pair of timelike vectors. The latter case doesn’t give
anything new, though, because the composition of any two timelike reflections may
be re-expressed as a composition of two spacelike reflections.

To illustrate this, let a, b be the two spacelike vectors used in the previous
example, and let x, y be the two timelike vectors

x = (x0, x1, x2, x3, ...) = (−1, 0, 0, 0, ...)

y = (y0, y1, y2, y3, ...) = (C, S, 0, 0, ...)

with C ≡ cosh(θ/2) and S ≡ sinh(θ/2) as before. Then

ρ(b)ρ(a) = ρ(y)ρ(x). (9)

To prove this, evaluate the right-hand side using the same approach that was used
in the previous section to evaluate the left-hand side.

More generally, let x, y be any two timelike vectors normalized so that 〈x, x〉 and
〈y, y〉 are both equal to −1. This normalization doesn’t compromise any generality,
because the reflections ρ(x) and ρ(y) are not affected by the magnitudes of 〈x, x〉
or 〈y, y〉. Now consider the vectors

a ≡ 〈x, y〉x+ y√
〈x, y〉2 − 1

b ≡ 〈x, y〉 y + x√
〈x, y〉2 − 1

.

These satisfy

〈a, x〉 = 0 = 〈b, y〉 〈a, a〉 = 1 = 〈b, b〉.
In particular, they are both spacelike. Now, let v be any vector. Let v⊥ be the
part that is orthogonal to both x and y (equivalently, to both a and b), and let v‖
be the part that is a linear combination of x and y (equivalently, of a and b). The
fact that a and x are orthogonal to each other implies ρ(a)ρ(−x)v = v⊥ − v‖, and
the fact that b and y are orthogonal to each other implies ρ(b)ρ(−y)v = v⊥ − v‖.
Combine these to get ρ(b)ρ(a)ρ(−x)ρ(−y)v = v, which implies (9).
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8 Null rotations from reflections

Let a, b be linearly independent vectors that span a null plane as defined in section
4. Then the isometry ρ(b)ρ(a) is a null rotation.

To illustrate this, consider the spacelike vectors

a = (θ/4, θ/4, −1, 0, 0, ...)

b = (θ/4, θ/4, 1, 0, 0, ...).

The components not shown are all zero. The sum a + b is lightlike, and a linear
combination of a and b cannot be timelike, so a and b span a null plane. In fact,
ρ(b)ρ(a) is the null rotation shown in equation (4). To prove this, use 〈a, a〉 = 1 =
〈b, b〉 to get equation (7) again, and evaluate the inner products to get

ρ(b)ρ(a)v = v −
(
(θ/2)(v1 − v0)− 2v2

)
a

−
(
(θ/2)(v1 − v0) + 2v2

)
b

−
(
θ(v1 − v0) + 4v2

)
b.

Clearly
(
ρ(b)ρ(a)v

)
n

= vn for n /∈ {0, 1, 2}, and the 0,1,2 components of (8) can be
written in matrix form as shown in equation (4).

Notice that the reflections ρ(a) and ρ(b) both leave the lightlike vector a + b
invariant, because 〈a+ b, a〉 = 〈a+ b, b〉 = 0.
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9 Null rotations from ordinary rotations and boosts

A null rotation can be expressed as a composition of an ordinary rotation and a
boost. To prove this, let a and b be two spacelike vectors such that the plane
spanned by a and b intersects the light cone in just one null line. Then ρ(a)ρ(b)
is a null rotation. Now let c be any other spacelike vector. Applying a reflection
twice returns things to the way they were, to we have the obvious identity

ρ(a)ρ(c)ρ(c)ρ(b) = ρ(a)ρ(b). (10)

If either of the two planes a-c or c-b is tangent to the light cone, then we can use
an arbitrarily small perturbation of the direction c to push the plane either toward
or away from the interior of the light cone, so that it is no longer tangent to the
light cone. This means that we can choose c so that neither ρ(a)ρ(c) nor ρ(c)ρ(b)
is a null rotation. Thanks to equation (10), this shows that any null rotation can
be expressed in terms of ordinary rotations and boosts.
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10 Connected components of the Lorentz group

Consider two vectors a and b, one timelike and one spacelike. The plane spanned
by a and b is a time-space plane as defined in section 4, but the isometry ρ(b)ρ(a)
is not a boost: it is not equivalent to any ρ(b′)ρ(a′) where a′, b′ are both timelike or
both spacelike. The proof is easy: for a boost, one of the two reflection-directions
can be smoothly deformed into the other one (because they’re either both timelike
or both spacelike), and then the two reflections cancel each other, so a boost can
be smoothly deformed to the identity transform. But when one reflection-direction
is timelike and one is spacelike, then the they cannot be smoothly deformed into
each other without encountering a lightlike direction. Reflection along a lightlike
direction is undefined because of the denominator in (2), so this composition of
reflections cannot be smoothly deformed to the identity transform.

The Lorentz group is an example of a Lie group: it is both a group and a
smooth manifold, because any element of the group can be smoothly deformed to
obtain (some) other elements of the group. The Lorentz group has four connected
parts, each consisting of transforms that can all be smoothly deformed into each
other. The four components correspond to the four different combinations of these
options in a composition of reflections:

• The number of reflections along spacelike directions can be even or odd.

• The number of reflections along timelike directions can be even or odd.

The number of connected components is just one simple aspect of the topology of
the Lorentz group. For four-dimensional spacetime, the topology of the Lorentz
group is described in more detail on page 89 in Weinberg (1995).
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11 Generalizations

This article focused on a special case of the Cartan-Dieudonné theorem, namely a
vector space over the real numbers with an inner product of lorentzian signature.
Section 1 already mentioned that the Cartan-Dieudonné theorem works for arbi-
trary signature. It also works for vector spaces over arbitrary fields (such as the
field of complex numbers), with one exception: if the field has characteristic 2 and
the signature is |S| = |T | = 2, then isometries exist that cannot be expressed as a
composition of reflections.13

13This is stated without proof in Scharlau (1985), chapter 9, theorem 4.12. For fields that don’t have characteristic
2, proofs are shown in Lam (2005) (section 1.7, theorem 7.1) and O’Meara (2000) (chapter IV, theorem 43.3).
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