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Conformal Isometries in the
Embedding Space Formalism

Randy S

Abstract This article introduces the group of conformal isometries in flat
space(-time) with an arbitrary number of dimensions and arbitrary signature,
with emphasis on the embedding space formalism. The embedding space
formalism relates conformal isometries in N dimensions to ordinary isometries in
N + 2 dimensions. When N ≥ 3, this gives the full group of conformal isome-
tries. This article also introduces the concept of conformal completion (also
called conformal compactification) and describes the conformal completion
of Minkowski spacetime, including its topology and how it relates to conformal
isometries.
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1 Some conventions

Boldface will be used for a collection of coordinates, as in x = (x1, x2, ...). In
sections 3-4, the index on a coordinate will be written as a superscript, as in
x = (x1, x2, ...), and the standard summation convention will be used: a sum
is implied over any variable index that appears both as a superscript and as a
subscript in the same term. Example:

gab(x)dxa dxb is an abbreviation for
∑
a,b

gab(x)dxa dxb.

Given a smooth manifold M, article 48968 explains how geometry can be defined
onM by specifying a line element, an expression of the form gab(x)dxa dxb where
gab(x) are the components of the metric tensor and x = (x1, x2, ...) are coordinates
on the manifold. Sections 5, 9, and 15 will introduce special notations for working
with diagonal metrics whose diagonal components are ±1.

This article is about a relationship between conformal isometries of an N -
dimensional manifoldM and ordinary isometries of a higher-dimensional manifold
in whichM is embedded. Lowercase letters like x will be used for coordinates in the
N -dimensional manifold, and uppercase letters like X will be used for coordinates
in the higher-dimensional manifold.

The signature of the metric is a pair of integers (p, q) specifying how many
positive and negative eigenvalues1 it has, respectively, at any given point.2 The
higher-dimensional space will usually3 have N + 2 dimensions, and then the signa-
ture (P,Q) of the higher-dimensional metric is related to the signature (p, q) of the
lower-dimensional metric by P = p+ 1 and Q = q + 1.

Most of this article uses the word space to refer to a manifold that is topolog-
ically trivial and that has a flat metric of any signature, not necessarily euclidean.
The more specific word spacetime will sometimes be used when the signature is
lorentzian.

1When the metric is diagonal, the eigenvalues are just the diagonal components.
2The signature is the same at all points.
3In section 9, the higher-dimensional space has only N + 1 dimensions.
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2 Ordinary isometries: definition

Any geometry, with any signature and not necessarily flat, can be described by
specifying the line element4

gab(x)dxa dxb,

where gab(x) are the components of the metric tensor. An (ordinary) isometry
is a diffeomorphism x→ x̂ for which

gab(x̂)dx̂a dx̂b = gab(x)dxa dxb. (1)

Poincaré transformations are isometries of Minkowski spacetime.
Recall5 that a diffeomorphism is a smooth re-arrangement of the manifold’s

points. The notation x → x̂ means “the point that had coordinates x is moved
to the point that has coordinates x̂(x), expressed as functions of the original co-
ordinates x.” The effect of a generic diffeomorphism x → x̂ on the line element
is4

gab(x)dxa dxb → gab(x̂)dx̂a dx̂b = gab(x̂)(∂cx̂
a)(∂dx̂

b)dxc dxd

with ∂a ≡ ∂/∂xa. A diffeomorphism deforms each path in spacetime. This typi-
cally changes the paths’ geometric qualities. Equation (1) says that the deformation
qualifies as an isometry if it doesn’t change the paths’ geometric qualities – if each
spacelike path remains spacelike with the same proper length, each timelike path
remains timelike with the same proper duration, and each lightlike path remains
lightlike. This is distinct from the related concept that article 00418 calls a fiel-
domorphism, which doesn’t doesn’t deform paths but does replace tensor fields
with new ones. In particular, a fieldomorphism of the metric field doesn’t deform
paths, but it does assign new geometric qualities to them.6

4Article 48968
5Article 93875
6The definitions of isometry and conformal isometry could be recast in terms of fieldomorphisms (and then a

conformal isometry would be a special type of Weyl transformation, as defined section 6), but basing the definition
directly on diffeomorphisms is simpler. Physicists often don’t clearly distinguish between diffeomorphisms and
fieldomorphisms, using the same name diffeomorphism for both. We can often accomplish the same goals using
either one, even though they are conceptually distinct.
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3 Conformal isometries: definition

A conformal isometry7,8 is a diffeomorphism9 x→ x̂ for which

gab(x̂)dx̂a dx̂b = Ω2(x)gab(x)dxa dxb, (2)

which implies
gcd(x̂)(∂ax̂

c)(∂bx̂
d) = Ω2(x)gab(x). (3)

Equation (2) says that a conformal isometry preserves the line element up to a
scale that can be different at different points. A conformal isometry preserves
angles but does not necessarily preserve distances. The definition uses a positive
factor Ω2(x) > 0 to ensure that conformal isometries preserve the causal structure
of spacetime. In particular, a conformal isometry of a spacelike hypersurface is
another spacelike hypersurface.

The definition of conformal isometry makes sense in any spacetime, flat or
curved, but this article focuses on conformal isometries of flat spacetime. Most
of the analysis is formulated for arbitrary signatures, which includes lorentzian
signature (Minkowski spacetime) as a special case.

7This is the name used in Wald (1984), appendix C, above equation C.3.13. The name conformal transformation
is also used for this, but see footnote 16.

8Conformal isometries are often called conformal transformations. This article doesn’t use that name because
it’s confusingly overloaded: it has several different meanings, two of which are (highlighted in footnote 16) are both
important in this article.

9These diffeomorphisms are not necessarily defined everywhere in the original spacetime, but they are defined
everywhere in its conformal completion (section 7).
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4 Low-dimensional exceptions

If the manifold is N -dimensional with N ≥ 2, then most diffeomorphisms don’t
satisfy the condition (2). The case N = 1 is exceptional: in one-dimensional space,
every diffeomorphism satisfies this condition, because each index takes only one
value, so we can divide both sides of equation (3) by gab(x) to get an unambigu-
ous expression for Ω2(x). This shows that when N = 1, the group of conformal
isometries of is always infinite-dimensional: it’s the same as the group of diffeo-
morphisms.

The group of conformal isometries of two-dimensional Minkowski spacetime is
infinite-dimensional, too. To see why, start with the usual expression for the line
element of two-dimensional Minkowski spacetime: dt2−dx2, with coordinates (t, x).
This can also be written as du dv with u ≡ t+x and v ≡ t−x. This is the product
of two N = 1 line elements, so diffeomorphisms that don’t mix the coordinates u
and v with each other are automatically conformal isometries.10

In contrast, if a flat space has signature (p, q) with either p ≥ 2 or q ≥ 2
(or both), the group of conformal isometries is finite-dimensional.11 This includes
two-dimensional euclidean space.12

10Two-dimensional Minkowski spacetime is exceptional in another way, too: it admits a diffeomorphism (t, x) →
(x, t) that switches timelike and spacelike directions. Thi is excluded from the definition of conformal isometry by
writing the factor as Ω2, which is positive.

11Di Francesco et al (1997), chapters 4 and 5
12The “infinitesimal conformal transformations” that are often considered in two-dimensional euclidean space do

not qualify as (finite) conformal isometries (Di Francesco et al (1997), chapter 5). Some authors include them in
what they call the conformal group, but that’s a deviation from the standard meaning of group.
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5 Conformal isometries in flat spacetime

Now suppose that the metric tensor gab(x) has the form

gab(x) = ηab ≡

{
±1 if a = b

0 otherwise.
(4)

The geometry defined by such a metric tensor is flat. In this case, the abbreviations

η(x,y) ≡
∑
a,b

gab x
ayb η(x) ≡ η(x,x) (5)

will be used. The signs in (4) are arbitrary, so η(x) can be negative or zero or even
if x 6= 0. With this notation, the line element is

η(dx),

and a conformal isometry is a diffeomorphism x→ x̂ for which

η(dx̂) = Ω2(x) η(dx). (6)

In flat spacetime, one simple example of a conformal isometry is the dilation
(or dilatation)13

x→ λx (7)

with λ independent of x. This qualifies as a conformal isometry because its effect
on the line element has the form (6) with scale factor Ω(x) = λ.

Ordinary isometries are conformal isometries, too, with Ω(x) = 1. This includes
translations

x→ x + c

13https://english.stackexchange.com/questions/160496
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and (if η(c) 6= 0) reflections

x→ x− 2
η(x, c)

η(c)
c. (8)

It also includes rotations and Lorentz boosts, both of which may be expressed as
compositions of reflections.14

A more interesting example is the inversion

x→ x̄ ≡ x

η(x)
. (9)

This transformation is defined only where the denominator is nonzero,15 but this
defect can be repaired by extending the manifold (section 7). Where it’s defined,
its effect on the line element is

η(dx̄) =
η(dx)(
η(x)

)2 , (10)

so this transformation qualifies as a conformal isometry (6) with scale function

Ω(x) =
1

η(x)
.

To derive (10), use the identity

dx̄ =
dx

η(x)
− 2

η(x, dx)(
η(x)

)2 x.

The terms involving η(x, dx) cancel when this is substituted into the left-hand side
of (10).

14Article 39430
15If the metric has euclidean signature, then it’s defined everywhere except the origin x = 0. If the metric has

lorentzian signature (spacetime), then it’s defined everywhere except points on the origin’s light cone.
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Any composition of conformal isometries is clearly another conformal isometry.
In particular, the sequence

inversion → translation → inversion

defines a conformal isometry called a special conformal transformation. Ex-
plicitly, this sequence is

x→ x

η(x)
→ x + c

η(x + c)
→

x
η(x) + c

η
(

x
η(x) + c

) =
x + η(x)c

w(c,x)
(11)

with
w(c,x) ≡ 1 + 2η(c,x) + η(c)η(x).

The special conformal transformation is undefined at points where w(c,x) = 0, but
again, this defect can be repaired by extending the manifold (section 7). Where
it’s defined, it is a conformal isometry (6) with scale function

Ω(x) =
1

w(c,x)
.
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6 Weyl transformations

As defined in section 3, a conformal isometry re-arranges the points of spacetime
in such a way that the line element is unaffected except through an overall x-
dependent scale. In contrast, a Weyl transformation replaces the original metric
gab(x) with a new one of the form

ĝab(x) ≡ Ω2(x)gab(x),

without re-arranging the points of spacetime.16

Any smooth function Ω2(x) that is positive for all x may be used to define a
Weyl transformation, but the set of scale functions Ω(x) that can be produced by a
diffeomorphism (equation (2)) is limited. Section 9 describes an example of a scale
function that cannot be produced by any diffeomorphism. Weyl transformations
and conformal isometries are distinct concepts.17

Two metric structures that are related to each other by a Weyl transformation
are said to be conformally equivalent, because they define angles (but not nec-
essarily distances) the same way, even if they cannot be obtained from each other
by any conformal isometry. In particular, for any Ω(x), a metric with components

gab(x) = Ω2(x) ηab

is called conformally flat, even if it cannot be obtained from the flat metric ηab
by any conformal isometry.

In this article, Weyl transformations are important because, on any given
smooth manifold, two metrics that are conformally equivalent to each other have
the same conformal isometries.

16 The name conformal transformation is often used for the thing that I’m calling a conformal isometry, as in
Farnsworth et al (2017) and definition 1.2 in Schottenloher (2008). In contrast, appendix D in Wald (1984) uses the
name conformal transformation for the thing that I’m calling a Weyl transformation. Both concepts are important
in this article, so to avoid confusion, this article doesn’t use the name conformal transformation at all.

17The distinction between these two concepts is emphasized in Farnsworth et al (2017).
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7 Conformal completion

Consider a conformal isometry that is defined everywhere on an N -dimensional
manifold M. If we define another N -dimensional manifold M ⊂ M by by omit-
ting some of M’s points, then the given conformal isometry might not be defined
everywhere on M, simply because some of the points in M that the conformal
isometry tries to mix with each other are missing from M.

Section 5 described examples of conformal isometries that are defined almost
everywhere, but not everywhere, in N -dimensional Minkowski spacetime. We can
think of N -dimensional Minkowski spacetime as a subset M ⊂ M of another
N -dimensional manifold M on which those conformal isometries are defined ev-
erywhere. They are undefined at some points of M only because some points in
M are missing from M. More precisely, N -dimensional Minkowski spacetime is
conformally equivalent to a dense18 subset M ⊂ M of a closed19 manifold M
on which those conformal isometries are defined everywhere. The manifold M
is called a conformal completion (or conformal compactification)20 of M.
Conformally equivalent metrics have the same conformal isometries, so conformal
completion can be viewed as a way of adding points to M – including points that
would be infinitely far away in the original metric – so that its conformal isometries
become well-defined everywhere.

For the smooth manifold RN equipped with a flat metric of any signature (such
as Minkowski spacetime), sections 10-18 will explain how to construct a closed
manifold M with a dense subset M ⊂ M that is conformally equivalent to the
original flat manifold. When N ≥ 3, the conformal isometries of M include all of
the conformal isometries ofM, soM is a conformal completion ofM when N ≥ 3.

18Intuitively, this means that every point in M “touches” points in M.
19A manifold is called closed if it is compact and doesn’t have any boundary. Intuitively, a closed manifold wraps

back on itself in every direction. The sphere SN is one example of a closed manifold.
20The conformal completion of Minkowski spacetime is compact, but this is not necessarily true for other geometries

(https://mathoverflow.net/questions/127473).
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8 Induced metric: concept

The construction in sections 10-18 starts with a higher-dimensional flat manifold
from which the N -dimensional manifoldsM andM are distilled. In that construc-
tion, the flat metric on the higher-dimensional manifold is used to define metrics
onM andM, using the concept of an induced metric. This section explains what
that means, and section 9 shows an example.

Suppose that anN -dimensional manifoldM is embedded in a higher-dimensional
manifold E . (For a familiar example with N = 2, we can take E to be three-
dimensional flat euclidean space, and we can takeM to be the set of points whose
distance from the origin is 1.) A coordinate system on the lower-dimensional man-
ifoldM only needs N coordinates, which we can write collectively as x. A coordi-
nate system on the higher-dimensional manifold E needs a larger number of coor-
dinates, which we can write collectively as X. Within the submanifoldM⊂ E , the
components of X can be be regarded as functions of x. This is one way of defining
M as a submanifold of E .

Suppose that geometry is defined in E by the line element

Gab(X)dXa dXb. (12)

The line element implicitly defines a metric tensor, with components Gab(X). The
line element defines geometry by assigning a length or duration to each path, de-
pending on the sign of (12) along that path, as explained in article 48968. The
induced metric onM is defined simply by considering only those paths in E that
lie entirely within M.

To express the induced line element onM in terms of the N coordinates x, let
X(x) be the functions that defineM as a subset of E , as explained in the previous
paragraph. Substitute the functions X(x) into the line element (12) and use the
identity

dXc =
∂Xc

∂xa
dxb,

which is valid for any path that lies entirely within M, to get the induced line

12
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element

Gcd

(
X(x)

) ∂Xc

∂xa
∂Xd

∂xb
dxa dxb.

This can also be written
gab(x)dxa dxb (13)

with

gab(x) ≡ Gcd

(
X(x)

) ∂Xc

∂xa
∂Xd

∂xb
. (14)

This expresses the components gab(x) of the induced metric on M in terms of the
components Gab(X) of the ambient metric on E , but now that we have the new line
element (13), we can treat it as an intrinsic line element on the submanifold M
itself, without regard for the embedding that motivated it. In fact, in this article,
we won’t need equation (14) at all, because handling the line element as a whole is
sufficient (and easier). The next section uses an example to show how this works.

13
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9 Induced metric: example

This section uses a simple example – the standard N -sphere – to illustrate the
process of deriving an induced metric. For the rest of this article, each index will
be written as a subscript, and the abbreviations

A ·B ≡
∑
k

AkBk A2 ≡ A ·A (15)

will be used, where the sum is over however many components the boldface quan-
tities have.

Let
U = (U1, ..., UN+1) (16)

denote the coordinates in the higher-dimensional space E . In this example, E is
an (N + 1)-dimensional euclidean space.21 Geometry is defined in E by the line
element22

dU · dU. (17)

Given any R 6= 0, the N-sphere (or just sphere) SN consists of the points that
satisfy

U2 = R2. (18)

In words, SN is the set of points in (N + 1)-dimensional euclidean space whose
distance from the origin is R.

The sphere (18) is an N -dimensional manifold,23 so any given point on the
sphere has a neighborhood that can be covered using only N coordinates, even
though equation (18) describes the sphere using N+1 coordinates (16). Conceptu-
ally, the induced metric on the sphere comes from expressing the N+1 coordinates

21In subsequent sections, the higher-dimensional space has two extra dimensions and has a non-euclidean signature.
To distinguish it from the present example, a different symbol (A instead of E) will be used for that space.

22Article 21808
23The zero-dimensional “sphere” S0 is a pair of points, because 1-dimensional euclidean space has two points whose

distance from the origin is R.
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(16) in terms of N coordinates and substituting those expressions into the line
element (17).

A coordinate system that uses only N coordinates cannot cover the whole
sphere, but the whole sphere can be covered using two such coordinate systems,
each of which omits a single point. We can take one of these coordinates systems
to be

x = (x1, x2, ..., xN)

with

x ≡ Ũ

R + UN+1
Ũ ≡ (U1, ..., UN). (19)

The x coordinate system covers the whole sphere except for the single point with
where the denominator is zero.24

We can use the x coordinate system to obtain an explicit expression for the line
element on the sphere (18) induced by the line element (17) in E . The resulting
expression for the line element will be defined everywhere except at the one point
where the coordinate system itself is undefined. To do this, use the abbreviations

W ≡ R + UN+1.

Take the differential of (19) to get

dx =
dŨ

W
− Ũ dUN+1

W 2
. (20)

Take the differential of (18) to get

U · dU = 0,

which may be rewritten as

Ũ · dŨ + UN+1 dUN+1 = 0. (21)

24To cover this point, we can use the coordinate system x = Ũ/(R− UN+1).

15
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We also have the identities

1 + x2 =
2R

W
dU · dU = dŨ · dŨ + (dUN+1)

2. (22)

Use equations (20)-(22) to deduce

dx · dx =
(1 + x2)2

4R2
dU · dU.

The quantity dU ·dU on the right-hand side is the metric (17) in E , with the under-
standing that the coordinates U are now restricted to the sphere (18). Altogether,
this shows that the induced metric structure on the sphere is

4R2

(1 + x2)2
dx · dx (23)

in the x coordinate system. This is the standard metric on SN , and this derivation
shows that it is conformally flat,25 It also shows that N -dimensional euclidean
space (with metric dx ·dx) is conformally equivalent to a sphere SN with one point
deleted.26

This is also an example of a Weyl transformation whose effect cannot be repro-
duced by any conformal isometry (section 6). This follows from the fact that the
Ricci scalar is zero for flat N -dimensional euclidean space but is nonzero for the
sphere with the standard metric (23). These two metrics are related to each other
by a Weyl transformation with scale function Ω(x) ∝ 1/(1 + x2), but they cannot
be related to each other by any diffeomorphism, because a diffeomorphism cannot
change the Ricci scalar from zero to nonzero.

25According to page 380 in Goldberg and Kobayashi (1962), “[Every] compact, simply connected conformally flat
Riemannian manifold is conformal to an ordinary sphere.”

26Section 18 will show that when N ≥ 3, the N -sphere is a conformal completion of N -dimensional euclidean
space, as a special case of a more general result that holds for arbitrary signature.

16
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10 The embedding space formalism

To describe a conformal completionM of a flat N -dimensional space with arbitrary
signature (p, q), the embedding space formalism uses an auxiliary space A
with two extra dimensions, equipped with a flat metric with signature (P,Q) =
(p + 1, q + 1). Points of M correspond to null lines through the origin in the
auxiliary space A. Ordinary origin-preserving isometries in A permute these null
lines with each other, and the corresponding permutation of the points ofM turns
out to be a conformal isometry of M. If p + q ≥ 3, then all conformal isometries
of the original N -dimensional flat manifold can be described this way.27,28

Here’s a summary of the notation:

M is conformally equivalent to the original N -dimensional space, with topology
RN . It has a conformally flat metric with signature (p, q) with p+ q = N .

M is an N -dimensional closed manifold. Like M, has a conformally flat metric
with signature (p, q). It is a conformal completion of M.

A is the auxiliary N + 2-dimensional space. It has a flat metric with signature
(P,Q) = (p+ 1, q+ 1). Each null line through the origin in A corresponds to
an individual point in M, and conversely.

Here’s an outline:

• Sections 11-14 describe M as a submanifold of A and show that ordinary
origin-preserving isometries of A are conformal isometries of M.

• Sections 15-17 describeM as a quotient of a submanifold of A and show that
the induced metric on M is conformally flat.

• Sections 18-19 show that M is a conformal completion of M when N ≥ 3.

• Sections 20-21 explain howM∼= RN “wraps back on itself” to fit within the
closed manifold M.

27Schottenloher (2008), theorem 2.9
28A related insight is described in Fefferman and Graham (2007) and Cap (2009).

17
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11 From A to M
The auxiliary space A has a flat metric with signature (P,Q) with P ≥ 1, Q ≥ 1,
and P + Q = N + 2. To make the minus signs explicit, denote the coordinates of
a point in A by (U,V), with

U = (U1, ..., UP ) V = (V1, ..., VQ),

and write the line element for A as

dU · dU− dV · dV, (24)

using the dot-product notation that was defined in equation (15). With this nota-
tion, the line element (24) doesn’t have any hidden minus signs. The only minus
sign is the one that’s written explicitly in (24).

Define the cone C to be the hypersurface

U2 −V2 = 0. (25)

In words, C is the union of the null lines through the origin.29 Let P be the
hyperplane defined by

UP + VQ = 1. (26)

Every null line through the origin in A intersects P exactly once, except the null
lines with

UP + VQ = 0. (27)

The intersection C ∩ P represents the manifold M.
The manifold M is topologically equivalent to RN . To deduce this, write Ũ

and Ṽ for the first p = P − 1 and q = Q− 1 components of U and V, respectively:

Ũ ≡ (U1, ..., UP−1) Ṽ ≡ (V1, ..., VQ−1). (28)

29When the signature is lorentzian, null lines are often called lightlike lines.

18
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Using (26) to express VQ in terms of UP gives this equation for the hypersurface
M = C ∩ P :

Ũ2 − Ṽ2 = (1− UP )2 − U 2
P = 1− 2UP ⇒ UP =

1 + Ṽ2 − Ũ2

2
.

This shows that every (Ũ, Ṽ) corresponds to a unique point inM, and conversely,
so M is topologically equivalent to Rp+q = RN .

19
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12 Graphic example: N = 1

To illustrate the construction described in section 11, consider simplest case N = 1.
In this case, the auxiliary space A is three-dimensional, and the construction ofM
described in section (11) can be depicted like this:

The cone C defined by equation (25) is shown in the picture as the black outline,
and the hyperplane (26) is shown in the picture as a blue rectangle. The hyperplane
is parallel to one of the lines that makes the surface of the cone (namely the line
described by equation (27)), so its intersection with the cone is a parabola, as
indicated in the picture. This parabola corresponds to M.

Section 10 defined the manifold M as the set of null lines through the origin
in A: each null line through the origin corresponds to a single point in M, and
conversely. When extended indefinitely, the parabola drawn above eventually in-
tersects every line on the surface of the cone except the one to which the plane is
parallel, so M is obtained from M by deleting a single point.

When both p and q are nonzero,M is obtained fromM by deleting more than
one point, but the construction is hard to draw in that case because the auxiliary
space A is has N + 2 ≥ 4 dimensions.

20
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13 Induced metric on M
To derive the induced metric onM, we can use an approach like the one that was
used in section 9. Define

Ũ ≡ (U1, ..., UP−1) Ṽ ≡ (V1, ..., VQ−1) (29)

and

u ≡ Ũ

W
v ≡ Ṽ

W
W ≡ UP + VQ. (30)

We can use (u,v) as coordinates on C∩P everywhere except points with UP +VQ =
0. The differentials of u and v are

du =
dŨ

W
− Ũ dW

W 2
dv =

dṼ

W
− Ṽ dW

W 2
.

The intersection C ∩ P is described the equations (36), which imply

Ũ2 − Ṽ2 = V 2
Q − U 2

P Ũ · dŨ− Ṽ · dṼ = VQ dVQ − UP dUP .

Use those results to get

du · du− dv · dv =
dŨ · dŨ− dṼ · dṼ

W 2
+

2 dW

W 3
(UP dUP − VQ dVQ)

+
(dW )2

W 4
(V 2

Q − U 2
P ),

=
dŨ · dŨ− dṼ · dṼ

W 2
+
dW

W 2
(dUP − dVQ)

=
dU · dU− dV · dV

W 2
.

Altogether, this shows that the induced metric on M is conformally equivalent to
the flat metric du · du− dv · dv with signature (p, q) = (P − 1, Q− 1).
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14 Specific conformal isometries

This section shows how each of the conformal isometries ofM that were described
in section 5 can be explicitly implemented as ordinary origin-preserving isometries
in A. Define Ũ and Ṽ as in equations (28), and use the abbreviation

X̃ ≡ (Ũ, Ṽ).

This is N of the coordinates on A. The other two coordinates on A are UP and
VQ. Define u and v as in equations (30), and use the abbreviation

x ≡ (u,v) =
X

UP + VQ
.

These will be used as the N coordinates on M.
First consider a Lorentz boost in the UP -VQ plane in A:

X̃→ X̃

UP → UP cosh θ + VQ sinh θ

VQ → VQ cosh θ + UP sinh θ.

To see what this does in M, use the fact that the same transformation may be
expressed like this:

X̃→ X̃

UP + VQ → e−θ(UP + VQ)

UP − VQ → eθ(UP − VQ).

According to equation (30), the effect of this on the point x ∈M is

x→ eθx.

This is a dilation in M, as defined in section 5.
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Next, consider this reflection in A:

X̃→ X̃

UP → −UP (31)

VQ → VQ.

The effect of (31) on x ∈M is

x ≡ X

UP + VQ
→ X

VQ − UP
. (32)

Compare this to the effect of the inversion

x→ 1

η(x)
x =

VQ + UP

η(X̃)
X̃ (33)

with η(· · · ) defined as in section 5. For points on the cone (25), we have

η(X̃) ≡ Ũ2 − Ṽ2 = (VQ + UP )(VQ − UP ),

so the right-hand sides of (32) and (33) are the same. This shows that the inversion
in M permutes the points of M the same way that the reflection (31) permutes
the corresponding null lines in A.

Finally, choose any X̃0 with η(X̃0) 6= 0, and consider consider the effect of
a reflection in A along (X̃, UP , VQ) = (X̃0, 1,−1) followed by a reflection along

(X̃0, 0, 0).30 The effect of the first reflection is

(X̃, UP , VQ)→ (X̃, UP , VQ)− 2
η(X̃, X̃0) + UP + VQ

η(X̃0)
(X̃0, 1,−1). (34)

30This combination of reflections gives a null rotation in A, because the (two-dimensional) plane defined by the
two given directions contains exactly one null direction (article 39430). A null rotation is a borderline case between
an ordinary rotation (in a plane that contains no null directions) and a Lorentz boost (in a plane that contains two
null directions).
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When combined with the effect of the second reflection, the net effect is

X̃→ X̃− 2
UP + VQ

η(X̃0)
X̃0

UP → UP − 2
UP + VQ − η(X̃, X̃0)

η(X̃0)

VQ → VQ + 2
UP + VQ − η(X̃, X̃0)

η(X̃0)
.

Altogether, this says that the given transformation preserves the hyperplane (26)
(because it doesn’t change the value of UP + VQ), and its effect on x is just a
translation

x→ x− 2
X̃0

η(X̃0)
.

The direction of the translation can be either timelike (η(X̃0) > 0) or spacelike
(η(X̃0) < 0). A translation in a null direction may be achieved by a sequence of two
translations, one timelike and one spacelike. This shows how ordinary translations
in M are implemented by isometries in the auxiliary space.

Altogether, this shows how each of the conformal isometries of M that were
described in section 5 – including special conformal transformations – can be im-
plemented as ordinary origin-preserving isometries in A.
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15 From A to M

Section 10 defined the manifoldM as the set of null lines through the origin in A:
each null line through the origin corresponds to a single point inM, and conversely.
This section introduces an alternate description ofM as the intersection of C with
another hypersurface H in A, modulo the isometry that exchanges opposite points.
The metric structure of the auxiliary manifold A is invariant under that isometry,
so the induced metric on C ∩H defines a metric onM. That’s why this alternative
description of M is useful. Section 17 will show that this metric structure on M
is conformally flat, like the one on M.

Consider the intersection of C with the hypersurface H defined by

U2 + V2 = 2. (35)

The intersection C ∩ H is the set of points satisfying

U2 = 1 V2 = 1. (36)

This shows that C∩H is topologically the Cartesian product Sp×Sq of two spheres
Sp and Sq with (p, q) = (P − 1, Q − 1), because the conditions (36) can both be
satisfied by choosing any point U satisfying U2 = 1 and any point V satisfying
V2 = 1 independently of each other.

The intersection C ∩H is a smooth manifold with p+ q = N dimensions. Every
null line through the origin in A intersects this manifold at two points: if a null
line through the origin intersects H at one point (U,V), then the same null line
also intersects H at the point (−U,−V). Therefore, each point ofM corresponds
to a pair of points ±(U,V) in Sp × Sq. This shows that M is homeomorphic
(topologically equivalent)31 to the quotient space

Sp × Sq

(U,V) ∼ (−U,−V)
.

31Article 93875
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More concisely:
M = C ∩ H/{±1} ∼= Sp × Sq/{±1}.

In words, M is obtained from the N dimensional manifold C ∩ H ∼= Sp × Sq by
identifying opposite points with each other. The resulting manifold may or may
not be homeomorphic to Sp × Sq, depending on the signature (p, q),32 but we can
think of it intuitively as Sp × Sq as long as we remember that opposite points in
Sp × Sq both represent the same point in M.

32https://math.stackexchange.com/questions/2316413
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16 Graphic example: N = 1

To illustrate the construction described in section 15, consider simplest case N = 1.
In this case, the auxiliary space A is three-dimensional, and the construction ofM
described in section 15 can be depicted like this:

The cone C defined by equation (25) is shown in the picture as the black outline,
and the hypersurface H defined by equation (35) is shown in the picture as the
shaded green sphere. The intersection of the cone with that hypersurface is a pair
of circles (equations (36)), indicated in the picture by the orange arrows. The pair
of circles is topologically the same as S1 × S0, because S0 is just a pair of points.
(In this case, the quantity V in equation (36) has only one component, so equation
(36) says it has only two possible values, namely ±1.) For this pair of circles,
identifying opposite points amounts to equating the two circles with each other, so
the manifold M is a single circle S1.

When both p and q are nonzero, the manifold Sp × Sq is connected, but the
construction is hard to draw in that case because the auxiliary space A is has
N + 2 ≥ 4 dimensions.
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17 Induced metric on M

Section 15 described M using the intersection of the cone C (equation (25)) with
a particular hypersurface (35). Topologically, we could also describe M using
any smooth deformation of the hypersurface (35) that still intersects each null line
through the origin at two points that are each other’s negatives. This section shows
that the induced metric onM is conformally flat for all such deformations. Section
18 will use this result to show thatM is a conformal completion ofM when N ≥ 3.

Let Hρ be any (P +Q−1)-dimensional hypersurface described by the condition

U2 + V2 = 2ρ2(U,V)

for any smooth function ρ(U,V) > 0 satisfying ρ(−U,−V) = ρ(U,V). The case
ρ(U,V) = 1 is the hypersurface (35) that was used before. The intersection C ∩Hρ

is the set of points satisfying

U2 = ρ2(U,V) V2 = ρ2(U,V). (37)

The induced metric on C ∩ Hρ is the metric defined by the line element (24) after
using the constraints (37) to eliminate two of the coordinates.33 The induced metric
on C ∩Hρ is invariant under the isometry (U,V)→ (−U,−V), so this also defines
a metric on M.

To derive the induced metric, we can choose a coordinate system on the N -
dimensional manifold C ∩ Hρ ⊂ A, express the original coordinates U,V in terms
of these, and substitute the result into the line element (24) of A. To choose a
convenient coordinate system on C ∩ Hρ, first define rescaled coordinates by

Û ≡ U

ρ(U,V)
V̂ ≡ V

ρ(U,V)
. (38)

Now the intersection C ∩ Hρ is described by the conditions

Û2 = 1 V̂2 = 1. (39)

33This can always be done in a neighborhood of any given point, even though it can’t be done everywhere at once.

28



cphysics.org article 38111 2023-11-12

Then define
Ũ ≡ (Û1, ..., ÛP−1) Ṽ ≡ (V̂1, ..., V̂Q−1) (40)

and

u ≡ Ũ

W
v ≡ Ṽ

W
W ≡ ÛP + V̂Q. (41)

We can use (u,v) as coordinates on C ∩Hρ everywhere except points with W = 0.
(To cover those points, we can use a similar coordinate system related to this one
by an origin-preserving isometry of A.) A calculation like the one in section 13
gives

du · du− dv · dv =
dÛ · dÛ− dV̂ · dV̂

W 2
. (42)

Rearrange equations (38) to get

U = ρÛ V = ρV̂, (43)

and take the differentials of equations (39) and (43) to get

Û · dÛ = 0 V̂ · dV̂ = 0 (44)

dU = ρ dÛ + Û dρ

dV = ρ dV̂ + V̂ dρ.

Substitute these expressions for dU and dV into the metric (24) and use equations
(39) and (44) to get

dU · dU− dV · dV = (dÛ · dÛ− dV̂ · dV̂)ρ2. (45)

Combine (42) and (45) to see that the induced metric on C∩Hρ is conformally flat.
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18 M as the conformal completion of M
If Hρ is any hypersurface satisfying the conditions described at the beginning of
section 17, then an ordinary origin-preserving isometry in A converts it to another
hypersurface satisfying those conditions, so the result derived in section 17 implies
that ordinary origin-preserving isometries in A act as conformal isometries in M.
Those conformal isometries are defined everywhere in M.

Section 11 described M using the hyperplane P (equation (26)) instead of
one of the hypersurfaces Hρ, but any finite piece of P can be treated as part of a
hypersurfaceHρ of the type that was used in section 17, so the preceding paragraph
applies to M, too: the induced metric on M is the same as the one on M, up
to conformal equivalence, and ordinary origin-preserving isometries in A act as
conformal isometries in M – except at points that are mixed with points that M
excludes.

When N ≥ 3, the group of origin-preserving ordinary isometries in A gives the
full group of conformal isometries of M (section 19). The manifold M is dense in
M (section 7), so this shows that M is a conformal completion of M.
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19 The group of conformal isometries

When N ≥ 3, the group of origin-preserving ordinary isometries in A gives the full
group G of conformal isometries of M,34 and therefore also of M.35 In fact, when
N ≥ 3, the full group G of conformal isometries of M is generated by ordinary
isometries, dilations, and inversions, all defined with respect to M’s original flat
metric. That can be inferred from this combination of observations:

• Section 4.1 in Di Francesco et al (1997) shows that when N ≥ 3, ordinary
isometries, dilations, and special conformal transformations generate the part
of G that is continuously connected to the identity.

• Theorem 2.9 in Schottenloher (2008) shows that when N ≥ 3, G is isomorphic
to O(p+ 1, q+ 1)/{±1}, where O(p+ 1, q+ 1) is the orthogonal group of the
(N + 2)-dimensional auxiliary space A.

• The group generated by ordinary isometries, dilations, and inversions in M
has the same number of connected components as O(p+ 1, q + 1)/{±1}.36,37

This combination of observations implies that the whole group G of conformal
isometries is generated by ordinary isometries, dilations, and inversions.

34Schottenloher (2008), theorem 2.9
35Some conformal isometries are defined only almost everywhere – not quite everywhere – in M.
36The group O(p+ 1, q + 1)/{±1}, has four connected components when p+ 1 and q + 1 are both even, and two

otherwise. To deduce this, start with the fact that the group O(p + 1, q + 1) has four connected components: one
including transformations that reflect an odd number of timelike directions in the embedding space, one including
transformations that reflect an odd number of spacelike directions in the embedding space, one that includes neither
(this is the identity component), and one that includes both. If p + 1 and q + 1 are both even, the transformation
−1 that reflects every direction belongs to the identity component (it reflects an even number of both timelike and
spacelike directions), so the quotient doesn’t merge any of the connected components. If at least one of p+ 1 or q+ 1
is odd, then −1 doesn’t belong to the identity component, so the quotient merges the connected components in pairs
(the details are shown in https://physics.stackexchange.com/a/487288).

37The fact that the group generated by ordinary isometries, dilations, and inversions has the same number of
connected components is clear in the embedding space formalism, because every component of the group can be
reached using reflections along the N + 2 axes in the auxiliar space A. N of these correspond to ordinary isometries
in the original space, one of the others corresponds to the inversion in the original space, and the last one is redundant
because of the quotient by {±1}.
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20 Conformal infinity: graphic preview

The manifold M ⊂ M is obtained by omitting some of the points in M. The
omitted points correspond to limits in which one or more of the coordinates in
M goes to infinity, in a coordinate system where the flat metric on M has the
form shown in equation (4). For this reason, the omitted points are sometimes
called conformal infinity. Each of those points can be approached from more
than one direction in M. Since M is a closed manifold, each of these points can
be approached from at least one pair of opposite directions within M. Section 21
will describe the relationship between M and M with that perspective in mind,
specialized to the case of lorentzian signature so thatM is (conformally equivalent
to) Minkowski spacetime.

Here’s a graphic preview of the results derived in section 21, for the case when
M is three-dimensional Minkowski spacetime: N = 3 and (p, q) = (2, 1). With the
help of a Weyl transform, three-dimensional Minkowski spacetime can be depicted
as the interior of a pair of back-to-back cones:38

Future Timelike Infinity

Future Lightlike Infinity

Spacelike Infinity

Past Lightlike Infinity

Past Timelike Infinity

38These cones should not be confused with the “cone” C that was defined in section 15.
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This is essentially a Penrose diagram, drawn with three dimensions instead of
only two, as in Wald (1984), figure 11.2. Points on the boundary represent con-
formal infinity, with one caveat: they’re not all distinct from each other in M,
even though they are drawn as distinct points in the picture. Section 21 will show
that the points labeled future timelike infinity, past timelike infinity, and space-
like infinity (the whole circle) are all the same single point in M. Section 21 will
also show that any other point on the surface of the upper cone (future lightlike
infinity) is the same (in M) as a corresponding point on the surface of the lower
cone (past timelike infinity). The correspondence is simple: any lightlike line that
passes through the origin of space at any time intersects the surfaces of the upper
and lower cones, and those two intersections are the same single point in M. An
example is depicted here:

O

F

P

In this picture, the vertical green dotted line is a timelike worldline at the origin
of space (at all times), and the slanted blue dotted line is a lightlike worldline
that passes through the origin at the event labeled O and approaches future and
past lightlike infinity at the points labelled F and P , respectively. Both F and P
correspond to the same single point in M.
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Consider a path that starts somewhere on lightlike infinity (on the surface of one
of the cones) and passes through spacelike infinity (the equator in these pictures).
Spacelike infinity is a single point in M, so a continuous path that approaches
the equator from past lightlike infinity could emerge from it into future lightlike
infinity at any point on the equator. However, most of those continuous paths are
not smooth: most of them have a kink at the point inM that represents spacelike
infinity in M. Section 21 will show that in order for such a path to be smooth,
it must emerge into future timelike infinity at the point on the equator that is
opposite from where it entered, as illustrated here:

B

G

B

B

G G

In these pictures, the path approaches spacelike infinity along the green arrow (G)
and emerges from spacelike infinity along the blue arrow (B). All three pictures are
different ways of drawing the same thing, thanks to the identifications described in
the previous paragraph.39

39A lower-dimensional version of the picture on the left is shown in figure 5 in Strominger (2017), where it is used to
illustrate the antipodal matching condition that characterizes the asymptotic properties of the electromagnetic
field associated with a moving charge.
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21 Conformal infinity: calculations

This section derives the results that were previewed in section 20. For the graphic
preview in section 20,M was taken to be three-dimensional Minkowski spacetime,
but the derivation here is for N -dimensional Minkowski spacetime with arbitrary
N .

Work in an auxiliary space A with signature (P,Q) = (N, 2), with coordinates

(Ũ, Ṽ , UP , VQ) Ũ ≡ (U1, ..., UP−1).

As before, let C be the cone defined by

Ũ2 + U 2
P = Ṽ 2 + V 2

Q.

To describe M, let P be the hyperplane defined by

UP + VQ = 1. (46)

The manifold M is C ∩ P , as in section 11. Points on C ∩ P satisfy

Ũ2 + U 2
P = Ṽ 2 + (1− UP )2,

which implies

UP =
1− Z

2
VQ =

1 + Z

2
with

Z ≡ Ũ2 − Ṽ 2,

so points on C ∩ P have the form

(Ũ, Ṽ , UP , VQ) =

(
Ũ, Ṽ ,

1− Z
2

,
1 + Z

2

)
. (47)

These points are in one-to-one correspondence with (Ũ, Ṽ ).
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To describe the conformal completion M of M, let H be the hypersurface
defined by the condition

Ũ2 + U 2
P + Ṽ 2 + V 2

Q = 2. (48)

The manifold M is C ∩ H with opposite points identified, as explained in section
15. The intersection C ∩ H is given by the conditions

Ũ2 + U 2
P = 1 Ṽ 2 + V 2

Q = 1, (49)

so C ∩ H is topologically SN−1 × S1. A line through the origin and through the
point (47) intersects H at the two points

±1√
Ṽ 2 + (1 + Z)2/4

(
Ũ, Ṽ ,

1− Z
2

,
1 + Z

2

)
. (50)

This pair of points represents a single point in M.
Lines that don’t intersect the hyperplane (46) represent points in M that are

not included inM. To describe how these extra points inM are approached from
within M, use the fact that line that don’t intersect the hyperplane (46) have the
form

(Ũ, Ṽ , UP , VQ) ∝ (Ũ0, Ṽ0, 1,−1). (51)

Lines of the form (51) correspond to taking Ũ and/or Ṽ to infinity in such a way
that Z → ±∞. If Ũ is fixed and |Ṽ | → ∞, then (50) approaches ± (0, 0, 1, −1) .
If Ṽ is fixed and |Ũ| → ∞, then (50) again approaches ± (0, 0, 1, −1) . Opposite
points in C∩H (differing from each other only by an overall sign) correspond to the
same point in M, so this establishes the first result that was previewed in section
20:

Spacelike infinity and future and past timelike infinity inM
all correspond to the single point ±(0, 0, 1,−1) in M.
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To see what happens in lightlike directions, consider lines of the form

Ũ = (Ṽ − Ṽ0)u (52)

with u2 = 1 so that (dŨ)2 − (dṼ )2 = 0, which says that the line is lightlike. The
slanted green dotted line in section 20, with endpoints labeled P and F , is an
example of such a lightlike line. The constant Ṽ0 is the value of the time coordinate
Ṽ at which this lightlike line crosses through the origin of space (Ũ = 0). In
the picture shown in section 20, sliding the point labeled F upward from spacelike
infinity to future timelike infinity (or sliding the point P upward from past timelike
infinity toward spacelike infinity) corresponds to increasing Ṽ0 from −∞ to +∞.
Equation (52) implies

Z ≡ Ũ2 − Ṽ 2 = (Ṽ − Ṽ0)
2 − Ṽ 2 = Ṽ 2

0 − 2Ṽ0Ṽ ,

so if |Ṽ | → ∞ in (52), then the points (50) approach

±1√
1 + Ṽ 2

0

(
u, 1, Ṽ0, −Ṽ0

)
. (53)

The signs correspond to Ṽ → ±∞, which corresponds to appraoching F or P ,
respectively, along the slanted green dotted line in section 20. These two points
correspond to the same point in M, because points in C ∩H that differ from each
other only by an overall sign represent the same point in M. This establishes the
second result that was previewed in section 20:

The past and future limits of any lightlike line in M that
passes through the origin of space both correspond to the
same point in M. This point in M has the form (53).
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Now consider this smooth path on C, parameterized by λ:

(λu, λ, 1,−1) (54)

with u2 = 1. These points don’t exist in M because they have the form (51), but
they define a smooth path in M. For λ < 0 and λ > 0, it has the form (53).
At λ = 0, this path passes through spacelike infinity. According to equations (53)
and (54), starting with λ > 0 and approaching λ→ 0 corresponds to starting with
Ṽ0 > 0 and approaching Ṽ0 → +∞. This is illustrated, for a particular choice of u,
by the green arrow in the pictures at the end of section 20. If we continue along the
path (54) with the same u, then λ passes through zero and becomes increasingly
negative (λ < 0), which corresponds to Ṽ0 emerging from −∞ and becoming less
negative. This is illustrated by the blue arrow in the pictures. All three of the
the pictures shown at the end of section 20 are different ways of drawing the same
thing, because both signs in (53) represent the same point in M. This establishes
the third result that was previewed in section 20:

Suppose that Minkowski spacetime M is represented by a
Penrose-like diagram as in section 20. Whenever a smooth
curve on the lightlike-infinity surface passes through space-
like infinity, it “jumps” to the opposite side of space in the
picture. This is necessary in order for the path to maintain
a consistent direction within lightlike infinity, as required
for the path to be smooth. The apparent discontinuity (the
“jump”) is an artifact of not drawing all of spacelike infinity
as a single point in the picture, like it really is in M.

38



cphysics.org article 38111 2023-11-12

22 References

Cap, 2009. “The ambient metric” http://www.mat.univie.ac.at/~cap/files/

Paris09-beamer.pdf

Di Francesco et al, 1997. Conformal Field Theory. Springer

Farnsworth et al, 2017. “Weyl versus Conformal Invariance in Quantum Field
Theory” https://arxiv.org/abs/1702.07079

Fefferman and Graham, 2007. “The ambient metric” https://arxiv.org/

abs/0710.0919

Goldberg and Kobayashi, 1962. “The conformal transformation group of a
compact homogeneous Riemannian manifold” https://projecteuclid.org/

euclid.bams/1183524679

Schottenloher, 2008. A Mathematical Introduction to Conformal Field The-
ory (Second Edition). Springer, http://www.mathematik.uni-muenchen.

de/~schotten/LNP-cft-pdf

Strominger, 2017. “Lectures on the Infrared Structure of Gravity and Gauge
Theory” https://arxiv.org/abs/1703.05448

Wald, 1984. General Relativity. University of Chicago Press

23 References in this series

Article 00418 (https://cphysics.org/article/00418):
“Diffeomorphisms, Tensor Fields, and General Covariance” (version 2022-02-20)

Article 21808 (https://cphysics.org/article/21808):
“Flat Space and Curved Space” (version 2023-11-12)

39

http://www.mat.univie.ac.at/~cap/files/Paris09-beamer.pdf
http://www.mat.univie.ac.at/~cap/files/Paris09-beamer.pdf
https://arxiv.org/abs/1702.07079
https://arxiv.org/abs/0710.0919
https://arxiv.org/abs/0710.0919
https://projecteuclid.org/euclid.bams/1183524679
https://projecteuclid.org/euclid.bams/1183524679
http://www.mathematik.uni-muenchen.de/~schotten/LNP-cft-pdf
http://www.mathematik.uni-muenchen.de/~schotten/LNP-cft-pdf
https://arxiv.org/abs/1703.05448
https://cphysics.org/article/00418
https://cphysics.org/article/21808


cphysics.org article 38111 2023-11-12

Article 39430 (https://cphysics.org/article/39430):
“Lorentz Transforms from Reflections” (version 2023-04-30)

Article 48968 (https://cphysics.org/article/48968):
“The Geometry of Spacetime” (version 2022-10-23)

Article 93875 (https://cphysics.org/article/93875):
“From Topological Spaces to Smooth Manifolds” (version 2023-11-12)

40

https://cphysics.org/article/39430
https://cphysics.org/article/48968
https://cphysics.org/article/93875

	Some conventions
	Ordinary isometries: definition
	Conformal isometries: definition
	Low-dimensional exceptions
	Conformal isometries in flat spacetime
	Weyl transformations
	Conformal completion
	Induced metric: concept
	Induced metric: example
	The embedding space formalism
	From A to M
	Graphic example: N=1
	Induced metric on M
	Specific conformal isometries
	From A to M
	Graphic example: N=1
	Induced metric on M
	M as the conformal completion of M
	The group of conformal isometries
	Conformal infinity: graphic preview
	Conformal infinity: calculations
	References
	References in this series

