
cphysics.org article 37501 2022-02-18

Why the (Hilbert) Stress-Energy
Tensor is Covariantly Conserved

Randy S

Abstract In general relativity, the same covariant conservation
law for the stress-energy tensor of the matter fields can be derived
using either of two different methods. One method relies on the
equation of motion for the metric field, and the other method uses
only the equation of motion for the matter fields. This article
explains why both methods lead to the same conservation law.
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1 Introduction

The equation of motion (abbreviated EoM in this article) for the metric field in
general relativity has the form

Gab(x) ∝ T ab(x), (1)

where the Einstein tensor Gab depends only on the metric field, and the quan-
tity T ab on the right-hand side depends also on whatever other fields are present,
hereafter called matter fields. The quantity T ab in this equation is the (Hilbert)
stress-energy tensor defined in equation (8), below. It is automatically both sym-
metric and gauge-invariant.

For any metric field whatsoever, whether or not it satisfies the EoM (1), the
Einstein tensor Gab automatically satisfies the identity

∇aG
ab(x) = 0, (2)

where ∇a is the covariant derivative associated with the metric field. When com-
bined with the EoM (1), this implies the covariant conservation law

∇aT
ab(x) = 0. (3)

When viewed this way, the conservation law is a condition that the matter fields’
EoMs must satisfy in order to be consistent with the metric field’s equation of
motion.

The same conservation law (3) can also be derived a different way, without using
the identity (2). It can be derived instead using only the matter fields’ equations
of motion, as long as the whole model is generally covariant as defined in the
next section.

This article explains why these two seemingly different approaches – one relying
on the equations of motion for the matter fields, and one not – both lead to the
same conservation law (3) for the stress-energy tensor of the matter fields.
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2 General covariance

In both approaches, the conservation law (3) is a consequence of general covari-
ance. I’m not sure that name is always used consistently (most physics texts don’t
define it carefully enough), so I’ll explain what I mean by it. Suppose that the
model’s equations of motion come from the action principle, with an action of the
form

S =

∫
dNx

√
| det g(x)| L(x), (4)

where N is the number of spacetime dimensions, and the lagrangian function L(x) is
(a coordinate representation of) a scalar field constructed from various other tensor
fields. Tensor fields – including scalar fields – have coordinate-free definitions,1 and
article 00418 explains how any diffeomorphism2 of the spacetime manifold in which
they live induces a corresponding transformation of the fields. As in that article, I’ll
use the word fieldomorphism for this corresponding transformation of the fields.3

General covariance means that the action is invariant under fieldomorphisms.4

This article only considers fieldomorphisms that are compactly supported in
spacetime. This way, we can restrict the integral (4) to a compact domain (which
contains the support of the fieldomorphisms under consideration) so that it is well-
defined, and we can integrate-by-parts without generating boundary terms. The
action is required to be invariant under all fieldomorphisms whose support is re-
stricted to the interior of a region R, for all compact regions R.

1 Article 09894 reviews the coordinate-free definitions of tensor fields.
2 Article 93875 reviews the definition of diffeomorphism.
3 This name is not standard.
4 In the physics literature, general covariance is sometimes called diffeomorphism invariance, but mathematicians

usually reserve the word diffeomorphism for its effect on the underlying smooth manifold, not for the corresponding
effect on the fields.
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3 Conservation from the metric field’s EoM

This section shows how to derive the covariant conservation law (3) using the EoM
for the metric field, without using any EoMs for the matter fields. This approach
is based on these assumptions:

• The EoM for the metric field satsifies an action principle. In other words, it
may be derived from an action, using the principle of stationary action.

• The action is the sum of two parts, each of which makes a non-zero contribu-
tion to the EoM: One part Sg involving only the metric field,5 and one part
Sm that involves both the matter fields and the metric field.

• The metric-only part Sg is invariant under fieldomorphisms (section 2).

Aside from these basic properties, the explicit form of the action doesn’t matter.
Most importantly, this approach does not assume anything about the EoMs for the
matter fields.

To explore the consequences of those assumptions, consider an action of the
form

S = Sg + Sm (5)

with Sg and Sm as described above. According to the action principle, the EoM
for the metric field is

δS

δgab(x)
= 0. (6)

This implies
Gab ∝ T ab(x) (7)

with

Gab(x) ∝ 1
√
g

δSg
δgab(x)

T ab(x) ≡ −2
√
g

δSm
δgab(x)

. (8)

5 The simplest option is the Einstein-Hilbert action for the metric field, which leads to general relativity.

4



cphysics.org article 37501 2022-02-18

Here,
√
g is an abbreviation for the magnitude of the determinant of the metric

field:6 √
g ≡

√
| det g|.

We will see below that the general covariance of Sg implies

∇aG
ab = 0. (9)

Equation (9) is a consequence of the fieldomorphism invariance of the metric-only
action Sg, regardless of any equations of motion. When combined with the EoM
(7), this implies the conservation law (3).

The remaining task is to derive equation (9). For this, we only need the as-
sumption that Sg is invariant under all fieldomorphisms. The effect of a generic
fieldomorphism on the coordinates may be written

xa → xa + εθa(x), (10)

where θa(x) is a smooth function, and ε is a fixed parameter that we will take to
be infinitesimal in the following derivation. Article 71500 shows that when ε is
infinitesimal, the effect of this fieldomorphism on the metric field is

δgab(x) =
(
∇a θb(x) +∇b θa(x)

)
ε. (11)

For an arbitrary variation of the metric field (not necessarily a fieldomorphism),
we have the identity

δSg =

∫
dNx

δSg
δgab(x)

δgab(x). (12)

If we take the transformation δgab(x) to be an infinitesimal fieldomorphism (11),
then Sg is invariant, so we have

0 = ε

∫
dNx

δSg
δgab(x)

∇aθb(x). (13)

6 The determinant of the metric field is never zero, so it doesn’t cause any problems in the denominator of (8).
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The symmetry in of gab was used to combine the two terms on the right-hand side
of (11). Use the definition (8) to write this as

0 = ε

∫
dNx

√
g Gab(x)∇aθb(x). (14)

For the next step, we’ll need a few properties of the covariant derivative ∇, namely7

∇aθb = ∂aθb − Γcabθc

∇aG
ab = ∂aG

ab + ΓaacG
cb + ΓbacG

ac

∂a
√
g =
√
g Γbba.

Use integration-by-parts along with these identities to see that equation (14) implies

0 =

∫
dNx

√
g θb(x)∇aG

ab(x). (15)

The fact that equation (13) (and therefore equation (15)) holds for all compactly-
supported smooth functions θb(x) implies equation (9).8 When combined with the
EoM (7), this implies the conservation law (3). This completes the derivation of
the conservation law (3) from the assumptions that were listed at the beginning of
this section. Most importantly, this derivation did not use any equations of motion
for the matter fields. Instead, we deduced something (equation (3)) about how the
matter fields must behave.

7 These are derived in article 03519.
8 In a little more detail: suppose that f(x) is an unknown smooth function satisfying the condition that∫ b

a
dx θ(x)f(x) = 0 for all intervals [a, b], for all smooth functions θ(x) that are zero in a neighborhood of a and

b. Now choose any interval [a, b] in which f(x) is either positive or negative everywhere in that interval. Then no
cancellations can occur if θ ≥ 0 everywhere in that interval, so the assumed condition cannot hold unless f(x) = 0
everywhere. The same idea works for higher-dimensional integrals, too.
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4 Conservation from the matter fields’ EoMs

This section shows that if the action for the matter fields is invariant under fiel-
domorphisms in the sense defined below, then the conservation law (3) holds. In
this approach, the conservation law is a consequence of the EoMs for the matter
fields alone. The EoM for the metric field (equation (6) or (7)) is not used. This
approach is based on these assumptions:

• The EoMs for the matter fields collectively satsify an action principle. In
other words, they may all be derived from a single action Sm, using the
principle of stationary action. (The EoM for the metric field is not used, so
it doesn’t need to satisfy the action principle.)

• The action Sm is invariant under all fieldomorphisms, as long as the fieldo-
morphism is applied to the metric field, too.

Aside from these basic properties, the explicit form of the action doesn’t matter.
Most importantly, this approach does not assume anything about the EoM for the
metric field. The metric field may simply be prescribed, and it may even be flat.9

Before continuing, I’ll clarify what general covariance means when the metric
is prescribed. In a context like general relativity,10 where the metric field is one of
the dynamic fields whose behavior is governed by the model’s equations of motion
(instead of being prescribed), general covariance implies that any fieldomorphism
applied to any solution gives another solution. This fieldomorphism symmetry is
a gauge symmetry, meaning that two solutions that can be obtained from each
other by a fieldomorphism are regarded as being physically equivalent to each other.
In contrast, in a context like generalized special relativity (article 33547) where the
metric field is merely prescribed, the result of applying an arbitrary fieldomorphism
to a solution is typically not another solution of the original equations of motion –

9 The definition pf T ab (equation (8)) requires specifying how the action depends on the metric field, but the
result may be specialized to a flat metric after evaluating the variation with respect to gab.

10 Here, I’m distinguishing between general relativity and generalized special relativity. This distinction is defined
in article 33547.
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unless we also apply that same fieldomorphism to the metric field. In this context,
general covariance assumes that we also apply the same fieldomorphism to the
metric field that we apply to the matter fields, even though the metric field is one
of the model’s prescribed inputs.

Let φ1, φ2, ... denote the list of matter fields, and suppose that the matter action
Sm is invariant under fieldomorphisms in the sense described above. The effect of
a fieldomorphism on the metric field is given by equation (11). Exactly how the
fieldomorphism affects the matter fields isn’t important in this derivation, so we can
just write the effect as δφn. For an arbitrary variation of the fields (not necessarily
a fieldomorphism), including the metric field, we have the identity

δSm =

∫
dNx

(∑
n

δSm
δφn(x)

δφn(x) +
δSm
δgab(x)

δgab(x)

)
.

If we take the transformation to be a fieldomorphism, then the assumption that
Sm is invariant gives

0 =

∫
dNx

(∑
n

δSm
δφn(x)

δφn(x) + 2ε
δSm
δgab(x)

∇aθb(x)

)
. (16)

This is analogous to the result (13), which is a consequence of the fieldomorphism
invariance of Sg, but now we have an extra term because the action Sm involves
matter fields fields as well as the metric field. If the matter fields satisfy their own
EoMs, namely

δSm
δφn(x)

= 0,

then equation (16) reduces to

0 =

∫
dNx

δSm
δgab(x)

∇aθb(x). (17)

This is just like equation (13), but with Sm in place of Sg, so we get the same result
(9) but with T ab in place of Gab. This gives the conservation law (3), but here
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we derived it without using any EoM for the metric field. We used only general
covariance of the matter part of the action combined with the EoM for the matter
fields.

9



cphysics.org article 37501 2022-02-18

5 Why both approaches give the same result

The preceding sections derived the same conservation law (3) using two different
methods. The difference between the two methods is that one method uses the EoM
for the metric field, while the other method uses only the EoMs for the matter fields.

Now we can understand why both approaches give the same result in general
relativity. In general relativity, the action has the form Sg + Sm, and Sg and Sm
are each separately invariant under fieldomorphisms. The term Sg involves only
the metric field, so the fieldomorphism invariance of Sg gives the identity (2), and
then consistency with the metric field’s equation of motion (7) requires that the
matter fields satisfy the conservation law (3). The term Sm involves both matter
fields and the metric field, so the fieldomorphism invariance of Sm gives the identity
(16), which reduces to the conservation law (3) when the matter fields satisfy their
equations of motion. This explains why the same conservation law can be derived
either way, at least if explaining “why” means finding a short list of basic conditions
that make the coincidence inevitable.
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