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Free Massless Scalar Quantum Fields
Randy S

Abstract Articles 00980 and 30983 studied the model of a single free
scalar quantum field with a nonzero single-particle mass (m > 0). When
m = 0, the model acquires a new symmetry called a shift symmetry.
This article introduces two versions of the model with m = 0: one in which
the shift symmetry is spontaneously broken, and one in which observables
are required to be invariant under the shift symmetry.
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1 Introduction

Articles 00980 and 30983 studied the model of a single free scalar quantum field
with a nonzero single-particle mass (m > 0). Sometimes the field itself is called
massive, meaning that the spectrum of the hamiltonian (the total energy) has a
nonzero gap separating the lowest-energy state from all orthogonal states, even in
the infinite-volume limit.1 Such a model is also described as having a nonzero mass
gap, and sometimes we simply say that the model is gapped.

Setting m = 0 gives the massless free scalar field, which is an example of
a gapless model – one whose infinite-volume limit has an energy spectrum that
extends continuously down to the lower bound. This is only a toy model, but it’s
worth studying because it’s a simple example of a scale-invariant model (article
09193). Models with scale invariance are important to the general study of quantum
field theory, because scale-invariant models are those to/from which all others flow
when we zoom in or out.2

The model’s definition is straightforward when space is treated as a lattice of
finite size, but it becomes scale-invariant only in the continuum and infinite-volume
limits. This article describes two different ways to define the infinite-volume limit,
resulting in two slightly different variants of the model.

1This article defines the model initially by treating space as a finite lattice. This automatically makes the gap
nonzero as long as the lattice has finite spatial size (space has finite volume). When we say that a model has a
nonzero energy gap, we mean that the gap remains nonzero even in the infinite-volume limit.

2Simmons-Duffin (2016)
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2 Review: free scalar quantum fields

Let x = (x1, ..., xD) denote a point in D-dimensional space, and let t denote the
time coordinate. A model of a single free scalar quantum field can be constructed
in a relatively striaightforward way by treating space as a lattice,3 as explained in
article 52890. The number of sites along a canonical axis will be denoted K, and
ε will denote the distance between neighboring points. The abbreviation

L ≡ Kε (1)

will also be used. The equation of motion for the free scalar field φ(x, t) has the
form

φ̈−∇2φ+m2φ = 0. (2)

where each overhead dot denotes a derivative with respect to t, ∇ denotes the
(lattice) gradient with respect to x, and m is the mass of one particle. For any m,
the field operators satisfy the equal-time commutation relations[

φ(x, t), φ(y, t)
]

= 0
[
φ̇(x, t), φ̇(y, t)

]
= 0 (3)[

φ(x, t), φ̇(y, t)
]

= iδ(x− y) with δ(x− y) ≡

{
1/εD if x = y,

0 otherwise.

Observables localized in a spacetime region R are constructed from the field op-
erators φ(x, t) with (x, t) ∈ R. The hamiltonian, the operator that generates
translations in time, is

H = εD
∑

x

(
φ̇2(x, t) +

(
∇φ(x, t)

)2

2
+m2φ(x, t)

)
+ constant. (4)

The hamiltonian is independent of time,4 even though the integrand is not.

3This helps clarify what happens when m = 0.
4Article 52890
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3 The massless free scalar field

Everything in section 2 is valid for any m ≥ 0. This article studies the massless case
m = 0.5 Compared to the massive case, the massless case has two new features.
First, for any real number c, the transformation

φ(x, t)→ φ(x, t) + c, (5)

is a symmetry of the model, called the shift symmetry. Second, on a finite lattice,
the m = 0 model does not have a vacuum state, even though its energy spectrum
has a finite lower bound as required by general principles.6

This article describes two different ways to define an infinite-volume limit of the
massless model, with different consequences:

• One way of defining the infinite-volume limit gives what this article calls the
frozen variant of the model.7 In this variant, the zero-momentum part of
the field operator is independent of time (“frozen”). This approach works for
any D ≥ 2, where D is the number of dimensions of space, but not for D = 1.
When it works, this variant of the model has a vacuum state. In fact, it has
lots of vacuum states, because the shift symmetry is spontaneously broken.

• Another way of defining the infinite-volume limit gives what this article calls
the trimmed variant of the model.7 In this variant, observables are required
to be invariant under the shift symmetry (5), so the set of observables is
“trimmed.” In particular, the zero-momentum part of the field operator no
longer qualifies as an observable, not even on a finite lattice. This makes
defining an infinite-volume limit relatively straightforward, and it works for
any D ≥ 1. This variant of the model again has a vacuum state, but the shift
symmetry is no longer described as being spontaneously broken, because the
transformation (5) doesn’t affect observables at all.

5Articles 00980 and 30983 studied the massive case m > 0.
6Article 21916
7 This name is not standard.
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4 The untrimmed model for D = 0

In finite volume, the untrimmed version of the m = 0 model does not have a vacuum
state. This section, together with section 5, demonstrates this in the simplest case
D = 0, where space consists of a single point. Sections 6-7 demonstrate it for
arbitrary D.

When D = 0, the field operators don’t depend on x, so we can write the field
simply as φ(t). The equation of motion (2) reduces to

φ̈+m2φ = 0. (6)

When m > 0, the commutation relations (2) and the equation of motion (2) are
both satisfied by

φ(t) = φ(0) cos(mt) + φ̇(0)
sin(mt)

m
(7)

with
[φ(0), φ̇(0)] = i. (8)

When m = 0, equations (2) and (2) are satisfied instead by

φ(t) = φ(0) + φ̇(0)t, (9)

which can also be obtained from (7) by taking m→ 0 with t fixed.8

The m → 0 limit seems innocuous when described this way, but it has an
interesting consequence: a lowest-energy state (vacuum state) does not exist when
m = 0. The next section uses a Hilbert-space representation of the field operators
to explain how this works.

8Another perspective: the limit m→ 0 is effectively the same as m being negligibly small compared to all other
scales. Since t is the only other scale in this case, the limit m→ 0 is effectively the same as m� 1/t.
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5 The untrimmed model for D = 0: Hilbert space

This section shows that a lowest-energy state (vacuum state) does not exist when
m = 0 and D = 0.

As in the previous section, consider zero-dimensional space (D = 0). When
m 6= 0, we can define an operator a by

a ≡ mφ(0) + iφ̇(0)√
2m

. (10)

The field operators may be written

φ(t) =
ae−imt + a†eimt√

2m
, (11)

which clearly satisfies the equation of motion (2) and also satisfies the commutation
relations (2) because the operator a and its adjoint a† satisfy

[a, a†] = 1. (12)

In terms of these operators, the hamiltonian

H =
φ̇2(0) +m2φ2(0)

2
+ constant (13)

may also be written
H = ma†a+ constant,

and the commutation relation (12) implies that a state |0〉 satisfying a|0〉 = 0 has
the lowest possible energy, and that the states (a†)n|0〉 with n ∈ {0, 1, 2, ...} form a
basis for a complete Hilbert-space representation of the algebra of field operators.

When m = 0, the definition (10) does not make sense. To appreciate the
consequence of taking m → 0, we can construct the Hilbert space in a different
way that doesn’t refer to the value of m. We can take the Hilbert space to consist
of complex-valued functions f(s) of a single real variable s, modulo functions with
zero norm,9 with the inner product defined by 〈f |g〉 =

∫
ds f ∗(s)g(s). Then the

9Article 90771
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operators φ(0) and φ̇(0) can be represented as

φ(0)f(s) = s f(s) φ̇(0)f(s) = −i d
ds
f(s). (14)

The hamiltonian (13) with m = 0 is then represented by

H =
φ̇2(0)

2
+ constant =

(
−i d
ds

)2

+ constant. (15)

The operators φ(0) and φ̇(0) are self-adjoint, so the hamiltonian (13) satisfies the
spectrum condition: the energy spectrum is bounded from below.10 This is true for
any m, including m = 0, but when m = 0, but that lower bound is not attainable:
a lowest-energy state does not exist.11,12 To see why, let |f〉 be the state-vector
represented by the function f(s), and consider the quantity

〈f |H|f〉 = −
∫
ds f ∗(s)

d2

ds2
f(s) =

∫
ds

∣∣∣∣dfds
∣∣∣∣2 .

The last step used integration-by-parts, which doesn’t produce a boundary term
because f is normalizable. The right-hand side can be arbitrarily close to zero, but
not equal to zero: a function with df/ds = 0 cannot be normalized, so it doesn’t
correspond to any state-vector in the Hilbert space.

10The lower bound can be chosen arbitrarily by choosing the value of the constant term.
11In this situation, we say that the energy spectrum has an infimum instead of a minimum.
12Mathematically, the case m = 0 and D = 0 is the same as the nonrelativistic single-particle model described in

article 20554, but the interpretation is different. In that article, the observable φ(t) represented the coordinate of a
particle in one-dimensional space. Here, it represents the amplitude of a field in zero-dimensional space. Same math,
different interpretation.
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6 The untrimmed model for any D

This section shows that the model with m = 0 on a finite lattice does not have a
vacuum state for any D.

Define ε, K, and L as in section 2. In D-dimensional space, we can take the
Fourier transform of the equation of motion (2) with respect to x to get

φ̈FT(p, t) + ω2(p)φFT(p, t) = 0, (16)

where the subscript FT indicates the Fourier-transformed field

φFT(p, t) ≡ εD
∑

x

e−ip·xφ(x, t). (17)

When space is treated as a lattice of finite size, the components of p are integers
times 2π/L. For m→ 0, the quantity ω(p) is

ω(p) ≡
√

p̂2

and the components of p̂ are13

p̂n =
2 sin(pnε/2)

ε
,

which becomes p̂n → pn in the limit ε→ 0 with Kε held fixed.14 The commutation
relations (2) imply

[
φFT(p, t), φ̇†FT(p′, t)

]
=

{
(2π)DLD if p = p′

0 otherwise.
(18)

For p 6= 0, we can solve equation (16) just like in article 00980: we can write

φFT(p, t) =
e−iω(p)ta(p) + eiω(p)ta†(−p)√

2ω(p)
for p 6= 0, (19)

13Article 71852
14Notice that this implies K →∞.
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where the operators a(p) and their adjoints a†(p) satisfy

[a(p), a(p′)] = 0 (20)

[a(p), a†(p′)] = (2π)D δ(p′ − p) ≡
{
LD if p = p′

0 otherwise.
(21)

For p = 0, the m = 0 version of equation (16) reduces to the m = 0 version of
equation (6), so

φFT(0, t) = φFT(0, 0) + φ̇FT(0, 0)t, (22)

as in equation (9). Equations (19) and (22) show that the original field operator is

φ(x, t) =
1

LD

∑
p

eip·xφFT(p, t) =
1

LD

∑
p6=0

a(p)e−iω(p)t+ip·x√
2ω(p)

+ adjoint


+

1

LD
(
φFT(0, 0) + φ̇FT(0, 0)t

)
. (23)

The hamiltonian is15

H =
1

LD

∑
p

φ̇†FT(p, 0)φ̇FT(p, 0) + ω2(p)φ†FT(p, 0)φFT(p, 0)

2
+ constant (24)

=
1

LD

∑
p6=0

ω(p)a†(p)a(p) +
1

LD
φ̇2

FT(0, 0)

2
+ constant. (25)

As in section 4, the spectrum of H has a lower bound, because each non-constant
term is manifestly a positive operator, but the next section shows that the lower
bound cannot be attained by any state in the Hilbert space.

15This satisfies φ̇(x, t) = −i[φ(x, t), H] and φ̈(x, t) = −i[φ̇(x, t), H].
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7 The untrimmed model for any D: Hilbert space

The construction described in section 5 can be generalized to arbitrary D. A state-
vector |f〉 is represented by a function f [s] of a collection of real variables s(p),
one per wavenumber p. The inner product is defined by

〈f |g〉 ≡
∫

[ds] f ∗[s]g[s],

where the integral is over −∞ < s(p) < ∞ for each variable s(p). Only normal-
izable functions – functions for which 〈f |f〉 is finite – represent elements of the
Hilbert space. The field operators φFT(p, t) and φ̇FT(p, t) are represented at t = 0
by

φFT(p, 0)f [s] = β s(p)f [s] φ̇FT(p, 0)f [s] = −i L
D

β

∂

∂s(p)
f [s] (26)

with an arbitrary-but-fixed positive value of β, and the field operators for arbitrary
t are given by

φFT(p, t) = U−1(t)φFT(p, 0)U(t)

with U(t) = e−iHt. This is consistent with the equation of motion (16) and the
commutation relations (18).

We can minimize the contribution of the p 6= 0 terms in (25) by choosing a
state f [s] that satisfies a(p)f [s] = 0, but, just like in section 5, the Hilbert space
doesn’t have any state that minimizes the contribution of the p = 0 term, which is

Hp=0 ≡
1

LD
φ̇2

FT(0, 0)

2
=
−(Kε)D

2β2

(
∂

∂s(0)

)2

(27)

in this representation. This shows that the m → 0 limit of the free scalar model
does not have a lowest-energy state (vacuum state), at least not on a finite lattice,
even though the energy spectrum has a finite lower bound. Sections 8-9 explore
what happens in the infinite-volume limit L→∞.

11
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8 The infinite-volume limit when m > 0

Superficially, the infinite-volume limit is L → ∞, with the understanding that K

also goes to∞ so that sums 1
LD

∑
p · · · are promoted to integrals

∫
dDp

(2π)D · · · .
16 Just

sending the parameters L and K to∞ is not enough, though. When the summand
in 1

LD

∑
p · · · is made of operators, we need to specify a context in which the sum

converges to another operator. We can do this by specifying a class of observables
and states that will be retained in the limit, chosen so that the resulting model
can be represented on a separable Hilbert space.17 This section explains (roughly,
without trying to be precise) how that can be done when m > 0, and the next
section addresses the case m = 0.

When L→∞ equations (18) imply that the operators φFT(p, t) cannot remain
defined as ordinary operators on a Hilbert space, because the right-hand side of
(18) does not remain an ordinary function.18 This is true no matter how we try to
represent them as operators on a Hilbert space, even if m > 0. On the other hand,
the smeared operators

φFT(g, t) =
1

LD

∑
p

g(p)φFT(p, t) (28)

behave better, if we restrict the set of smearing functions g so that they become
smooth and normalizable when L → ∞. The equal-time commutators of such
smeared field operators remain ordinary functions in that limit. We can choose a
Hilbert space on which the smeared field operators and their time-derivatives at a
given time, say t = 0, remain ordinary operators in the infinite-lattice limit. The
key question is whether they can remain ordinary operators at all times, using the
hamiltonian to evolve them forward/backward in time.

16From now on, the condition K →∞ is understood whenever L→∞.
17Witten (2021), section 2.2
18They may be definable as “operator-valued distributions,” but not as ordinary operators on a Hilbert space –

just like the Dirac delta distribution is not a function.
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When m > 0, the hamiltonian is

H =
1

LD

∑
p

ω(p)a†(p)a(p) + constant. (29)

In contrast to the m = 0 case (25), here the term with p = 0 is included in the
sum, because the operator a(p) is well-defined for p = 0. With the hamiltonian
(29), a state |0〉 satisfying a(p)|0〉 = 0 for all p has the lowest possible energy, and
we can construct a Hilbert space by acting on it with the algebra of smeared field
operators. If we restrict the set of smearing functions so that they remain smooth
and normalizable when L → ∞, then the hamiltonian remains well-defined as an
ordinary operator on this class of states. This approach can be used to define an
infinite-volume limit for the free scalar model when m > 0.19

19Article 44563 explained how the free scalar model with m > 0 can be defined directly in continuous-and-infinite
spacetime, using smeared field operators. (That article used symplectic smearing instead of the purely spatial
smearing described in this section, but this is just a difference in the way the model is formulated, not a difference in
the resulting model’s content.) This article doesn’t use that formulation because it relies on the distinction between
the positive- and negative-frequency parts of a field, which becomes undefined when m = 0 and p = 0. Starting with
the finite-lattice formulation makes things more clear, in my opinion.

13
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9 An infinite-volume limit with m = 0: frozen variant

When m = 0, the hamiltonian is given by equation (25) instead of (29). The
difference is in the term with p = 0, denoted Hp=0 in equation (27). This term
prevents the model from having a lowest-energy state. One consequence of this is
that the model does not have any one distinguished state from which to construct
a Hilbert-space representation as described in the previous section.20 That’s okay.
When K is finite, we can start with any state |0〉 that satisfies

a(p)|0〉 = 0 for all p 6= 0. (30)

Applying φFT(0, t) to any such state gives another such state, because φFT(0, t)
commutes with a(p). We can build a Hilbert-space representation by acting on
any such state |0〉 with the algebra of field operators.

We can define an infinite-volume limit by using only smeared field operators,
but compared to the m > 0 case, the m = 0 case involves a new twist. As a
warm-up, consider the quantity

〈0|φFT(g, t)|0〉 (31)

with φFT(g, t) defined by (28). Use equations (19), (28), (30), and then (22) to get

〈0|φFT(g, t)|0〉 =
1

LD
g(0) 〈0|φFT(0, t)|0〉

=
1

LD
g(0)

〈
0
∣∣(φFT(0, 0) + φ̇FT(0, 0)t

)∣∣0〉. (32)

Without the factor of LD in the denominator (which comes from equation (28)),
this would be undefined when L → ∞, because the commutation relation (18)
implies that either φFT(0, 0) or φ̇FT(0, 0) (or both) must diverge in that limit. This

20According to Witten (2021), section 2.1, the lack of a distinguished state is an unusual situation in flat spacetime,
but it is the typical situation in spacetimes whose metric is not independent of time in any coordinate system.
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is clear in the representation (26). The factor of LD in the denominator comes to
the rescue: if we set

β = LD (33)

in (26), then the φ̇FT term in (32) goes to zero when L→∞, leaving21,22

lim
L→∞
〈0|φFT(g, t)|0〉 = −g(0)

∫
[ds]

∣∣f|0〉[s]∣∣2 s(0), (34)

which is finite for a set of normalizable functions that is dense in the Hilbert space.
More generally, we can define an infinite-volume limit by making sure that all

quantities of the form
〈0|φFT(g1, t) · · ·φFT(gn, t)|0〉 (35)

remain finite. The components of φFT with p 6= 0 (equation (19)) commute with
the p = 0 components (equation (22)), so we can handle the p 6= 0 components
just like in section 8, and we can handle the p = 0 components using the choice
(33) as described above. Then φ̇FT(0, t) goes to zero when L→∞, so φFT(0, t) is
independent of time in that limit – hence the nane frozen for this variant of the
model.23 This eliminates the p = 0 term (27) from the hamiltonian (25), so now any
state |0〉 satisfying (30) qualifies as a vacuum state: they all have the lowest possible
energy. After taking this limit, the operator φFT(0, t) commutes with everything,
so we can take the functions in the representation (26) to be eigenfunctions of
φFT(0, t) to an arbitrarily good approximation, with any eigenvalue we want. This
variant of the model doesn’t have any observables left that can mix states with
different eigenvalues of φFT(0, t), so the shift symmetry is spontaneously broken
(footnote 23).

21f|0〉 denotes the function corresponding to |0〉 in the representation (26).
22We could define a different limit by choosing β to be some other power of L. Choosing how β depends on L

amounts to choosing how the widths of the functions in (26) scale with L.
23 This name is not standard, but regardless of the name, this variant does appear to be a standard choice. Example:

the text below equation (4.12) in section 4.1 of Qualls (2015) asserts that the shift symmetry is spontaneously broken,
which is a feature of this particular variant of the model.
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10 No spontaneous symmetry breaking when D ≤ 1

Section 9 sketched a way of defining an infinite-volume limit, but it was only a
sketch, not a complete proof. This section shows that something goes wrong when
space is only one-dimensional (D = 1): the frozen variant does not exist in that
case.

To expose the problem, consider the quantity

〈0|φFT(g1, t)φFT(g2, t)|0〉.

According to equations (19), (21), (28), and (30), the part that comes from terms
with p 6= 0 is

〈0|φFT(g1, t)φFT(g2, t)|0〉
∣∣∣
terms with p 6= 0

=
1

LD

∑
p6=0

g1(p)g2(−p)

2ω(p)
. (36)

In the limit L→∞, this becomes24∫
dDp

(2π)D
g1(p)g2(−p)

2ω(p)
(37)

with a finite domain of integration (because we’re not taking the continuum limit
here).25 For D ≥ 2, this integral is well-defined.26 Even though the denominator
ω(p) = |p| goes to zero as p → 0, the measure of integration can be written as
|p|D−1d|p| times the angular part, so the ratio remains finite as p → 0 if D ≥ 2.
But if D = 1, then the integral is undefined whenever the smearing functions both
have nonzero limits as p → 0, because nothing in the numerator compensates
for the rate at which the denominator goes to zero as p → 0. As a result, this
particular way of defining an infinite-volume limit – the frozen variant of the model
– does not work when D = 1.

24In this limit, the fact that the p = 0 term is absent in (36) doesn’t matter. The problem comes from the terms
with p→ 0, not from the terms with p = 0.

25Article 71852
26For the m > 0 model, it’s well-defined for all D, because ω(p)→ m as p→ 0.

16



cphysics.org article 37301 2024-06-23

The Mermin-Wagner theorem says that, under some relatively general con-
ditions, a compact continuous symmetry group cannot be spontaneously broken if
D ≤ 1.27,28 The theorem is named after the authors of Mermin and Wagner (1966).
Dobrushin and Shlosman (1975) derived a more general result that applies to any
compact connected Lie group.29 The shift symmetry group is noncompact, so the
usual Mermin-Wagner theorem doesn’t apply, but the outcome is the same: the
shift symmetry isn’t spontaneously broken when D = 1, because the model doesn’t
even have an infinite-volume limit when when D = 1.30

Section 11 describes a way to trim the set of observables so that an infinite-
volume limit can be defined even when D = 1, but then the shift symmetry is no
longer spontaneously broken for any D.

27Here, D is the number of dimensions of space, so spacetime has D+1 dimensions. The Mermin-Wagner theorem
is usually stated in terms of the number of spacetime dimensions – which is equal to the number of space dimensions in
the corresponding classical statistical mechanics setting, through the correspondence defined by the euclidean-action
formulation of quantum field theory.

28A discrete symmetry group can be spontaneously broken when D = 1. Article 81040 analyzes one example in
detail. Regarding the distinction between continuous and discrete, see the text near the end of section 1 in Harlow
and Ooguri (2021).

29Sometimes physicists forget to include the adjective compact when citing these papers.
30This is emphasized in Coleman (1973), below equation (5).
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11 The trimmed variant

In quantum field theory, observables are usually expressed in terms of field opera-
tors. The preceding sections treated the field operators φ(x, t) as observables, but
we have another option: we can trim the set of observables down to include only
those that are invariant under the shift symmetry (5).31 Then the operators

φ̇(x, t) ∇φ(x, t) φ(x, t)− φ(y, t) ezφ(x,t)e−zφ(y,t) (38)

all qualify as observables, but φ(x, t) itself does not. To describe the set of observ-
ables more systematically, we can use the Fourier-transformed field operators (17).
The only operators that qualify as observables are those that can be expressed in
terms of φFT(p, t) with p 6= 0 and φ̇FT(0, t). The operator φFT(0, t) is excluded
because it’s not invariant under the shift symmetry (5).

This version of the model has a vacuum state even when the lattice is finite.
To see why, remember how quantum theory works: predictions involve observables
and states, and the states only need to be defined for operators in the algebra
generated by observables. The Hilbert space is really just a tool for constructing
states,32 so only observables need to be represented as operators on the Hilbert
space. Including other operators can be very convenient, but it’s not strictly nec-
essary. When the operator φFT(0, 0) is excluded from the set of observables, the
observable φ̇FT(0, t) = φ̇FT(0, 0) commutes with all other observables, so we can
use a representation in which it is proportional to the identity operator, with an
arbitrary proportionality factor,33 which we might as well take to be zero. Then
the hamiltonian (25) reduces to

H =
1

LD

∑
p6=0

ω(p)a†(p)a(p) + constant. (39)

31Unobservable symmetries are often associated with gauge fields. We could introduce a gauge field associated
with the unobservable shift symmetry, but that wouldn’t really change anything (Tong (2009), section 8.3.1).

32Article 03431
33Di Francesco et al (1997), section 6.3.3
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We can use a Hilbert-space representation like the one in section 7, except that now
a state-vector is represented by a function f [s] that depends only on the variables
s(p) with p 6= 0. This works because φ̇FT(0, 0) is proportional to the identity
operator and because φFT(0, 0) doesn’t need to be represented at all. With these
changes, a nonzero state-vector |0〉 that satisfies a(p)|0〉 = 0 for all p 6= 0 has the
lowest possible energy. This shows that the trimmed model has a vacuum state.

The infinite-volume limit can be defined like it was for m > 0 in section 8, but
using smeared versions of φ̇(x, t) and ∇φ(x, t) instead of φ(x, t). Each derivative
inserts a factor of ω(p) or p into the numerator of (37), and then the integrand
remains finite as p→ 0 even if D = 1. As a result, the model has a good infinite-
volume limit for any D ≥ 1. The shift symmetry is no longer described as being
spontaneously broken, because it doesn’t affect observables at all.
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12 Free fields with nonzero spin

The particles associated with the free scalar field have zero spin (no intrinsic angular
momentum). Free fields whose associated particles have nonzero spin can also be
defined, and for them, the difference between the massive and massless cases can be
even more significant. Zakharov (1970) and van Dam and Veltman (1970) describe
a discontinuity that occurs in the m → 0 limit of free fields with spins 1 and 2.34

The discontinuity occurs because particles in the m 6= 0 model have extra spin-
states compared to those in the m = 0 model, and they don’t decouple as m→ 0.
In contrast, a scalar particle has the same number of spin-states (namely one) for
both m 6= 0 and m = 0.

34The conclusion is summarized in Lüben et al (2019) and qualified in Babichev and Deffayet (2012).
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