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Quantum Contextuality:
Violating Bell Inequalities

with Qubits
Randy S

Abstract Quantum theory generally does not predict the outcomes
of individual measurements. We might be tempted to think that the
individual outcomes are determined by hidden variables that quantum
theory doesn’t know about. This article uses simple examples with qubits
to show that such a model would need to have a strange feature in order
to reproduce quantum theory’s predictions.
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1 Introduction

Quantum theory generally does not predict the outcomes of individual measure-
ments. We might be tempted to think that the individual outcomes are deter-
mined by hidden variables (HVs) that quantum theory doesn’t know about,
but the HVs idea can’t reproduce quantum theory’s predictions unless the HVs
have a strange feature. Namely, the HVs would need to be contextual: the values
they assign to one observable must depend on which observables are being mea-
sured. Noncontextual hidden variables cannot reproduce quantum theory’s pre-
dictions.1,2,3 This conclusion can be reached in several different ways. This article
describes a few of them.

In quantum theory, some observables are not compatible with each other: they
can’t be measured together without compromising the quality of the measurements.
Even if an observable A is compatible with both B and C, the observables B and
C are not necessarily compatible with each other. Mathematically, two observables
are not compatible with each other if they are represented by operators that don’t
share any eigenvectors with each other.4 Observables that are incompatible with
each other in this sense can’t all have values when they’re not being measured
(article 03431). This results highlighted in this article are all related to that basic
fact.

1Article 70833 has a complementary theme: noncontextual hidden variables cannot reproduce all of the results of
experiments.

2Cabello (2013) points out that all Bell inequalities, like the CHSH bound highlighted in section 7, are based on
some form of noncontextuality. Bell inequalities are famously violated both in quantum theory and in experiments.

3The literature about this subject is vast, and different authors may use the same words with different nuances.
4Some of the things we call “observables” are represented by operators that don’t have any eigenvalues at all

(they have purely continuous spectra instead), but in that case they can’t be perfectly measured even by themselves
(article 03431).
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2 Prerequisites

In quantum theory, observables are represented by operators on a Hilbert space.5

Here is a quick review of a few basic definitions:

• Two operators A and B are said to commute with each other if AB = BA.

• The adjoint A∗ of an operator A is defined by requiring that 〈α|A∗|β〉 be
equal to the complex conjugate of 〈β|A|α〉 for all vectors |α〉 and |β〉 in the
Hilbert space.

• A projection operator P is self-adjoint (P ∗ = P ) and equals its own square
(P 2 = P ).

In this article, operator means linear operator, and I denotes the identity operator.6

In quantum theory, each of the possible outcomes of a measurement is repre-
sented by a projection operator. We can think of an observable as a collection
of projection operators, each representing one of the possible outcomes when that
observable is measured. We can package these projection operators into a sin-
gle self-adjoint operator, which is usually a more convenient way to represent the
observable. This article uses both representations.

The first two examples (sections 6-9) both use a pair of qubits. Sections 3-5
explain what that means, starting with the concept of a von Neumann algebra
generated by a given set of operators. Here’s a quick review of that concept. Let
A be any set of operators on a Hilbert space, and let A′ denote the commutant
of A, which is the set of operators that commute with everything in A. Iterating
this gives the double commutant A′′ ≡ (A′)′. If A includes the adjoint of each
operator in A, then A′′ is a von Neumann algebra (article 74088) called the algebra
generated by A. It includes the identity operator I and all of the operators in
A, and it’s self-contained with respect to linear combinations and products.

5Article 03431 introduces the core principles of quantum theory.
6Several other articles in this series write the identity operator as “1” instead.
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3 What is a qubit?

If P and Q are projection operators satisfying

2(P −Q)2 = I, (1)

then the algebra {P,Q}′′ generated by {P,Q} is called a qubit.7,8 This definition
of qubit doesn’t require any of the operators in {P,Q}′′ to be observables.

Equation (1) implies that the operators

Z ≡ 2P − I X ≡ 2Q− I (2)

satisfy9

Z2 = I X2 = I XZ = −ZX. (3)

A qubit can also be defined as the algebra {X,Z}′′ generated by two operators
X and Z satisfying (3), because for any such X and Z, the operators P and Q
defined implicitly by (2) satisfy (1). Operators X and Z satisfying these conditions
are called Pauli operators.

Qubits exist in any even-dimensional10 (or infinite-dimensional) Hilbert space
over C. To prove this, partition the Hilbert space into two equal-dimensional
orthogonal subspaces. Let P be the projection onto one of those subspaces. The
fact that P is a projection operator gives the first equation in (3) when Z is defined
by the first equation in (2). Let X be the operator that swaps the two subspaces
with each other. This implies the second equation in (3) and also implies XPX =
I − P , which gives the last equation in (3).

7Pronounced “Q-bit”
8This article uses the standard notation {A,B,C, ...} for the set whose elements are A,B,C, ..., so {P,Q} is the

set whose two elements are the two operators P and Q. Don’t confuse this with the anticommutator of P and Q,
which is typically also written {P,Q}.

9For any projection operators P and Q, the relationships (2) imply the first two of equations (3) and XZ+ZX =
2− 4(P −Q)2. Combine this with (1) to get the third equation in (3).

10It must be even-dimensional because equations (2)-(3) give XPX = X(I + Z)X/2 = (I − Z)/2 = I − P . This
says that P and I −P are related to each other by a unitary transformation (because X is self-adjoint and unitary),
so they project onto equal-dimensional subspaces.
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4 The symmetry of a qubit

The previous section showed how to construct a qubit in any even-dimensional
Hilbert space. In the case of a two-dimensional Hilbert space, a qubit consists of
all of the operators on the Hilbert space.11 This can be proved by showing that if P
and Q satisfy (1), then any operator that commutes with both P and Q is propor-
tional to the identity operator.12 This implies that the double commutant {P,Q}′′
includes all operators, because everything commutes with the identity operator.

The definition in the preceding section implies that any two qubit algebras are
isomorphic to each other. In particular, any qubit is isomorphic to the algebra
of all operators on a two-dimensional Hilbert space.13 This means that a qubit is
very symmetric: in any Hilbert space, if P and Q are any two projection operators
satisfying (1), then the unitary operators in {P,Q}′′ form a group isomorphic to
U(2). All of the nontrivial projection operators in {P,Q}′′ are related to each other
by these unitary transformations, and applying these unitary transformations to
any one nontrivial projection operator in {P,Q}′′ gives all of the other nontrivial
projection operators in {P,Q}′′.

11In contrast, two projection operators cannot generate all of the operators on a 3-dimensional Hilbert space (page
386 in Halmos (1969)).

12To prove this, choose a basis in which P and Q have the matrix representations

P =

[
1 0
0 0

]
Q =

1

2

[
1 1
1 1

]
.

Any 2× 2 matrix that commutes with P must be diagonal, and any diagonal matrix that commutes with Q must be
proportional to the identity matrix.

13This is the origin of the name qubit. Section 5 gives more context.
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5 Independent qubits

Let {P1, Q1} and {P2, Q2} be two pairs of projection operators, each satisfying (1):

2(P1 −Q1)
2 = I 2(P2 −Q2)

2 = I.

If both of {P1, Q1} commute with both of {P2, Q2}, then these two qubits are said to
be independent of each other.14 More generally, N qubits are called independent
of each other if they all commute with each other.

Here’s an easy example of N independent qubits. Choose some integer N ≥ 1,
and let b denote an N -digit binary number. Consider a 2N -dimensional Hilbert
space spanned by vectors |b〉, one for each N -digit binary number, satisfying

〈b|b〉 = 1 〈b′|b〉 = 0 if b′ 6= b.

Any other vector in the Hilbert space is a linear combination of these basis vectors
|b〉 with complex coefficients. For each n ∈ {1, 2, ..., N}, define operators Zn and
Xn by

Zn|b〉 =

{
|b〉 if the nth digit is 0

−|b〉 if the nth digit is 1

and
Xn|b〉 = |bn〉

where bn is obtained from b by flipping the nth digit (replacing 0↔ 1). Each pair
{Xn, Zn} defines a qubit because it satisfies the conditions (3), and all of these N
qubits commute with each other.

14According to theorem 4.1 in Summers (2008), the commutativity condition implies that the algebra generated by
{P1, Q1} and {P2, Q2} is isomorphic to the tensor product of the two qubit algebras. (This follows from theorem
4.1 because each qubit algebra is a factor: its intersection with its commutant contains only multiples of the identity
operator.) This article doesn’t use the tensor product formalism, partly because in quantum field theory, the algebra
generated by two qubits is often part of a larger algebra of observables for which the tensor product formalism is not
helpful.
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6 The Peres-Mermin square

This section reviews one of the easiest ways to show that noncontextual hidden
variables cannot reproduce quantum theory’s predictions.

Start with a system of two mutually commuting qubits, {X,Z} and {X̃, Z̃},
where X and Z satisfy the conditions (3) and similarly for X̃, Z̃. Consider this set
of nine operators, arranged in an array to make the pattern clear:

X X̃ XX̃

Z̃ Z ZZ̃

XZ̃ X̃Z XX̃ZZ̃

Suppose that all of these operators are observables.15 Each of these nine observables
two eigenvalues, +1 and −1, which we can use to label the two possible outcomes
when the observable is measured. Let A,B,C be the three observables in any one
row or in any one column. In each case, A,B,C commute with each other, so their
measurements are compatible with each other. The product ABC is equal to 1
in each case except the last row, in which case it is equal to −1. In other words,
quantum theory predicts that if we measure all three observables in any one column
or any one row, then the product of the outcomes will be +1, except for the last
row in which case the product of the outcomes will be −1.

To reproduce quantum theory’s predictions using noncontextual hidden vari-
ables, we would need to be able to replace this array of observables with an array
of ±1s such that the product of the three numbers in any column or any row is +1,
except for the last row in which the product would need to be −1. That’s clearly
impossible, so noncontextual hidden variables cannot reproduce quantum theory’s
predictions.

The same conclusion can be reached in several different ways. The preceding
proof was published in Peres (1990), who attributed it to Mermin. The array of

15An observable is something that can be measured in a single measurement event.
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nine operators shown above is called a Peres-Mermin square. The Peres-Mermin
proof assumes that the Hilbert space has at least four dimensions.16 The Kochen-
Specker theorem proves it using a Hilbert space that is only three-dimensional,17

and that’s the smallest Hilbert space supporting such a theorem.18

The Peres-Mermin and Kochen-Specker results are both state-independent:
they depend on the pattern of observables but not on how the physical system
is prepared. Sections 7-9 review a different approach, one that does depend on
how the physical system is prepared but that is relatively easy to test in experi-
ments. It uses a pair of qubits, like the Peres-Mermin approach does, so the Hilbert
space must be at least four-dimensional. Sections 11-13 review a state-dependent
approach that only needs a three-dimensional Hilbert space.

16The number of dimensions of the Hilbert space should not be confused with the number of dimensions of
space(time). Most models of quantum systems in three-dimensional space (or four-dimensional spacetime) use a
Hilbert space with an enormous number of dimensions, typically infinitely many.

17For a concise version of the proof, see endnote 4 in Conway and Kochen (2006).
18To describe the measurements as physical processes would require a Hilbert space with an enormous number of

dimensions, but this article is using what article 03431 calls the artificial approach, which doesn’t try to describe
measurement as a physical process within the model itself.
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7 Review of the CHSH bound

Section 9 shows that quantum theory violates the CHSH bound. This is another
way to demonstrate that noncontextual hidden variables cannot reproduce quan-
tum theory’s predictions. The predicted violations have been observed in many
experiments (article 70833). This section briefly reviews the CHSH bound.

The simplest type of observable is a dichotomic observable, one whose mea-
surement has only two possible outcomes. To express the CHSH bound, these
outcomes are usually labeled +1 and −1.

Suppose we have four dichotomic observables, A,B,C,D. Suppose that we can
measure either A or C, and at the same time we can also measure either B or D,
maybe in a different location. If we measure A and B, we get two numbers, both
with magnitude | ± 1| = 1. We we multiply these two numbers together, the result
is either +1 or −1. Let 〈AB〉 denote the value of this product, averaged over many
trials. This average is a number between −1 and +1. Consider the quantity

Ω ≡ 〈AB〉+ 〈CB〉+ 〈CD〉 − 〈AD〉. (4)

Article 70833 shows that if the measurement outcomes were determined by non-
contextual hidden variables, then this quantity would satisfy the inequality

− 2 ≤ Ω ≤ 2. (5)

This is called the CHSH bound. Section 9 shows that in quantum theory, the
quantity (4) can be as large as 2

√
2 ≈ 2.8.19 This shows that noncontextual hidden

variables cannot reproduce quantum theory’s predictions.

19This agrees with the results of real experiments, some of which are cited in article 70833.
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8 Violating the CHSH bound: preview

The goal is to construct four observables A,B,C,D and a state for which the CHSH
bound (5) is violated. To do this, consider two mutually commuting qubits {X,Z}
and {X̃, Z̃}, where X and Z satisfy the conditions (3) and similarly for X̃, Z̃. The
observables A and C belong to one qubit, and the observables B and D belong to
the other qubit. Explicitly,

A = Z(0) B = Z̃(π/8) (6)

C = Z(2π/8) D = Z̃(3π/8)

with

Z(θ) ≡ cos(2θ)Z + sin(2θ)X

Z̃(φ) ≡ cos(2φ) Z̃ + sin(2φ) X̃. (7)

Section 9 shows that for any given values of θ and φ, the observables Z(θ) and
Z̃(φ) each have two eigenvalues, +1 and −1, which we can use to label the possible
outcomes when these observables are measured. Section 9 also shows that we can
choose a state in which the probabilities for the various possible combinations of
outcomes are as shown in this table:

Outcomes Probability

+1 and +1 1
2 cos2(θ − φ)

−1 and −1 1
2 cos2(θ − φ)

+1 and −1 1
2 sin2(θ − φ)

−1 and +1 1
2 sin2(θ − φ)

The rest of the analysis is in article 70833, which shows that this distribtion max-
imally violates the CHSH bound (5) when the angles are chosen as in (6).
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9 Violating the CHSH bound: calculation

Choose fixed values of θ and φ, and define Z(θ) and Z̃(φ) as in the previous section.
Define operators P (θ) and P̃ (φ) implicitly by

Z(θ) = P (θ)−
(
I − P (θ)

)
Z̃(φ) = P̃ (φ)−

(
I − P̃ (φ)

)
. (8)

The fact that X and Z satisfy equations (3) implies(
Z(θ)

)2
= I,

and similarly for Z̃(φ). This, in turn, implies that the operators P (θ) and P̃ (φ)
defined in (8) are projection operators. When the observable Z(θ) is measured, the
possible outcomes are represented by the projection operators P (θ) and I − P (θ),
with corresponding eigenvalues +1 and −1, respectively, and similarly for Z̃(φ).

In quantum theory, information about how the physical system was prepared
for a given measurement is represented by a state, a normalized positive linear
functional that takes any operator as its input and returns a complex number as
its output, subject to the conditions given in article 77228. Let ρ(· · · ) denote the
state before the measurements. According to the general principles of quantum
theory (article 03431), if two projection operators Q and Q′ commute with each
other, then the probability of obtaining the combination of outcomes Q,Q′ when
both observables are measured may be written in any of these equivalent forms:

ρ(Q|Q′)ρ(Q′) = ρ(Q′|Q)ρ(Q) = ρ(QQ′)

with

ρ(· · · |A) ≡ ρ(A∗ · · ·A)

ρ(A∗A)
.

The probabilities of the possible combinations of outcomes when the observables
(8) are both measured are shown in this table:

12
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Outcomes Probability

+1 and +1 ρ
(
P (θ)P̃ (φ)

)
−1 and −1 ρ

((
I − P (θ)

)(
I − P̃ (φ)

))
+1 and −1 ρ

(
P (θ)

(
I − P̃ (φ)

))
−1 and +1 ρ

((
I − P (θ)

)
P̃ (φ)

)
If we choose the state ρ(· · · ) so that

ρ
(
P (θ)P̃ (φ)

)
=

1

2
cos2(θ − φ), (9)

then the identities

I − P (θ) = P (θ + π/2)

I − P̃ (φ) = P̃ (φ+ π/2)

imply that the probabilities tabulated above will reproduce the distribution that
was shown in section 8.

To construct a state that satisfies the condition (9), define the projection oper-
ator

Q ≡ I +XX̃

2
and let |0〉 be any nonzero vector that satisfies

Z|0〉 = Z̃|0〉 = |0〉. (10)

Then the state

ρ(· · · ) =
〈ψ| · · · |ψ〉
〈ψ|ψ〉

|ψ〉 ≡ Q|0〉 (11)

satisfies the condition (9). To prove this, use equations (7) and (8) to get

2P (θ) = I + sin(2θ)X + cos(2θ)Z

2P̃ (φ) = I + sin(2φ)X̃ + cos(2φ)Z̃. (12)
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Equations (10) combined with the algebraic properties of X,Z, X̃, Z̃ imply that the
only terms in P (θ)P̃ (φ) that contribute to the left-hand side of (9) are the terms
proportional to XX̃, ZZ̃, and I.20 Together with the identities

ρ(XX̃) = ρ(ZZ̃) = ρ(I) = 1,

this gives

4ρ
(
P (θ)P̃ (φ)

)
= 1 + sin(2θ) sin(2φ) + cos(2θ) cos(2φ)

= 1 + cos(2θ − 2φ)

= 2 cos2(θ − φ).

Altogether, this shows that the state defined by (11) satisfies the condition (9).

20To see that terms with exactly one of Z or Z̃ don’t contribute, use the fact that Q is a projection operator,
together with the identities QX = XQ and QZ = Z(1−Q) and similarly for X̃ and Z̃. Then use QXQ = (X+X̃)/2
and (10) to see that terms proportional to X or X̃ don’t contribute.
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10 A bound that quantum theory can’t violate

The preceding sections showed that the CHSH bound is violated in quantum theory.
This section reviews Cirelson’s bound,21 which gives the maximum degree to
which the CHSH bound can be violated in quantum theory.22

Let A,B,C,D be four observables in quantum theory. Suppose that A and C
each commute with B and D, and consider the operator

Ω ≡ C(B +D) + A(B −D).

If A2 = B2 = C2 = D2 = I, then

Ω2 = 4− [A,C][B,D]

with [X, Y ] ≡ XY −Y X. Let ‖O‖ denote the norm of an operator O, whcih is the
maximum value of ρ(O) among all states ρ. Use the general identities∥∥[F,G]

∥∥ ≤ ‖FG‖+ ‖GF‖ ≤ 2‖F‖ ‖G‖

to get ∥∥Ω2
∥∥ ≤ 8,

which implies
‖Ω‖ ≤ 2

√
2.

This implies ∣∣ρ(Ω)
∣∣ ≤ 2

√
2,

for all states ρ, which is Cirelson’s bound.
Contrast this with the CHSH bound (5). The CHSH bound is violated in

quantum theory, but Cirelson’s bound is not.

21Cirelson (1980). The author’s name is often transliterated as Tsirelson.
22The derivation shown here is also shown in Cabello (2002) and in section 2 of Maldacena (2015).

15



cphysics.org article 36176 2024-05-21

11 The pentagram inequality, first version

Section 7 reviewed the CHSH bound, which is satisfied in any theory of noncon-
textual hidden variables but not in quantum theory. This section reviews another
bound with similar significance: it is satisfied in any theory of noncontextual hidden
variables but not in quantum theory. The original authors called it the pentagram
inequality.23 Compared to the CHSH bound, this one is even easier to describe
and analyze.

Let P0, P1, P2, P3, and P4 denote five different properties that a given object
could have. For convenience, use the convention that all indices are defined modulo
5, so that P5 ≡ P0, and P6 ≡ P1, and so on. Whenever a measurement of Pk is
performed to determine whether the object has that property, the result is either
1 (“yes, it has that property”) or 0 (“no, it does not have that property”).

Suppose that we choose this set of properties so that when the object is prepared
in an appropriate special state, measurements of Pk and Pk+1 do not both yield the
outcome +1 for any consecutive pair k and k + 1. I’ll call this the no-consecutive-
ones constraint.

The noncontextual hidden variables idea would say that in any given trial, we
could assign values 1 or 0 to each of the Pk. The no-consecutive-ones constraint
then implies that the object cannot have more than two of the five properties
(no more than two of the values can be 1), so

∑
k Pk ≤ 2. Even if the object’s

properties vary randomly from one trial to the next, as long as they respect the
no-consecutive-ones constraint in each individual trial, we can take the expectation
value of the preceding inequality to get∑

k

〈Pk〉 ≤ 2. (13)

This is one version of the pentagram inequality. The reason for the name pentagram
will become clear in section 13.

23Klyachko et al (2007). It is also called the KCBS inequality (Cabello (2013)) in honor of the original authors.
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12 The pentagram inequality, second version

Given five properties Pk whose possible values are 1 or 0, as in the previous section,
we can define observables Ak = 2Pk − I whose possible values are +1 or −1. Now
consider the sum ∑

k

AkAk+1,

and suppose again that noncontextual hidden variables were possible, so that we
can simultaneously assign values ±1 to all of the Aks. Then the product of the five
terms in this sum would have to be +1, because each observable Ak appears twice
in the product and A2

k = 1. Since each term in the sum is ±1 and the product of
all five terms is +1, the number of terms equal to −1 must be even. Therefore, the
smallest possible value of the sum is

+1 + 4(−1) = −3,

so we have the inequality
∑

k AkAk+1 ≥ −3. As before, we can take the expectation
value to get ∑

k

〈AkAk+1〉 ≥ −3. (14)

This inequality is also called the pentagram inequality.24 This version is more
general, because it holds even if the no-consecutive-ones constraint PkPk+1 = 0
doesn’t hold. To see this, use Ak = 2Pk − I to deduce that (14) is equivalent to∑

k

〈Pk〉 ≤ 2 +
∑
k

〈PkPk+1〉,

which implies (13) if the no-consecutive-ones constraint is imposed.
The next section considers a situation that respects the no-consecutive-ones

constraint. In that case, a violation of (13) implies a violation of (14), so the
analysis in the next section shows that quantum theory violates both versions of
the pentagram inequality.

24Klyachko et al (2007)
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13 Violating the pentagram inequality

Both versions of the pentagram inequality are violated in quantum theory.25 This
section shows that in quantum theory, we can choose a set of five properties Pk
(five projection operators) that satisfy PkPk+1 = 0 for every k but which violate
the pentagram inequality (13).

The construction uses a Hilbert space with only three dimensions. Within
this Hilbert space, we will construct a set of five unit vectors |k〉, one for each
k ∈ {0, 1, 2, 3, 4}, having the property that

〈k|k + 1〉 = 0 〈k|k〉 = 1 (15)

for all k. The index is defined modulo 5, so this condition implies 〈4|0〉 = 0.
We can contruct such a set of unit vectors with the help of some geometric

intuition about ordinary unit vectors in ordinary three-dimensional space. Start
with a regular pentagon, shown below as a dashed outline, and consider the five
vectors pointing from the center of the pentagon to its vertices:

0

1

2

3 4

Label the vectors as shown in the picture,26 so that the angle between vectors k
and k + 1 is 2π × 2/5 = 4π/5. In an orthonormal basis for ordinary 3d space, we

25Sadiq et al (2013) characterize the pentagram inequality as the “the simplest logical structure for which there is
a classical-quantum gap.”

26The name of the inequality comes from the fact that drawing lines to “connect the dots” in the order 0,1,2,3,4,0
gives a five-pointed star, also called a pentagram.
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can take the components of these five vectors to be(
cos(4kπ/5), sin(4kπ/5), 0

)
(16)

with k ∈ {0, 2, 3, 4, 5}. The angle between vectors k and k + 1 is 4π/5, so the dot
product between them is

cos(4π/5) = −γ with γ ≡ cos(π/5) > 0. (17)

Now, add the vector (0, 0,
√
γ) to each of the vectors (16) to get this new set of five

vectors: (
cos(4kπ/5), sin(4kπ/5),

√
γ
)
. (18)

Use (17) to see that the dot product between vectors k and k+ 1 is now zero. The
dot product of any one of these vectors with itself is 1 + γ.

Now let |a〉, |b〉, |c〉 be three orthogonal unit vectors in the Hilbert space. The
intuition in the previous paragraph shows that the five vectors

|k〉 ≡
cos(4kπ/5) |a〉+ sin(4kπ/5) |b〉+

√
γ |c〉

√
1 + γ

(19)

satisfy the conditions (15). We can use these vectors |k〉 to show that quantum
theory violates the pentagram inequality. Let Pk be the operator that projects onto
|k〉, so that 〈ψ|Pk|ψ〉 = 〈ψ|k〉〈k|ψ〉 for any vector |ψ〉. The condition (15) implies
PkPk+1 = 0 for all k-modulo-5, so we can take these five projection operators to
represent the “five properties” in section 11. To violate the pentagram inequality,
consider the state

ρ(· · · ) =
〈c| · · · |c〉
〈c|c〉

.

Equation (19) gives ∑
k

ρ(Pk) =
〈c|k〉 〈k|c〉
〈c|c〉

=
5γ

1 + γ
. (20)
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To see that this violates the pentagram inequality (13), let’s express the value of γ
in a more explicit way. Use the identities

(eiπ/5)3 = −(e−iπ/5)2 e±iπ/5 = cos(π/5)± i sin(π/5)

to get (
cos(π/5) + i sin(π/5)

)3

= −
(

cos(π/5)− i sin(π/5)
)2

.

Take the imaginary part of this identity and cancel the overall factor of sin(π/5)
to get

3 cos2(π/5)− sin2(π/5) = 2 cos(π/5).

Write sin2 in terms of cos2 to get a quadratic equation for cos2(π/5), whose positive
solution is

γ ≡ cos(π/5) =
1 +
√

5

4
.

Use this in (20) to get ∑
k

ρ(Pk) =
√

5 ≈ 2.236 > 2,

which violates the pentagram inequality (13). The projection operators used in this
construction satisfy the no-consecutive-ones constraint, so this shows that quantum
theory also violates the more general inequality (14).

The message here is that noncontextual hidden variables cannot reproduce
quantum theory’s predictions. The predicted violations have also been tested in
experiments, and the results are consistent with quantum theory’s predictions.27

27Examples include Ahrens et al (2013) and Lapkiewicz et al (2011).
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