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Conservation Laws
and a Preview of the Action Principle

Randy S

Abstract Conservation laws, including those for energy,
momentum, and angular momentum, are consequences of
the action principle. This article introduces the action
principle and the resulting conservation laws in the context
of newtonian physics, using a model of a system of objects
that interact with each other through instantaneous forces.
This includes Newton’s model of gravity as a special case
(article 50710).

Article 46044 introduces to the action principle using
the lagrangian formalism, which is more general, and article
12342 uses that formalism to study conservation laws.
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1 Introduction

Energy, momentum, and angular momentum are conserved quantities. They are
properties of a system that do not change with time, even though the system itself
is changing with time. Such conservation laws are useful because they tell us
something simple about the allowed behaviors of a complicated system. They tell us
something about the system’s allowed behaviors, but they don’t tell us everything.
For that, we need the full set of equations of motion. The equations of motion
define exactly which behaviors are allowed. Conservation laws are relatively simple
consequences of the equations of motion.

The conserved quantities that we call energy, momentum, and angular momen-
tum are each associated with a special symmetry of the equations of motion:

• Energy is the conserved quantity associated with symmetry under transla-
tions in time.

• (Linear) momentum is the conserved quantity associated with symmetry
under translations in space.

• Angular momentum is the conserved quantity associated with symmetry
under rotations.

This article explains the connection between symmetries and conservation laws,
using a specific model that has those symmetries: Newton’s model of gravity for a
system of pointlike masses. For the rest of this article, I’ll just call it Newton’s
model of gravity.

This model does have realistic applications, but those applications are not the
focus of this article. This article uses the model only to illustrate some general
principles.
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2 Notation

This article assumes a model of K objects moving in D-dimensional space. The lo-
cation of the kth object will be denoted xk. The index k takes values in {1, 2, ..., K}.
The distance between the jth and kth object will be denoted |xj −xk|. A boldface
symbol like x denotes a point in D-dimensional space with the usual Cartesian co-
ordinate system. The real world has D = 3, but keeping D general doesn’t take any
extra work. To represent a point in D-dimensional space, x should have D compo-
nents. The object-index will be written as a subscript, and the component-index
will be written as a superscript, so the location of the kth object is

xk = (x1k, x
2
k, ..., x

D
k ).

The distance between the jth and kth objects is given by the familiar Pythagorean
formula1

|xj − xk| ≡

√√√√ D∑
n=1

(xnj − xnk)2,

which is what Cartesian coordinate system means. In this equation, n is an
index,2 not an exponent.

Let xk(t) be the location of the kth object at time t:

xk(t) =
(
x1k(t), x

2
k(t), ..., x

D
k (t)

)
.

We specify the object’s behavior by specifying these D functions of time. The
object’s velocity, denoted ẋk, is the time-derivative of its location:

ẋk =

(
dx1k
dt
,
dx1k
dt
, ...,

dxDk
dt

)
.

The object’s acceleration, denoted ẍk, is the time-derivative of its velocity.

1 The symbol ≡ expresses a definition as opposed to an identity.
2 The plural form of index is indices, pronouned in-dih-sees, but the singular form is still index. Indice (“in-dih-

see”) is not a word.
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3 The model

In a perfectly realistic model, the set of allowed behaviors would be precisely the
behaviors that can occur in the real world. Newton’s model of gravity is not
perfectly realistic, but it’s good enough for many applications. In this model, the
world consists of a finite number of objects, each of which has two attributes:

• A mass, which does not change with time,

• A location in space, which may change with time.

The mass of the kth object will be denoted mk, and its location in space at time t
will be denoted xk(t).

We can imagine many behaviors that can’t actually happen in the real world.
Part of defining a model is to specify which behaviors are allowed (according to the
model). That’s what the equations of motion do. In Newton’s model of gravity,
the equations of motion are3

ẍk =
∑
j 6=k

mj
xj − xk

|xj − xk|N
. (1)

with one equation for each object k. The integer N in the exponent is equal to
3 in the real world, but the extra generality doesn’t take any extra work. These
equations relate the acceleration of each object to the masses and locations of all of
the other objects. The objects’ locations depend on time, so equation (1) is really
an abbreviation for

ẍk(t) =
∑
j 6=k

mj
xj(t)− xk(t)∣∣xj(t)− xk(t)

∣∣N .
Given any behavior of the system of objects (their locations as functions of time),
that behavior is allowed if and only if it satisfies all of equations (1).

3 As in article 50710, I’m using natural units in which Newton’s gravitational constant is G = 1. Unlike in article
50710, I’m allowing N 6= D here.
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4 The action principle

If we multiply both sides of equation (1) by mk and then call the right-hand side
Fk, then the equation looks like this:

mkẍk(t) = Fk(t). (2)

This illustrates the familiar rule “F = ma” (force equals mass × acceleration). We
could consider forces Fk that differ from those in equation (1), but many of the
choices we might consider would not satisfy the action principle.

A loose translation of the action principle says that for every action, there is
an equal and opposite reaction. But that’s too vague to be useful. The real action
principle is more specific. For models of the type (2), the action principle may be
expressed like this:

There is a single function V such that the force
on each object is equal to the gradient of −V
with respect to that object’s location.

This ensures that the jth object’s contribution to the force on the kth object is
related in a specific way to the kth object’s contribution to the force on the jth
object. The function V is often called the potential energy4 or just the potential.

For N 6= 2, the model introduced in section 3 satisfies the action principle with

V
(
x1, ..., xK

)
=
−1

N − 2

∑
1≤j<k≤K

mjmk

|xj − xk|N−2
. (3)

With this V , setting
Fk = −∇kV

in equation (2) reproduces equation (1). The notation ∇kV means the gradient of
V with respect to xk.

4 Section 12 explains why.
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5 Symmetries and conservation laws

The action principle is more fundamental than conservation laws. Each conserva-
tion law studied in this article is a consequence of the action principle combined
with a particular continuous symmetry:5

Action principle + Continuous symmetry = Conservation law.

Even though we call it a “law,” a conservation law is not an extra constraint on
the object’s motion. The equations of motion already tell us which behaviors are
allowed. Conservation laws are useful consequences of the full equations of motion.
Section 15 explains why they’re useful.

The next few sections study the conservation laws associated with the symme-
tries that were listed in section 1. Each one assumes that the equations of motion
may be written

mkẍk = −∇kV. (4)

The special case (3) has all of the symmetries that were listed in section 1, but
the results are more general: the conservation laws hold for any V that has these
symmetries.

The word symmetry is overloaded, used with different shades of meaning in
different contexts. In this article, it roughly means a continuous group of transfor-
mations, each of which replaces each allowed behavior (each solution of the equa-
tions of motion) with another allowed behavior. The examples in the following
sections illustrate what this means.

5 Here, “continuous” means that every transformation in the group of symmetry transformations can be contin-
uously deformed to the identity transformation without leaving the group.
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6 Conservation of momentum

Consider a model whose equations of motion have the form (4), and suppose that
the potential V is invariant under translations in space. This means

V (x1 + c,x2 + c, ...) = V (x1,x2, ...) (5)

for any time-independent c. In words, V is unchanged when the locations of all K
objects are shifted by the same amount c. In this case, if we take any solution of
(4) and shift all of the locations by the same time-independent c, then the result
is another solution of (4). In other words, these transformations are symmetries
in this model. The condition (5) is equivalent to

∇cV (x1 + c,x2 + c, ...) = 0, (6)

where ∇c is the gradient with respect to c. This condition may also be written∑
k

∇kV (x1, x2, ...) = 0. (7)

Equations (4) and (7) imply
∑

kmkẍk = 0, which can also be written

d

dt

∑
k

mkẋk = 0. (8)

This is a conservation law: it says that the quantity∑
k

mkẋk(t) (9)

is conserved, which means that it is constant in time for all behaviors that satisfy
the equations of motion. The quantity (9) is called the system’s total momentum.
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7 Conservation of angular momentum, part 1

Consider a model whose equations of motion have the form (4), and suppose that V
is invariant under rotations about the origin. In this case, if we take any solution
of (4) and apply an overall rotation about the origin, then the result is another
solution of (4), so these transformations are symmetries in this model.

In the special case D = 3, we are taught to think of a rotation as something
defined by an angle and an axis, but that only makes sense for D = 3. If we replace
the concept “rotation about the x3-axis” with “rotation in the x1-x2 plane,” then
the concept generalizes immediately to arbitrary D: a rotation about the origin in
the x1-x2 plane is a transformation of the form[

x1

x2

]
→
[

cos θ sin θ
− sin θ cos θ

][
x1

x2

]
with other components unchanged. Rotations in other planes are defined similarly.

Given two vectors a and b, use the abbreviation a ∧ b for the collection of
components ajbk − akbj for all j, k ∈ {1, 2, ..., D}. The quantity a ∧ b is called the
wedge product of the two vectors (article 81674).

The wedge product of two vectors is a natural way to represent an oriented
element of area, just like a single vector is a natural way to represent a directed
element of length. The orientation is the plane spanned by a and b, and the
magnitude is the area of the parallelogram whose edges are a and b. The wedge
product of two vectors has D(D − 1)/2 independent components, which is the
number of ways of choosing two distinct indices from {1, ..., D}. The wedge product
is zero when a ∝ b, as it should be, because two parallel vectors don’t define a
plane.

For D = 3, the wedge product has the same list of components as the cross
product a × b, but the cross product is treated as a “vector” orthogonal to the
plane defined by a and b, which only makes sense for D = 3. For D = 2, a direction
orthogonal to the plane does not exist, and for D ≥ 4, the directions orthogonal
to a given plane are not unique. The wedge product is more natural, because it is
more general.
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8 Conservation of angular momentum, part 2

Using the notation defined above, x ∧∇ is the set of differential operators6

xj
∂

∂xk
− xk ∂

∂xj
.

The assumption that V is invariant under rotations about the origin is expressed
by this analogue of equation (7):∑

k

xk ∧∇kV (x1, x2, ...) = 0. (10)

Equations (4) and (10) imply ∑
k

xk ∧mkẍk = 0,

and the trivial identity ẋk ∧ ẋk = 0 implies that this can also be written

d

dt

∑
k

xk ∧mkẋk = 0. (11)

This is another conservation law: it says that the quantity∑
k

xk ∧mkẋk (12)

is conserved. The quantity (12) is called the system’s total angular momentum
about the origin. Just like momentum is actually a collection of D conserved
quantities, one for each direction in space, angular momentum is a collection of
D(D − 1)/2 conserved quantities, one for each pair of directions in space.

6 Recall (section 2) that in this context, a superscript is an index, not an exponent.
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9 Conservation of angular momentum, part 3

More generally, suppose that V is invariant under rotations about the point c. This
is expressed by the condition∑

k

(xk − c) ∧∇kV (x1, x2, ...) = 0. (13)

In this case, following the same steps as before leads to the conclusion that the
quantity ∑

k

(xk − c) ∧mkẋk (14)

is conserved. This is the system’s total angular momentum about the point c.
If V is invariant under translations in space and under rotations about any one

point, then it is automatically invariant under rotations about all points. Likewise,
if momentum is conserved and if the quantity (14) is conserved for any one c, then
the quantity (14) is automatically conserved for all c. This is clear by inspection
of equations (9) and (14).
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10 Conservation of energy, part 1

Section 6 introduced the conservation law for momentum as a consequence of the
action principle combined with invariance under translations in space. This section
introduces the conservation law for energy as a consequence of the action principle
combined with invariance under translations in time.

Equation (4) could be generalized by replacing the function V (x1, ...,xK) with
a function that depends on time, like this:

V (x1, ..., xK , t). (15)

The derivation of the conservation law for energy starts by assuming that V does
not depend on time:

∂

∂t
V (x1, ...,xK , t) = 0. (16)

In this case, we can just write V (x1, ...,xK), as in equation (4). The quantity
V
(
x1(t), ...,xK(t)

)
still depends on time, but only because the locations xk(t) of

the objects depend on time.
When the condition (16) is satisfied, the set of allowed behaviors is invariant

under overall translations in time: if the functions xk(t) satisfy the equations of
motion, then so do the functions x′k(t) ≡ xk(t+ c) for any constant c.

The following sections study the corresponding conservation law.
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11 Conservation of energy, part 2

This section summarizes the conservation law that will be derived in the next
section.

Consider a model that satisfies the action principle and that is invariant under
translations in time (equation (16)), so that the equations of motion have the form
(4). Then the quantity

E(t) ≡
∑
k

mk

2

∣∣ẋk(t)
∣∣2 + V

(
x1(t), ..., xK(t)

)
(17)

is conserved. This means that its time-derivative is zero whenever the functions
xk(t) all satisfy the equations of motion (4):

Ė = 0 (consequence of (4)). (18)

Equation (17) may be abbreviated

E ≡
∑
k

mk

2

∣∣ẋk

∣∣2 + V, (19)

with the understanding that V is a function of the dynamic variables xk, which in
turn are functions of t. The quantity E is called the system’s (total) energy, and
equation (18) says that energy is conserved.
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12 Conservation of energy, part 3

To derive the result (18), first take the derivative of equation (19) with respect to
t to get

Ė =
∑
k

mkẋk · ẍk + V̇ . (20)

Now use the fact that the function

V
(
x1(t), ..., xK(t)

)
depends on time only via the locations xk, which implies7

d

dt
V
(
x1(t), ..., xK(t)

)
=
∑
k

ẋk(t) · ∇kV
(
x1(t), ..., xK(t)

)
.

More concisely,

V̇ =
∑
k

ẋk · ∇kV. (21)

Use this in equation (20) to get

Ė =
∑
k

mkẋk · ẍk +
∑
k

ẋk · ∇kV =
∑
k

(mkẍk +∇kV ) · ẋk.

Finally, use the equations of motion (4) to see that the quantity in parentheses is
zero for each k if the behavior is allowed, which gives the result (18). Altogether,
this shows that the energy (19) is conserved (that is, it remains the same for all
time) in any model that respects the action principle and that is also invariant
under translations in time.

The two terms on the right-hand side of equation (19) each have names of
their own. The first term (the one involving the velocities ẋk) is called the ki-
netic energy, and the second term V is called the potential energy (or just the
potential). Having separate names for these two terms is often convenient, even
though they are not separately conserved. Only their sum (19) is conserved.

7 This is an application of the chain rule for the derivative of a composite function.
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13 Perspective

The quantity mẋ is often called momentum, even without the context of the conser-
vation law that ultimately motivates it. However, we should not become attached
to the idea that mẋ always represents the momentum of a single object, or that the
total momentum is simply the sum of single-object momenta.8 These things are
true in some models (like the ones used in this article), but not in others. The gen-
eral definition of momentum is this: momentum is the quantity which is conserved
as a result of combining the action principle with symmetry under translations in
space.

Similarly, we should not become attached to the idea that mẋ2/2 always rep-
resents the energy of a single object. It does in some models (like the ones used in
this article), but not in others. The general definition of energy is this: energy is
the quantity which is conserved as a result of combining the action principle with
symmetry under translations in time.

“Energy” is actually an overloaded word: it has different meanings that are
not equivalent to each other. When energy is defined as the conserved quantity
associated with time-translation symmetry, as it is defined in this article, we can
add an arbitrary constant term to the system’s total energy without changing the
fact that it’s conserved. In the context of general relativity, a different definition
of “energy” is more useful, and then the constant term is not arbitrary. The
two definitions are interchangeable in some cases, but not in general, and much
confusion can be avoided simply by remembering that the same word doesn’t always
mean the same thing.

8 The plural of “momentum” is “momenta.”
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14 Example: Newton’s model of gravity

The conservation laws studied above hold in any model whose the equations of
motion have the form (4) and which has the appropriate symmetries. In particular,
they hold in Newton’s model of gravity, where V is given by equation (3):

• That V depends only on the differences xk − xj (rather than depending on
each xk independently), so (5) is automatically satisfied.

• That V depends only on the combinations |xk − xj|, so the condition (13) is
automatically satisfied for all c.

• That V is independent of t (except through the t-dependence of the objects’
locations xk), so the condition (16) is automatically satisfied.

Beware that symmetry alone is not always enough: the action principle is im-
portant, too. To illustrate this, consider a single-object model with equation of
motion

mẍ(t) = k (22)

for some constant k. In this model, the set of allowed behaviors (solutions of (22))
is invariant under translations in space: if x(t) is one solution and c is any constant
shift, then x(t) + c is another solution. However, the momentum mẋ is clearly not
conserved in this model unless k = 0. We could write (22) in the form mẍ = −∇V
with V = k · x, but then V does not have translation symmetry unless k = 0, so
momentum is not conserved unless k = 0.
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15 Why conservation laws are useful

Conservation laws are special consequences of the equations of motion, namely
consequences that can be expressed in the form

Ω̇ = 0 for all allowed behaviors,

where Ω is a quantity constructed from the dynamic variables. (In the type of
model considered in this article, the dynamic variables are the objects’ locations
xk(t).) Conservation laws are useful because they may also be written like this:

Ω(at any time) = Ω(at any other time).

This can be used to draw important conclusions about the system’s behavior with-
out solving the equations of motion completely, which is usually much harder.
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16 Velocity is relative

Consider a model of the form (4) in which V depends only on the distances |xj−xk|
between the objects. If the quantities xk(t) satisfy the equations of motion for all
k and all t, then so do the quantities

xk(t)→ xk(t) + vt (23)

for any v which is the same for all k and all t. This is another example of a
symmetry, one that shifts the velocities of all of the objects by the same amount
v. The corresponding conserved quantity turns out to be (article 12342)∑

k

mkxk − t
∑
k

mkẋk. (24)

Using the assumed symmetry of V , you can check directly that the time-derivative
of this quantity is zero whenever the xks satisfy the equation of motion (4). This is
true even though the quantity (24) has an explicit factor of t. This conservation law
doesn’t have a special name, but it is familiar:

∑
kmkẋk is the system’s momentum

(which is conserved by itself), and
∑

kmkxk is the system’s center of mass, so
this conservation law says that the velocity of the center of mass is constant.

In a world with the symmetry (23), changing the velocities of all objects by the
same amount does not have any observable effect. When physicists say that veloc-
ity is relative in Newton’s model, this is what they mean. In special relativity,
(23) is not a symmetry, but a different kind of transformation called a Lorentz
boost is a symmetry, and a similar principle still holds: a Lorentz boost changes
the velocities of all of the objects, and applying the same symmetry transformation
to all objects has no observable effect. In this sense, velocity is relative in special
relativity, too. That’s where the name relativity comes from. When we say that a
model is relativistic, we mean that it has Lorentz symmetry. A model like (1) is
called nonrelativistic, even though velocity is relative in this model, too – but in
the sense defined by (23) instead of Lorentz symmetry.
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