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Constructing Principal Bundles
from Patches

Randy S

Abstract The concept of a principal G-bundle over a base space M is the
mathematical foundation for the concept of a gauge field, where G is the gauged
group and M is space or spacetime. A trivial principal bundle M×G→M exists
for every combination of G and M . Nontrivial principle bundles exist for some
combinations of G and M but not for others. When they do exist, they may be
constructed using what this article calls patches – trivial principal G-bundles
over parts of the base space M , glued together using transition functions,
also called clutching functions. This article uses that approach to derive some
results about the (non)existence of nontrivial principal G-bundles when G is a
compact Lie group and when the base space is an n-dimensional sphere or an
n-dimensional torus, for various values of n.
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1 Introduction

This article explores the existence of principal G-bundles when the base space is an
n-dimensional sphere or an n-dimensional torus, where G is a compact Lie group.1,2

If two principal G-bundles over a given base space are isomorphic to each other,
then this article won’t distinguish between them. The definition of isomorphic
won’t be reviewed here,3 but it roughly means that they are the same when regarded
as abstract fiber bundles, even if they are implemented differently. A little less
roughly, it means that their total spaces are homeomorphic to each other and that
their projections and G-actions are consistent with that homeomorphism.

For given G and B, principal G-bundles over a base space B are said to be
classified by a set ω if elements of ω correspond one-to-one with isomorphism
classes of principal G-bundles over B. If B is a CW complex,4 then principal
G-bundles over B are classified by the homotopy set5 [B,BG], where BG is a
topological space called a classifying space for G.3 The homotopy groups of BG
are determined by those of G:3

πn(BG) ' πn−1(G). (1)

Instead of classifying principal G-bundles over B, the goal in this article is more
modest: the goal is only to determine whether nontrivial principal G-bundles over
B exist. Section 2 will summarize the results.

1Article 70621 introduces the concept of a principal G-bundle.
2Section 19 is an exception: it compares the groups G = U(1) and G = R. The group R is noncompact. This

comparison is relevant to quantum electrodynamics (article 51376).
3Article 35490
4Article 93875 defines CW complex
5Section 5 will review the concept of a homotopy set.
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2 Summary of results

To determine when nontrivial principal G-bundles over a base space B exist, this
article considers how bundles over B may be constructed from trivial bundles over
parts of B that collectively cover B. This will be done for various combinations of
G and B, where B is either a sphere (Sn) or a torus (T n). This table summarizes
the results, using “yes” to indicate that nontrivial principal G-bundles over B exist,
and using “-” to indicate that all principal G-bundles over B are trivial.

B (the base space)

S1 S2 S3 S4 S1 T 2 T 3 T n, n ≥ 4

G discrete yes - - - yes yes yes yes

G = U(1) - yes - - - yes yes yes

G = SO(k), k ≥ 3 - yes - yes - yes yes yes

G = SU(k)/Zk, k ≥ 2 - yes - yes - yes yes yes

G = SU(k), k ≥ 2 - - - yes - - - yes

The case S1 is listed twice because it’s both a sphere and a torus.
When the base space is a sphere, published information about principal bundles

is relatively abundant.6 When the base space is a torus, published information
about principal bundles is not as easy to find (or at least is not as accessible to
physicists), so this article devotes more effort to them.

6Section 8 will show that principal G-bundles over spheres are classified by homotopy groups πj(G), and abundant
information is available about the homotopy groups πj(G) of a Lie group G (article 92035).
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3 Conventions and notation

• Map means continuous map, and function means continuous function.

• Each topological space is assumed to be homeomorphic to a CW complex.7,8

• Sn is an n-dimensional sphere, also called an n-sphere.

• T n is an n-dimensional torus (the cartesian product of n circles), also called
an n-torus.

• Z is the integers, Zk is the integers modulo k, and R is the real numbers.

• If X and Y are topological spaces, then [X, Y ] is the set of homotopy classes
of maps from X to Y . The set of basepoint-preserving homotopy classes of
maps is denoted [X, Y ]0. Article 69958 reviews the definitions.

• A group or homotopy set is called trivial if it has only one element.

• πj(X) is the jth homotopy group of a topological space X, and Hj(X;Z) is
the jth integer cohomology group.9

• A topological space X is called n-connected if πj(X) is trivial for all j ≤ n.
In particular, 1-connected means π0(X) and π1(X) are both trivial. The
word connected by itself is an abbreviation for 0-connected.

• U(k) and SU(k) are the unitary and special unitary groups.

• O(k) and SO(k) are the orthogonal and special orthogonal groups.

• If G and H are groups, then G ' H means G and H are isomorphic to each
other. If X and Y are topological spaces, then X ' Y means X and Y are
homeomorphic to each other.

• BG is a classifying space10 for the group G.

7Article 93875
8Every smooth manifold is homeomorphic to a CW complex (article 93875).
9Articles 61813 and 28539

10Article 35490
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4 A general result for dimensions 1,2,3

An n-dimensional CW complex B is a union of k-cells with dimensions k ∈
{0, 1, 2, ..., n}, involving any number of k-cells of each dimension that are joined to-
gether according to some natural rules.11 Every n-dimensional topological manifold
with n ∈ {1, 2, 3} is homeomorphic to a CW complex.11,12 This section shows that
if G is a 1-connected compact Lie group and the base space B is an n-dimensional
CW complex with n ∈ {1, 2, 3}, then all principal G-bundles over B are trivial.13

In particular, all principal SU(k)-bundles over S1, S2, S3, T 2, and T 3 are trivial.14

The strategy will be to show that if G is a 1-connected Lie group, then any
principal G-bundle over a CW complex of dimension ≤ 3 admits a section.15 The
result then follows from the fact that a principal bundle is trivial if and only if it
admits a section.16

The k-skeleton of a CW complex is the union of the j-cells with j ≤ k. Choose
any k < n. Suppose that the kth homotopy group πk(G) is trivial, and suppose
that any principal G-bundle over the k-skeleton admits a section. Under those
conditions, any principal G-bundle over the (k + 1)-skeleton also admits a section.
To deduce this, start with a section over the k-skeleton. The boundary of any
(k+ 1)-cell is homeomorphic to Sk, so premise that πk(G) is trivial means that any
section over the boundary of a (k + 1)-cell may be extended to a section over the
whole (k + 1)-cell. Doing this for all of the (k + 1)-cells gives a section over the
whole (k + 1)-skeleton.

Now, suppose that B is an n-dimensional CW complex with n ∈ {1, 2, 3}.
11Article 93875
12Example: the 3-torus T 3 ≡ S1 × S1 × S1 may be represented as a cube with opposite faces identified with each

other. The interior of the cube is a 3-cell, each pair of opposite faces is a 2-cell, each quadruple of parallel edges
(which are all identified with each other) is a 1-cell, and the 8 corners (which are all identified with each other) are
a 0-cell.

13Dijkgraaf and Witten (1990), section 1, page 394 (for n = 3); Witten (1992), beginning of section 4.1 (for n = 2);
Kubyshin (1999), equation (26) and more explicitly in the paragraphs after equation (31) (for n = 2); Kirk (1993),
beginning of section 2.1 (for n = 2, 3)

14SU(k) is 1-connected for all k ≥ 1 (article 92035).
15This is one of the methods described in https://math.stackexchange.com/questions/2856191/.
16Article 70621
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The premise that G is 1-connected means that π0(G) and π1(G) each have only
one element, and the additional premise that G is a Lie group implies that π2(G)
also has only one element.17 Any principal G-bundle over the union of the 0-cells
automatically admits a section. According to the previous paragraph, the fact that
π0(G) is trivial implies that any given section over the union of the 0-cells can be
extended to the whole 1-skeleton, the fact that π1(G) is trivial implies that it can
be further extended to the whole 2-skeleton (relevant if n ∈ {2, 3}), the fact that
π2(G) is trivial implies that it can be further extended to the whole 3-skeleton
(relevant if n = 3). The result is a section over all of B, and the fact that a section
exists shows that the principal G-bundle over B is trivial, as claimed.

When n = 1, this approach still works even if G is merely connected (so that
π0(G) is trivial). Different approaches are needed when n ≥ 4, or when n ≥ 2 is G
is not 1-connected, or when n ≥ 1 if G is not even connected.

17Article 92035
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5 Homotopy

Intuitively, a homotopy from one map f : X → Y to another map g : X → Y
is a continuous deformation from f(X) to g(X) within Y . If a homotopy exists
between f and g, then f and g are said to be homotopic to each other.18 For any
given f : X → Y , the set [f ] of all maps homotopic to f is called a homotopy
class. A map f : X → Y is called nullhomotopic if it’s homotopic to a constant
map, which is a map that sends all of X to a single point of Y .

When X and Y are topological spaces, [X, Y ] denotes the set of homotopy
classes of maps from X to Y .19 Each element of [X, Y ] is a homotopy class [f ] of
maps f : X → Y .

If we choose a point x0 ∈ X and a point y0 ∈ Y , then a homotopy that
preserves the relationship x0 → y0 throughout the deformation process is called
a based homotopy. The points x0, y0 are called basepoints. Each element of
the based (or pointed) homotopy set [X, Y ]0 is an equivalence class [f ]0 of maps
using based homotopy as the equivalence relation.19 Homotopy groups, introduced
in article 61813, may be defined as πj(X) ≡ [Sj, X]0.

The set [X, Y ] is sometimes called a free homotopy set to distinguish it from
the based homotopy set [X, Y ]0. The free homotopy set [X, Y ] and the based
homotopy set [X, Y ]0 are not always equal to each other, but they are in these
cases, among others:19

• They are equal to each other when Y is 1-connected.

• They are equal to each other when Y is a connected Lie group.

Beware that the based homotopy set is often denoted [X, Y ] in sources that only
consider based homotopies.

18Article 61813
19Article 69958

8



cphysics.org article 33600 2025-04-20

6 Building a principal bundle from trivial patches

Any fiber bundle may be constructed from patches – trivial bundles over parts of
the base space, glued together using transition functions. Let U1, U2, U3, ... be a
covering of the base space B by open sets (called charts), and let Ek ≡ Uk ×F be
the total space of a trivial bundle Ek → Uk over that part of the base space. This
trivial bundle is the kth patch.20 If Uj and Uk overlap, then the way the jth and
kth patch’s fibers are glued together is specified by a transition function

τj→k : Uj ∩ Uk → G,

where elements of the group G act as homeomorphisms from the fiber F to itself.
Article 70621 describes how the functions τj→k are used to define a fiber bundle
over B and the conditions they must satisfy, including the additional condition
that must be satisfied to produce a principal G-bundle.

The charts in this construction don’t need to be contractible,21 and the in-
tersections Uj ∩ Uk don’t need to be contractible, either. Any fiber bundle can
be constructed using contractible charts with contractible intersections, but the
construction doesn’t rely on those conditions.

20This name is not standard.
21Husemoller (1966), chapter 5, section 2
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7 Diagnosing isomorphism

If two fiber bundles are both constructed using the same set of trivial patches over
the same charts, then the only way they can differ from each other is through
differences in their transition functions. If their transition functions are τj→k and
τ ′j→k, respectively then the resulting fiber bundles are isomorphic to each other if

and only if maps φj : Uj → G exist for which22,23

τj→k(u) = φ−1
j (u)τ ′j→k(u)φk(u) (2)

for all j, k. Equation (2) only uses the restrictions of the maps φj and φk to Uj∩Uk,
but they must be defined throughout Uj and Uk, respectively. The fact that the map
φk must be defined throughout Uk for each k is an essential part of the condition
for isomorphism.

Mutually homotopic transition functions automatically satisfy this condition.
To deduce this, suppose that τj→k and τ ′j→k are homotopic to each other. This
implies that the function (

τ ′j→k(u)
)−1

τj→k(u) (3)

is nullhomotopic. Then we can satisfy equation (2) by setting φj(u) = 1 for all
u ∈ Uj and setting φk(u) equal to (3) for all u ∈ Uj ∩ Uk, and the fact that this
part of φk is nullhomotopic implies that it can be extended to all of Uk.

This condition for isomorphism implies that a fiber bundle defined by the tran-
sition functions τj→k is trivial if and only if maps φj : Uj → G exist for which

τj→k(u) = φ−1
j (u)φk(u), (4)

because a fiber bundle whose transition function τ ′j→k are all constant and equal to
1 is clearly trivial.

22Husemoller (1966), chapter 5, definition 2.6 and theorem 2.7; Steenrod (1951), section 2.10
23This condition is sometimes expressed in words by saying that the transition functions τj→k and τ ′j→k are

cohomologous to each other (Calegari (2019), text below definition 1.3)
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8 Principal bundles over spheres

This section shows that principal G-bundles over the n-sphere Sn are classified by
the homotopy group πn−1(G).24,25

The sphere Sn can be covered by two open sets U1 and U2 that overlap each
other only in a narrow neighborhood of the equator. This is illustrated here for the
case n = 2, with the overlap U1 ∩ U2 shaded gray:

The open sets U1 and U2 will be called hemispheres even though they overlap.
Each hemisphere is contractible, and any fiber bundle over a contractible base space
is trivial, so any nontriviality in a bundle over Sn can only come from the transition
function τ1→2 : U1∩U2 → G. The overlap U1∩U2 can be continuously retracted onto
the equator, which is topologically Sn−1. Mutually homotopic transition functions
define isomorphic bundles, so all of the important information in the transition
function is already present in its restriction to the equator Sn−1.

The isomorphism condition (2) requires the function φk : Uk → G to be defined
everywhere in Uk. Since Uk is contractible, this implies that the restriction of φk
to the equator is nullhomotopic.26 When G is a connected Lie group, this implies
that the restriction of φk to the equator is homotopic to the function that maps
the whole equator to the identity element of G. Then equation (2) is satisfied if
and only if the transition functions τ1→2 and τ ′1→2 are homotopic to each other, so

24Cohen (2023), theorem 4.7
25Section 1 defined classified by.
26Each hemisphere Uk is an (n − 1)-dimensional ball, so we can think of a function Uk → G as a homotopy

Sn−1 × [0, 1]→ G that maps Sn−1 × {1} to a single point in G.
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principal G-bundles over Sn are classified by the free homotopy set [Sn−1, G] when
G is connected. For a connected Lie group, the free homotopy set [Sn−1, G] is the
same as the based homotopy set [Sn−1, G]0,

27 so we can use the isomorphism27

πn−1(G) ≡ [Sn−1, G]0 (5)

to get the result stated at the beginning of this section when G is connected.
Now suppose that the groupG is not connected, and letG0 denote the connected

component that contains the identity element. The images of the functions φk :
Uk → G in equation (2) might not be in G0, so equation (2) no longer requires
τ1→2 and τ ′1→2 to be homotopic to each other. In other words, principal G-bundles
over Sn are no longer classified by the free homotopy set [Sn−1, G]. However, they
are still classified by the based homotopy set [Sn−1, G]0. To deduce this, suppose
that the image of τ ′1→2 does not intersect G0, and let g be one of the points in its
image. If we choose φ1 and φ2 to be constant functions whose images are g and
the identity element, respectively, then the image of τ1→2 has at least one point in
G0.

28 This shows that if we choose a basepoint in the equator Sn−1 and consider
only transition functions τ1→2 that map this point to the identity element of G,
then we can still get all possible principal G-bundles over Sn. This is why principal
G-bundles over Sn are classified by (5) even when G is not connected.

27Section 5
28The 0-sphere S0 consists of two points that are not connected to each other, so when n = 1, the image of τ1→2

might consist of one point in G0 and one point not in G0.
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9 Principal bundles over spheres: examples

Section 8 showed that principal G-bundles over the n-sphere Sn are classified by
the homotopy group πn−1(G). Examples:

• If G is a discrete group, then πn−1(G) has only one element for each n ≥ 2,
so all principal G-bundles over Sn are trivial in these cases.

• If G is a discrete group with k elements, then π0(G) also has k elements, so
k − 1 nontrivial principal G-bundles over the circle S1 exist.

• If G is a connected group, then π0(G) only has one element, so all principal
G-bundles over S1 are trivial in this case.29

• π1(U(1)) = Z, so nontrivial principal U(1)-bundles over S2 exist.30

• πn−1(U(1)) has only one element for each n ≥ 3,31 so all principal U(1)-
bundles over Sn are trivial when n ≥ 3.

• If k ≥ 3, then π1(SO(k)) has two elements,31 so (up to isomorphism) one
nontrivial principal SO(k)-bundle over S2 exists for each k ≥ 3.32

• If G is a 1-connected Lie group, then π1(G) and π2(G) each have only one ele-
ment,33 so nontrivial G-bundles over S2 or S3 do not exist. This is consistent
with the general result in section 4.

• If G is a compact simple34 Lie group, like SU(k) is, then π3(G) = Z,31 so
infinitely many non-isomorphic nontrivial principal G-bundles over S4 exist.

29The Klein bottle is a nontrivial circle bundle over a circle, but it’s not a principal U(1)-bundle: multiplying a
circular fiber by an element of U(1) is the same as rotating the circle around its axis, and it can’t rotate the fibers
of a Klein bottle in a consistent direction at all points of the base space.

30This includes the Hopf fibration. Article 03838 studies these bundles in more detail.
31Article 92035
32Maxim (2018), section 4, exercise 2 (for k = 3)
33For π1(G), this is part of the definition of 1-connected. For π2(G), this is a special property of Lie groups (article

92035).
34A Lie group is called simple if it doesn’t have any connected normal subgroups (article 92035).
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10 Example: principal bundles over S1

This section illustrates the reasoning in section 8 using one of the easiest examples:
if G is connected, then all principal G-bundles over a circle S1 are trivial.

The “equator” S0 of S1 is a pair of points. Let p and p′ be these two points.
The base space S1 may be covered by a pair of line segments U1 and U2 that overlap
each other only at their endpoints – only on the equator S0:

U1 ∩ U2 = {p, p′}.

A transition function τ ′1→2 : S0 → G chooses two elements of G, one for each of the
two points p, p′ ∈ S0. Call these two elements g and g′. The functions φ1 and φ2

in (2) each map one of the line segments into G. If G is connected, then we can
choose these maps to satisfy35

φ1(U1) = g−1 φ2(p) = 1 φ2(p
′) = (g′)−1g,

and then the new transition function τ1→2 maps both of the points p, p′ to the
identity element of G, so the resulting bundle is trivial.

The relationship (1) leads to the same conclusion. If the group G is connected
(π0(G) = 0), then BG is 1-connected (π1(BG) = π0(BG) = 0). Every map from
S1 into a 1-connected space is homotopic to a trivial map (one that maps S1 to
a single point), so [S1, BG] = 0. Combine this with the correspondence between
[X,BG] and principal G-bundles over X to finish the proof.

A nontrivial bundle with connected fiber G over S1 may still exist, but it can’t
be a principal G-bundle. Example: the Klein bottle is a nontrivial bundle over S1

with fiber S1 ' U(1), but it’s not a principal U(1)-bundle because the transition
function cannot be implemented using only multiplication by elements of the group
U(1).

35The condition that G is connected is needed to ensure the existence of a continuous map φ2 : U2 → G that takes
the values at the endpoints p, p′ ∈ U2, with no restrictions on g or g′.
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11 Extending a principal bundle from T n to T n+1

This section shows that if a nontrivial principal G-bundle over an n-dimensional
torus T n exists for a given G and n, then a nontrivial principal G-bundle over T n+1

also exists.36

Suppose that a nontrivial principal G-bundle over a given CW complex M
exists. This implies the existence of a map f : M → BG that is not homotopic to a
constant map. Now let M ′ be another CW complex, and define f ′ : M×M ′ → BG
by

f ′(m,m′) ≡ f(m)

for all m ∈ M and m′ ∈ M ′. Let I denote the interval [0, 1] ⊂ R. If f ′ were
homotopic to a constant map, then (by definition of homotopic)37 a function h′ :
M ×M ′ × I → BG would exist with

h′(m,m′, 0) = f ′(m,m′) = f(m) h′(m,m′, 1) = point.

Then for any given point m′0 ∈ M ′, the function h : M × I → BG defined by
h(m, t) ≡ h′(m,m′0, t) would be a homotopy from f to a constant map, which
would contradict our premise about f . This shows that f ′ cannot be homotopic to
a constant map, which implies that a nontrivial principal G-bundle over M ×M ′

exists.38

Set M = T n and M ′ = S1 to get the result stated at the beginning of this
section.

36This way of extending a bundle’s base space from M to M ×M ′ might not account for all isomorphism classes
of bundles over M ×M ′, but classifying all of them is not the goal here.

37Article 61813
38Article 35490, reviewed in section 1
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12 Principal bundles over a torus from trivial patches

This section shows that if all principal G-bundles over a connected space M are
trivial, then a nontrivial principal G-bundles over M × S1 exists if and only if the
free homotopy set [M,G] has more than one element.

Choose a Lie group G, and suppose we have already determined that all prin-
cipal G-bundles over M are trivial.39 If we represent the S1 factor in M × S1 as R
modulo 2π, then the new base space M × S1 may be covered with two open sets
U1 = M × I1 and U2 = M × I2, where I1 and I2 are the intervals

I1 = [−ε, π + ε] I2 = [π − ε, 2π + ε]

for some 0 < ε � 1 so that I1 ∪ I2 = S1. If every principal G-bundle over M is
trivial, then every principal G-bundle over M × Ik is also trivial,40 because M × Ik
can be continuously retracted to M × (point) 'M . The goal is to determine when
we can build a nontrivial bundle over M × S1 from these two trivial patches.41

The overlap U1 ∩U2 has two components that are not connected to each other:

W ≡M × [−ε, ε] W ′ ≡M × [π − ε, π + ε].

This is illustrated below for the case M = S1, so that M × S1 is a 2d torus:

Each of the open sets Uk covers a little more than half of the torus, and the two
shaded regions are the two regions W and W ′ where U1 and U2 overlap. The bundles

39This condition on M is in effect throughout this section.
40Homotopy-equivalent base spaces admit the same isomorphism classes of principal G-bundles (article 35490).
41The base spaces M × Ik for these patches are not contractible, and that’s okay (section 6).
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over U1 and U2 are trivial, so the topology of the bundle over U1 ∪U1 = M × S1 is
defined by a transition function

τ1→2 : U1 ∩ U2 → G. (6)

We can think of the transition function (6) as a pair of transition functions, one
with domain W and one with domain W ′. Without loss of generality, we may
assume that the transition function in one of these regions, say W ′, is the trivial
function that maps all of W ′ to the identity element of G. To understand why this
doesn’t lose any generality, suppose that the other ends (the ends that overlap in
the other region W ) were left un-glued. Then the resulting bundle would have a
base space of the form M × I, where I is an interval, and this bundle must still be
trivial for the same reason that each of the two patches is trivial.

After choosing the transition function in W ′ to send all of W ′ to the identity
element of G, the bundle over M × S1 is determined by the transition function in
the other overlap-region W , illustrated here for the case M = S1 again:

We chose the transition function so that the functions φ1 and φ2 in equation (4)
are equal to each other within W ′, which implies that that their restrictions to
W must be homotopic to each other.42 Given a transition function τ1→2 in W ,
the resulting principal G-bundle over M × S1 is trivial if and only if τ1→2 may be
written as in equation (4). In the present case, saying that τ1→2 may be written as
in equation (4) is equivalent to saying that τ1→2 is homotopic to the map that sends
all of M to the identity element of G, because φ1 and φ2 are homotopic to each

42This is essentially the definition of homotopy, because their restrictions to W are homotopic to their restrictions
to the ends of M × I (after using φ1 = φ2 in W ′).

17
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other. Nontrivial principal G-bundles over M×S1 exist if and only if maps M → G
exist that are not homotopic to that one, which is equivalent to saying that the
homotopy set [W,G] has more than one element. The homotopy sets [W,G] and
[M,G] are equal because M is a deformation retract of W , so nontrivial principal
G-bundles over M × S1 exist if and only if [M,G] has more than one element, as
claimed at the beginning of this section.43

We can’t say that principal G-bundles over M × S1 are classified by [M,G],
though. Suppose that G is a not-necessarily-abelian group with a finite number N
of elements. Then [M,G] also has N elements, because we’re assuming that M is
connected. In that case, the fact that the restrictions of φ1 and φ2 to W must be
homotopic to each other implies that they must also be equal to each other. Then
equation (2) says that two transition functions define isomorphic principal bundles
if and only if they are related to each other by

τ1→2 = g−1τ ′1→2g (7)

for some g ∈ G. If G is nonabelian, then (7) does not imply τ1→2 = τ ′1→2, so the
number of isomorphism classes of principal bundles can be less than N .

43In contrast to section 8, the homotopy set here is a free homotopy set (no basepoints). That’s because here, the
restrictions of φ1 and φ2 to W must be homotopic to each other, so the images of τ1→2 and τ ′1→2 in equation (4)
can’t be in different connected components of G, like they could in section 8.
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13 Principal bundles over T 2: first approach

Suppose that G is a connected Lie group. In this case, all principal G-bundles over
S1 are trivial,44 so the result derived in section 12 says that nontrivial principal G-
bundles over T 2 = S1×S1 exist if and only if [S1, G] is nontrivial. For a connected
Lie group G, elements of [Sn, G] correspond one-to-one with elements of πn(G),45

so nontrivial principal G-bundles over T 2 exist if and only if π1(G) is nontrivial.
Examples:

• π1(U(1)) ' Z, so nontrivial principal U(1)-bundles over T 2 exist. This implies
that nontrivial principal U(1)-bundles over T n exist for all n ≥ 2.46

• If k ≥ 3, then π1(SO(k)) has two elements,47 so nontrivial principal SO(k)-
bundles over T 2 exist. This implies that nontrivial principal SO(k)-bundles
over T n exist for all n ≥ 2.46,48

• If G = SU(k)/Zk with k ≥ 2,49 then π1(G) has more than one element,
so nontrivial principal G-bundles over T 2 exist. This implies that nontrivial
principal G-bundles over T n exist for all n ≥ 2.46,50

• If G is 1-connected, then all principal G-bundles over T 2 are trivial. This
agrees with the general result in section 4. In particular, all principal SU(k)-
bundles over T 2 are trivial.

44Section 9
45Section 5
46Section 11
47Article 92035
48Equation 2.6 in Nash (1983) classifies SO(3) bundles over T 4.
49Article 92035
50Examples with n = 4 are given in Nash (1983), whose method is partially reviewed in Ray and Sen (2022).
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14 Principal bundles over a punctured T 2

This section shows that if G is connected, then all principal G-bundles over a two-
dimensional punctured torus (T 2 with one point removed) are trivial.51 This
result will be used in section 15.

Start with a two-dimensional torus T 2. Represent the torus T 2 as a rectangu-
lar surface whose opposite sides are identified with each other. Because of these
identifications, the rectangle’s boundary represents a pair of circles that intersect
each other at a single point, denoted S1 ∨ S1.52 This is not a manifold, but it is
a 1-dimensional CW complex, so all principal G-bundles over S1 ∨ S1 are trivial
if G is connected.53 The same conclusion may also be reached using equation (1).
Setting n = 1 in that equation gives π1(BG) ' π0(G), so if G is connected, then
BG is 1-connected, which implies54 that [S1 ∨ S1, BG] is trivial.

Now let p be a point in the rectangle’s interior. Then the boundary S1 ∨ S1 is
a deformation retract of T 2 \ p, which implies

[T 2 \ p,X] = [S1 ∨ S1, X] (8)

for any space X. Take X to be a classifying space BG for G to infer that T 2 \ p
admits the same isomorphism classes of principal G-bundles that S1 ∨ S1 does, so
all principal G-bundles over the punctured torus T 2 \p are trivial if G is connected.

51More generally, if S is a compact connected 2d surface with a nonempty boundary (like the result of deleting a
tiny neighborhood of one point from a surface of genus g), then all principal U(1)-bundles over S are trivial (Martelli
(2016), section 10.2).

52Article 69958
53Section 4
54To deduce this, use these relationships from article 69958: the identity [S1 ∨ S1,M ]0 ' [S1,M ]0 × [S1,M ]0 =

π1(M)× π1(M), and the fact that if [X,Y ]0 is trivial, then [X,Y ] is also trivial.
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15 Principal bundles over T 2: second approach

Section 13 showed that if G is connected, then nontrivial principal G-bundles over
T 2 exist if and only if [S1, G] is nontrivial. This section derives the same result
using a different way of assembling the torus T 2 from patches.

Think of the torus T 2 as a punctured torus whose puncture is repaired by
covering it with a small disk. The shading in this picture indicates where the outer
rim of the disk overlaps the inner rim of the punctured torus:

The overlap is retractible to a circle S1, so we can again use a transition function
S1 → G to construct any principal G-bundle over T 2 from principal G-bundles
over these two overlapping surfaces. A principal G-bundle over a disk must be
trivial because a disk is contractible, and section 14 showed that if G is connected,
then a principal G-bundle over a punctured torus must also be trivial. With those
inputs, the result in section 12 shows the resulting principal G-bundle over T 2 is
determined by the transition function S1 → G, just like it was in section 13.

This approach also works for any closed oriented surface M of genus g ≥ 2.55

For such a surface, M \ (point) is retractible to a set of circles that all intersect
each other at a single point.56 The reasoning in section 14 again shows that every
principal G-bundle over M \ (point) is trivial if G is connected, so every principal
G-bundle over M is again determined by a transition function S1 → G.57

55Ramanathan (1975), proposition 5.1
56This can be deduced from the fact that every closed oriented surface M of genus g is a disk with appropriate

boundary-identifications. Section 1.2 in Montesinos (1987) illustrates this in the case g = 2.
57Theorem 2.2 in Oliveira (2008) gives a more general result that includes some not-necessarily-connected groups

G, including G = O(n), and that allows the base space to be an arbitrary 2-dimensional CW complex.
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16 Principal G-bundles over T 2: third approach

Sections 13 and 15 both showed that if G is connected, then nontrivial principal
G-bundles over T 2 exist if and only if [S1, G] is nontrivial. This section uses another
approach to derive the same result.

Article 69958 shows that when X is 1-connected, [T 2, X] and π2(X) are equal
to each other (as sets):

[T 2, X] ' π2(X). (9)

This may be used to rederive the results stated in section 13. To do this, take X to
be a classifying space BG for G. Up to isomorphism, principal G-bundles over T 2

correspond one-to-one with elements of [T 2, BG].58 The classifying space BG is not
a finite-dimensional manifold, but we can always choose it to be a CW complex,58

as assumed in the derivation of equation (9). Equation (1) gives

π1(BG) ' π0(G) π2(BG) ' π1(G). (10)

The first of these equations says that equation (9) applies whenever G is connected.
In that case, we can use the second of equations (10) in (9) to get

[T 2, BG] = π2(BG) = π1(G). (11)

This shows once again that if G is connected, then nontrivial principal G-bundles
over T 2 exist if and only if [S1, G] ' π1(G) is nontrivial.

58Article 35490
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17 Principal G-bundles over T 3

Now suppose that G is a connected and 1-connected Lie group, which implies that
π0(G), π1(G), and π2(G) are all trivial.59 Section 4 already showed that in this
case, all principal G-bundles over T 3 are trivial. In particular, all principal SU(k)-
bundles over T 3 are trivial.

The same conclusion may also be reached by using (9) to get

[T 2, G] = 0 (12)

when G is a 1-connected Lie group. This implies60 that we can’t make a nontrivial
principal G-bundle over T 3 from a trivial principal G-bundle over T 2. We already
know that all principal G-bundles over T 2 are trivial when G is a 1-connected Lie
group,61 so this shows that all principal G-bundles over T 3 are trivial, too.

59Footnote 33 in section 9
60Section 12
61Section 13
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18 Principal SU(k)-bundles over T 4

Suppose that G is 1-connected. Section 17 showed that in this case, all principal
G-bundles over T 3 are trivial. According to section 12, if all principal G-bundles
over T 3 are trivial, then nontrivial principal G-bundles over T 4 exist if and only if
the free homotopy set [T 3, G] is nontrivial.

The easiest example of a 1-connected compact lie group is SU(2). The fact that
[T 3, SU(2)] is nontrivial follows from the homeomorphism

SU(2) ' S3

together with the fact that [M,Sn] ' Z for any closed n-dimensional manifold M .62

This shows that nontrivial principal SU(2)-bundles over T 4 exist.63

Article 69958 shows that [T 3, SU(k)] is nontrivial for each k ≥ 2. Altogether,
this shows that nontrivial principal SU(k)-bundles over T 4 exist for each k ≥ 2.
The result in section 11 extends this to all bases spaces T n with n ≥ 4.

62Article 69958
63https://mathoverflow.net/q/195592/ and https://math.stackexchange.com/q/4420621/ describe another

approach for principal SU(2)-bundles over four-dimensional manifolds.
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19 The Lie algebra is not enough

Much of the information about a Lie group G is encoded in its Lie algebra, but not
all of it. The existence of nontrivial principal G-bundles over a given base space
M depends on the topology of the Lie group G, not just on its Lie algebra. This
section highlights examples of that phenomenon.

• Nontrivial principal G-bundles exist over T n if G = Z2 but obviously not if
G is the trivial group with only one element, even though both groups have
the same (trivial) Lie algebra.

• Nontrivial principal G-bundles over the sphere S2 exist for G = SO(3) but
not for G = SU(2), even though both groups have the same Lie algebra.64

• The field R of real numbers is a group with respect to addition. If the fiber
G is contractible, like R is, then all principal G-bundles are trivial if the base
space is a CW complex.65,66,67 In contrast, principal U(1)-bundles over T n are
classified by the second cohomology group H2(T n;Z),68 which is isomorphic
to the direct sum of

(
n
2

)
copies of Z.69 This shows that infinitely many non-

isomorphic nontrivial principal G-bundles exist over T n if G = U(1), but
none exist if G = R, even though both groups have the same Lie algebra.

• Nontrivial principal G-bundles exist over S2 if G = U(1)70 but not if G = R.

64As a manifold, SU(2) is homeomorphic to S3, and a nontrivial S3 bundles over S2 does exist (Steenrod (1951),
section 26.3, page 135), but it is not a principal SU(2)-bundle. The fact that a nontrivial S3 bundle over S2 exists
is related to the fact that a nontrivial principal SO(4)-bundle over S2 exists (Boyer (2011), section 1).

65Freed (2015), proposition 12.26
66Kazukawa et al (2023) describes a nontrivial principal bundle with contractible fiber when the base space is not

a CW complex (not paracompact).
67Nontrivial real line bundles over Tn exist for all n ≥ 1 (the Möbius strip is a real line bundle over T 1 = S1,

with the real line depicted as a line segment), but they’re not principal R-bundles. They’re associated with principal
Z2-bundles instead.

68Article 35490
69Article 28539
70Section 9
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