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Free-Fall, Weightlessness, and
Geodesics

Randy S

Abstract Article 48968 introduced the geometry of
spacetime, which defines proper duration and proper
length for timelike and spacelike worldlines, respec-
tively. This article shows how to determine which
worldlines are geodesics. A timelike geodesic describes
the journey of an object in free-fall.
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1 Context

In general relativity, gravity is mediated by the metric field. The action prin-
ciple says that all physical influences must go both ways. In particular, influences
between the metric field and everything else go both ways:

Everything
else

Metric
field

influence

influence

The metric field is part of the definition of spacetime. It is called the metric field
(or just the metric) because it makes geometry possible (article 48968). In general
relativity, all physical entities influence (and are influenced by) the metric field,1

so physical entities modify geometry.
This article treats the metric field as a prescribed background field, exempt

from the action principle. In such a model, the influence goes only one way:

Everything
else

Metric
field

influence

Spacetime can still be curved in such a model (I like to call this generalized
special relativity), but the geometry is prescribed instead of being influenced
by other entities. The simplest example of such a model is special relativity,
in which the spacetime geometry is prescribed to be flat (not curved). The local
flatness theorem (article 48968) says that this is is a good approximation within
any sufficiently small region of spacetime.

1Analogy: charges and currents influence (and are influenced by) the electromagnetic field.
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2 Free-fall

Article 48968 introduces the concept of a worldline. A geodesic is a special type
of worldline. Geometrically, geodesics generalize the concept of of “straight” lines
to the context of curved space(time). Physically, a timelike or lightlike geodesic
describes the motion of a test object in free-fall. A test object is an object with
negligible size that is influenced by the metric field, but whose influence on the
metric field is negligible, and a test object is in free-fall if its motion is not being
influenced by anything other than the metric field.

Even though I said it’s easy, everyday language tends to mix things up pretty
badly. Words like “gravity” and “acceleration” are used inconsistently, with mean-
ings that vary from one context to another, and such inconsistencies of language
can obfuscate concepts that would otherwise be very simple. To help compensate
for that, here are a few examples to illustrate the concept of free-fall:

• If air resistance is negligible, then a rock thrown upward is in free-fall even
while it’s still moving upward. Free-fall does not imply downward motion.

• A rock drifting alone in interstellar space is in free-fall (if influences like dust
and light are negligible).

• An object in orbit is in free-fall (if atmospheric drag is negligible).

• A person standing on the surface of the earth is not in free-fall, because the
ground is pushing upward on the person’s feet.

• A person “floating” underwater is not in free-fall, because the water pressure
below the person’s body is greater than the water pressure above the person’s
body – a net influence that prevents the person from freely falling.

• A skydiver is not in free-fall if the skydiver’s motion is being significantly
influenced by air resistance, such as after reaching terminal velocity. The
skydiver’s direction of motion relative to the earth is irrelevant to the concept
of free-fall. The word free is there to remind us of this.
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3 Weightlessness

The feeling of being in free-fall is precisely the feeling of weightlessness. Don’t
confuse weightlessness with floating: when you’re floating in water, you are not
weightless, and you are not in free-fall. If you’ve ever been bunjee jumping, then
you should appreciate that the feeling of being in free-fall is diffferent from the
feeling of floating! You have your usual weight when standing on a scale inside a
submarine floating underwater, but that same scale strapped lightly to the soles
of your feet registers zero weight during the first second or so of a bunjee jump,
before other influences like air resistance become significant.

Most importantly, weight has an intrinsic direction: when you’re being pushed
or pulled by something other than gravity (like the floor of the submarine), you
feel the direction of that force. You don’t weigh yourself by balancing a scale on
your head while standing upright, you weigh yourself by standing upright with the
scale under your feet. The direction matters. In contrast, free-fall does not have
any intrinsic direction. When you’re in free-fall, the scale registers zero no matter
how it’s positioned relative to your body.2

Like the previous section mentioned, the word “acceleration” is overloaded.
Acceleration in the relative (or extrinsic) sense refers to the relative motion
between two objects. When you drop a rock, the rock accelerates toward the
earth in the relative sense. Equivalently, the earth accelerates toward the rock in
the relative sense. Acceleration in the relative sense depends on what coordinate
system we use to describe the motion: an object’s relative acceleration (relative
to the coordinate system) can be zero in one coordinate system and nonzero in
another coordinate system. In contrast, acceleration in the absolute (or intrinsic)
sense refers to a deviation from free-fall. An object accelerating in the absolute
sense has a weight, and the direction and magnitude of the weight correspond to
the direction and magnitude of the deviation from free-fall. An object’s absolute
acceleration does not depend on what coordinate system we use to describe it.

2This assumes that the body+scale system is small enough so that gravitational tidal effects are negligible, which
is implied by the definition of test object.
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4 Characterizing geodesics mathematically

Mathematically, a geodesic is a worldline whose tangent vector remains tangent to
the worldline when parallel-transported along the worldline. Article 03519 explains
what this means, but it requires more mathematical background than I want to
assume here.3

As a substitute, I’ll describe an alternative way to characterize geodesics.4 This
alternative characterization is not as satisfying conceptually, but it is more conve-
nient for many purposes. In this alternative approach,

• A timelike geodesic is a worldline that extremizes the proper duration between
its endpoints.

• A spacelike geodesic is a worldline that extremizes the proper length between
its endpoints.

Recall that the extrema of an ordinary function of one variable are the points
where its derivative is zero. Similarly, the extrema of the proper duration (or
length), which are “functions” of timelike (or spacelike) worldlines with the given
endpoints, are worldlines for which the first variational derivatives are all zero.
This characterization leads to a system of Euler-Lagrange equations5 (article
46044), whose solutions are precisely the geodesics. Lightlike geodesics are not
so directly characterized in terms of an extremization principle,6 but the general
Euler-Lagrange equations that we obtain for timelike and spacelike geodesics also
turn out to be valid for lightlike geodesics.7

3Article 03519 introduces the required background and shows that the definition based on parallel transport is
consistent with the alternative approach used here.

4This alternative approach is also advocated in Martin (1988).
5Don’t worry – this is easier than it might sound!
6That’s is one reason why this alternative approach is not as satisfying conceptually.
7This can be proven using the parallel-transport definition, which I’ve chosen not to review here.
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5 The Euler-Lagrange equations for a geodesic

Let A and B be two events connected by a timelike worldline xa(λ) parameterized
by λ. We want to determine whether the given worldline is a geodesic. It’s a
geodesic if and only if it extremizes the (proper) duration.8 The duration is9

duration =

∫ λB

λA

dλ L1/2 (1)

with10

L ≡ gab(x)ẋaẋb. (2)

The extremization condition means that the variation of (1) is zero to first order in
δxa(λ), for all variations δxa(λ) about the given worldline, keeping the endpoints
fixed. To first order, the variation of (1) is

δ(duration) =
1

2

∫ λB

λA

dλ L−1/2 δL (3)

Now suppose that λ is an affine parameter, which (for a timelike worldline)
means λ = ατ + β where τ is the proper time running along the given worldline
and α, β are constants. This implies that L = constant for the given worldline.
The variation of L can still be nonzero, because the variation explores worldlines
that differ from the given worldline, so equation (3) becomes

δ(duration) ∝
∫ λB

λA

dλ δL. (4)

8Witten (2019), section 2, page 7.
9I’m assuming that you’re familiar with the material in article 48968.

10I’m using the mostly-minus convention for gab, so L > 0 for timelike worldlines, I’m also using the summation
convention for indices repeated in the same term.
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The lagrangian L depends only on xa(λ) and its first derivatives ẋa, so we can use
the technique explained in article 46044 to deduce that the extremization condition
δ(duration) = 0 is equivalent to the Euler-Lagrange equations

d

dλ

δL

δẋc
=
δL

δxc
(5)

when λ is an affine parameter.
That was for timelike worldlines. For spacelike worldlines, equation (1) is re-

placed by

length =

∫ λB

λA

dλ (−L)1/2 (6)

with L defined as before.11 The extremization condition δ(length) = 0 again leads
to equation (5) when λ is an affine parameter, which now means λ = αs+ β where
s is the proper length running along the worldline.

As explained in section 4, the extremization conditions δ(duration) = 0 and
δ(length) = 0 characterize timelike and spacelike geodesics, respectively. For light-
like geodesics, the approach used above doesn’t make sense,12 but the result –
equation (5) – still holds even for lightlike geodesics, again when a suitable param-
eterization is used. Altogether, equation (5) characterizes geodesics of all kinds
(timelike, spacelike, lightlike) when L is defined by (2) and an affine parameter is
used.

11I’m using the mostly-minus convention for gab, so L < 0 for spacelike worldlines.
12It doesn’t make sense because L = 0 for a lightlike geodesic, so variations about such a geodesic can make L

have both signs, one of which makes L1/2 undefined.
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6 Geodesics for a general metric

This section uses the Euler-Lagrange equation (5) to derive a more explicit version
of the geodesic equation for a generic metric. Use (2) to get

δL

δxc
= (∂cgab)ẋ

aẋb
δL

δẋc
= gcbẋ

b + gacẋ
a = 2gcbẋ

b. (7)

The last step used the the fact that the metric is symmetric: gab = gba. The second
of equations (7) gives

d

dλ

δL

δẋc
= 2gcbẍ

b + 2(∂agcb)ẋ
aẋb,

so the Euler-Lagrange equation (5) becomes

2gcbẍ
b + 2(∂agcb)ẋ

aẋb = (∂cgab)ẋ
aẋb.

We can write this in a more convenient form by using the fact that the metric is
invertible (article 48968). The components gac of the inverse metric satisfy

gacgcb = δab .

Using this, we can re-arrange the preceding equation to get the final result

ẍc + Γcab(x)ẋaẋb = 0 (8)

with coefficients

Γcab(x) ≡ 1

2
gcd(x)

(
∂agbd(x) + ∂bgad(x)− ∂dgab(x)

)
. (9)

The coefficients are constructed to be symmetric (Γcab = Γcba), because an antisym-
metric part wouldn’t contribute to equation (8) anyway.

Altogether, a worldline is a geodesic if and only if it can be parameterized so
that it satisfies equation (8). The next section explains how the equation is modified
when an arbitrary parameterization is used.
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7 Other parameterizations

Equation (8) is the geodesic equation when the geodesic is parameterized in a spe-
cial way, called an affine parameterization. To see what happens when an arbi-
trary parameterization is used, start with a worldline xa(λ) that satisfies equation
(8), and then reparameterize the worldline by expressing λ as a monotonically-
increasing function of some other parameter µ:

dλ

dµ
> 0.

The new functions
Xa(µ) ≡ xa

(
λ(µ)

)
describe the same worldline (the same smooth sequence of events), but now it’s
parameterized by µ instead of by λ. Use the identity

d

dλ
=

(
dλ

dµ

)−1
d

dµ

in equation (8) to get an equation of the form

Ẍc + Γcab(X)ẊaẊb = f(µ)Ẋc,

where now the dots denote derivatives with respect to the new parameter µ. This
is the geodesic equation for an arbitrary parameterization. The term f(µ)Ẋc in
this equation comes from the term ẍc in equation (8).

Physically-meaningful results don’t depend on how a worldline is parameterized,
so we might as well assume an affine parameterization so that the simpler equation
(8) can be used.13

13Some authors, like Wald (1984), don’t even call it a geodesic unless it’s affinely parameterized.
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8 Example: flat spacetime

In flat spacetime, we can choose the coordinate system so that the metric for flat
spacetime has components

gab = diag(1,−1,−1,−1). (10)

These components are independent of the coordinates,14 so using (10) in (9) gives
Γcab = 0, and then equation (8) reduces to

ẍc = 0. (11)

The general solution of (11) is

xc(λ) = αcλ+ βc (12)

with constant (λ-independent) coefficients αc and βc. This says that in flat space-
time, geodesics are those worldlines that are straight in this special coordinate
system.

The same worldline can also be parameterized in other ways. Here’s one exam-
ple:15

xc(λ) = αcλ+ αcλ3 + βc.

These are different functions than (12), but they still describe the same worldline
– the same smooth sequence of events in spacetime. It is still a straight line in this
coordinate system. However, when parameterized this way, the worldline no longer
satisfies (11). It satisfies an equation of the form

ẍc = f(λ)ẋc

instead. This illustrates the fact that equation (8) describes geodesics only when a
special parameterization is used.

14The components are different in different coordinate systems, but in this particular coordinate system, the
components are independent of the coordinates.

15The superscript c on αc and βc is an index, but the superscript 3 on λ3 is an exponent.
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9 Radial geodesics in Schwarzschild spacetime

For many metrics of interest, starting with the Euler-Lagrange equation (5) is easier
than starting with (8). We can specialize the definition of L (equation (2)) to the
metric of interest and use this in equation (5), instead of deriving (8) first.

As an example, choose a constant R > 0 and consider the line element

τ̇ 2 = ẇ2 − ẋ2 − R

r

(
ẇ +

x · ẋ
r

)2

. (13)

This is the Schwarzschild metric in Kerr-Schild coordinates (article 24902).
The independent coordinates are w and x = (x, y, z), with the dependent quantity

r defined by r ≡
√
x2 + y2 + z2. This line element has spherical symmetry: the

right-hand side of (13) is invariant under rigid rotations of the x, y, z coordinates.
Thanks to spherical symmetry, the geodesic equation (5) has solutions with

x(λ) > 0 y(λ) = 0 z(λ) = 0. (14)

If such a solution is timelike, then it describes an object in free-fall along the x-axis.
Let’s work this out explicitly. For the metric (13), the quantity L defined in (2) is

L = ẇ2 − ẋ2 − R

r

(
ẇ +

x · ẋ
r

)2

. (15)

Calculate the variational derivatives of L and then apply the conditions (14) to get

δL

δw
= 0

δL

δẇ
∝ ẇ − R

x
(ẇ + ẋ)

δL

δx
=
R

x2
(ẇ + ẋ)2 δL

δẋ
− 2

(
ẋ+

R

x
(ẇ + ẋ)

)
δL

δy
= 0

δL

δẏ
= 0

δL

δz
= 0

δL

δż
= 0.
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This gives the Euler-Lagrange equations

d

dλ

(
ẇ − R

x
(ẇ + ẋ)

)
= 0 (16)

and
d

dλ

(
ẋ+

R

x
(ẇ + ẋ)

)
= −R/2

x2
(ẇ + ẋ)2. (17)

To reduce this to something more recognizable, add equations (16) and (17) to get

d

dλ
(ẋ+ ẇ) = −R/2

x2
(ẇ + ẋ)2. (18)

Now define

C ≡ ẇ − R

x
(ẇ + ẋ),

which equation (16) says is constant. Use this together with (14) to reduce (13) to

τ̇ 2 = (ẇ + ẋ)(C − ẋ). (19)

For a timelike worldline, we can use its proper time τ as the parameter λ, which
is a special case of an affine parameterization. This gives τ̇ = 1, so we can use
equation (19) to rewrite equation (18) like this:

d

dλ

1

C − ẋ
= −R/2

x2

1

(C − ẋ)2
.

After evaluating the derivative on the left-hand side, the factors of (C− ẋ)2 cancel,
leaving the simple result

ẍ = −R/2
x2

. (20)

This describes the motion of an object in free-fall along the x-axis, for all x > 0,
parameterized by the object’s own proper time.
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10 Circular orbits in Schwarzschild spacetime

Rewrite the line element (13) in a new coordinate system (w, ρ, φ, z) with ρ, φ
defined implicitly by

x = ρ cosφ y = ρ sinφ.

This gives

τ̇ 2 = L = ẇ2 − ρ̇2 − ρ2φ̇2 − ż2 − R

r

(
ẇ +

ρρ̇+ zż

r

)2

(21)

with r ≡
√
ρ2 + z2. Let’s determine if any timelike geodesics exist with

ρ(λ) = ρ0 z(λ) = 0, (22)

where ρ0 is a given positive constant. Calculate the variational derivatives of L and
then apply the conditions (22) to get

δL

δw
= 0

δL

δẇ
∝
(

1− R

ρ0

)
ẇ

δL

δr
= −2ρ0φ̇

2 +
R

ρ2
0

ẇ2 δL

δρ̇
− 2

R

ρ0
ẇ

δL

δφ
= 0

δL

δφ̇
∝ ρ2

0φ̇

δL

δz
= 0

δL

δż
= 0.

Use these in the Euler-Lagrange equations (5) to get

ẇ = const φ̇ = const ρ3
0φ̇

2 =
R

2
ẇ2. (23)

If we parameterize the worldline using its own proper time, λ = τ , then equations
(21) and (22) give

1 = ẇ2 − ρ2
0φ̇

2 − R

ρ0
ẇ2.
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Combine this with the third equation in (23) to deduce

1 =

(
2ρ3

0

R
− 3ρ3

0

)
φ̇2. (24)

This gives us an explicit expression for the constant φ̇, the angular speed of the
object’s orbit according to its own proper time. Equation (24) also implies

ρ0 >
3R

2
.

This says that timelike circular orbits are possible only if the given constant ρ0

satisfies this inequality, even though this is outside the event horizon (article 24902).
If we also consider lightlike circular orbits, then the lightlike condition τ̇ = 0

leads to

0 =

(
2ρ3

0

R
− 3ρ3

0

)
φ̇2

instead of equation (24). This shows that a lightlike circular orbit must have

ρ0 =
3R

2
.

This is called the innermost circular orbit.
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11 The local flatness theorem

The geodesic equation (8) explains the significance of the local flatness theorem
that was introduced in article 48968 and illustrated in article 24902. The local
flatness theorem says that for any given event p where the metric is well-defined, a
coordinate system always exists in which the Taylor expansion of the metric about
the event p doesn’t have any terms that are linear in the coordinates. According to
equation (9), this means Γcab = 0 at the event p in that coordinate system,16 which
in turn means that the relative accelerations of objects in free-fall at p are all zero.

For a general metric, even though we can always choose the coordinate system
so that Γcab = 0 at the given event, we cannot always choose the coordinate system
so that Γcab = 0 exactly throughout a finite neighborhood of that event. If we can,
then we say that spacetime is (exactly) flat within that neighborhood. Otherwise,
the spacetime is curved – even though it is always locally flat in the sense explained
above.

16The quantities Γc
ab are not the components of a tensor (article 09894). They may all be zero at p in one coordinate

system even if they’re not all zero in another coordinate system.
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