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The Free Scalar Quantum Field:
Particles

Randy S

Abstract Quantum field theory (QFT) is the foundation for our
current understanding of particle physics. One important thing
to understand about QFT is how the phenomena we call particles
arise naturally from a model that is defined entirely in terms of
quantum fields, and a first step toward that understanding is to
formulate the concept of particle using only observables that are
available in QFT. This can be done by using observables that act
like detectors. This article uses the relativistic free scalar model
as an example.

One key message is that in relativistic QFT, perfectly reliable
detectors cannot be perfectly localized in any finite region of
space. This might not matter much in practical applications,
which are never perfect anyway, but it is fundamental to a good
understanding of relativistic QFT.
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1 Introduction

In a typical high-energy particle physics experiment, the number of particles can
change: the number that comes out may differ from the number that went in.
In the context of quantum theory, this implies that the number of particles can
be ill-defined: if |a〉 and |b〉 are state-vectors with different numbers of particles,
then |a〉+ |b〉 is a state-vector that doesn’t have a well-defined number of particles.
Such superpositions must be allowed if the theory includes observables O for which
〈a|O|b〉 6= 0, as it must if the number of particles can change.

If the number of particles can be ill-defined, then observables can’t be tied to
particles. In quantum field theory (QFT), observables are tied to spacetime instead,
because spacetime doesn’t change in QFT.1 In this framework, the concept of
particle can be defined in terms of observables that act like particle detectors. The
number and arrangement of detectors can be still be well-defined even if the number
and arrangement of particles is not. In this way, QFT predicts the very existence of
particles: when a model is defined in a way that doesn’t rely on perturbation theory,
the existence of particles is something we get out of the model, not something we
arbitrarily put into it.2

This article uses the free scalar model to illustrate the idea of using observables
that act like detectors to define the particle concept itself. The free scalar model
doesn’t have any interactions between particles, but the number of particles can
still be ill-defined: the model’s local observables necessarily mix states with dif-
ferent numbers of particles, even though the hamiltonian (the generator of time
translations) does not.

1This is a problem for (nonperturbatively) reconciling general relativity with quantum field theory, because the
geometry of spacetime is not fixed in general relativity. The AdS/CFT correspondence gets around this problem by
tying observables to the asymptotic structure (the “boundary”) of spacetime instead of to the bulk of spacetime.
The asymptotic geometry is fixed even though the bulk geometry is not. Some references are cited in article 21916.

2A model’s predictions depend on its input parameters, so of course we can modify a model’s particle content by
modifying its inputs. We can use this to design a model with a desired particle content, like Weinberg (1995) does
in the context of perturbation theory. Even in that context, the particle content is constrained in interesting ways
(Weinberg (1996), section 22.4).
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2 Using detectors to define the particle concept

To define particle in QFT, we should express the definition using observables that
are available in QFT. We can do this by using observables that act like detectors.
We shouldn’t expect to find any definition of particle in QFT that perfectly matches
the way the word is typically used, because typical usages of the word are influenced
by a mental image of the world that isn’t consistent with QFT. The real goal here
is not to propose any final definition of the word, but rather to learn something
about QFT by thinking about how to recognize particle-like phenomena using the
observables that QFT provides. Characteristics of particle-like phenomena include:

• Particles can be localized in space.3

• Particles can be counted, at least when they’re far enough away from each
other to avoid confusion.

• A state with one or more particles has higher energy than a state with none.

Here’s a first attempt to express those characteristics in terms of detectors:

• Ideally, a detector should be represented by an observable localized in a small
region of space.

• Ideally, if a state can can simultaneously trigger up to N well-separated de-
tectors (separated so that they don’t disrupt each other), but not more than
N well-separated detectors (not even after waiting for dispersion as defined
in article 20554), then it should qualify as an N -particle state.

• Ideally, the lowest-energy state shouldn’t trigger any detector.

All of these conditions start with the word ideally because they are not strictly
compatible with each other in relativistic QFT, not even in simple toy models like
the free scalar model. They are close enough to being consistent with each other

3The words “can be” are in this sentence because any superposition of one-particle states should still qualify as
a one-particle state, even if the superposition makes the particle nonlocalized.

4



cphysics.org article 30983 2023-11-12

for practical applications, but uncovering why they’re not strictly compatible with
each other will teach us something important about relativistic QFT.

In relativistic QFT, the lowest-energy state cannot be annihilated by any ob-
servable that is strictly localized within in a finite region of space. This is a con-
sequence of the Reeh-Schlieder theorem.4 This implies that the first condition
listed above (a detector observable should be local) is not strictly compatible with
the third condition listed above (a detector shouldn’t be triggered by the lowest-
energy state). Relativistic QFT has local observables, and it has observables that
annihilate the lowest-energy state, but it doesn’t have any observables that satisfy
both of those conditions.5 That’s okay, because the criteria are still approximately
compatible with each other, and the quality of the approximation is consistent with
the properties of real-world detectors.

Mathematically, we have two options: we can compromise the first criterion
by allowing an observable that represents a detector to be only approximately
localized, or we can compromise the third criterion by allowing a tiny but nonzero
probability for the lowest-energy state to trigger a detector.6,7 This article uses the
first option: detectors that perfectly annihilate the vacuum state but that are only
imperfectly localized.

Particles in the free scalar model are stable and don’t interact with each other.
In models that aren’t this simple, attempts to define particle unambiguously can
be frustrated by additional complications.8 That’s okay. Predictions should be
unambiguous, but the ways we categorize predictions – like “this is a particle” or
“this is a river” – don’t need to be unambiguous.

4Article 00980 briefly reviews the Reeh-Schlieder theorem, and section 2.4 in Witten (2018) highlights this par-
ticular consequence.

5Strictly nonrelativistic QFT (article 15939) avoids this complication by redefining localized, as explained in article
00980.

6Real detectors are slightly noisy anyway.
7This might be one reason why some popular accounts of QFT tell stories about particles bubbling in and out of

existence in the vacuum state. Such stories can help inspire curiosity about QFT, but they don’t really contribute
to a proper understanding of QFT.

8Sometimes scattering experiments exhibit a resonance in a special range of energies, and sometimes the resonance
lasts long enough to warrant calling it an intermediate particle, but the line is arbitrary.
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3 Review of the free scalar model

Article 52890 constructs a family of models of a single scalar quantum field. The
free scalar field is a special case in which the equation of motion is linear. In that
special case, article 00980 explains how to make the time-dependence of the field
operators explicit.

The construction used in those articles treats space as a lattice. This is artificial,
but it allows the field operators to be defined at individual points without causing
any mathematical trouble. This article uses continuum-like notation, but the model
is understood to be defined on a lattice – the “integrals” are understood to be
discrete sums. This section reviews some of the key equations from article 00980.

The field operators in the free scalar model may be written

φ(x, t) =

∫
dDp

(2π)D
a(p)e−iωt+ip·x + a†(p)eiωt−ip·x√

2ω
(1)

with
[a(p), a(p′)] = 0 [a(p), a†(p′)] = (2π)D δ(p′ − p) (2)

and
ω(p) ≈

√
m2 + p2 (3)

The approximation applies whenever |p| is much smaller than 1/ε, where ε is the
lattice step-size.9 In other words, the approximation applies whenever the resolu-
tion is coarse enough that the lattice might as well be a continuum. Section 11
shows that ω(p) is the energy of a particle with momentum p, so equation (3) is
the familiar Lorentz-symmetric relationship between energy, mass, and momentum
(article 77597).

By definition, the field operator φ(x, t) is localized at x at time t, and any other
observable qualifies as being localized in a spatial region R at time t if and only
if it can be expressed in terms of operators φ(x, t) and φ̇(x, t) with x ∈ R. Equa-
tions (1)-(2) imply that the field operators satisfy these equal-time commutation

9This article uses natural units, in which Planck’s constant ~ and the speed of light c are both equal to 1.
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relations: [
φ(x, t), φ(y, t)

]
= 0

[
φ̇(x, t), φ̇(y, t)

]
= 0[

φ(x, t), φ̇(y, t)
]

= iδ(x− y). (4)

These can be used to test statements about the localization of other observables,
because if an observable is localized in a region R at time t, then it must commute
with φ(x, t) and φ̇(x, t) for all points x that are not in R.

The hamiltonian for the free scalar model is

H =

∫
dDp

(2π)D
ω(p) a†(p)a(p). (5)

The hamiltonian is the generator of translations in time, and it is the observable
corresponding to the system’s total energy. Saying that it generates translations
in time means

φ(x, t) = U−1(t)φ(x, 0)U(t) U(t) ≡ e−iHt.

To confirm that this is consistent with equations (1)-(2), use the commutation
relations (2) to get [a(p), H] = ω(p)a(p), which is the time-derivative of

U−1(t)a(p)U(t) = a(p)e−iω(p)t.

For each p, the integrand of (5) is a positive operator, so the state |0〉 that satisfies

a(p)|0〉 = 0 for all p (6)

has the lowest possible energy. This is the vacuum state for the free scalar model.
The Hilbert space is spanned by states of the form

a†(p1)a
†(p2) · · · a†(pN)|0〉

with N ∈ {0, 1, 2, ...}.
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4 Energy-increasing/decreasing operators

Equations (2) and (5) imply that each application of a(p) decreases the energy
of a state by ω(p). Its adjoint a†(p) does the opposite: each application of a†(p)
increases the energy by ω(p). As promised by the Reeh-Schlieder theorem,10 an
operator that decreases the energy of every state cannot be strictly localized in any
finite region of space. The identity

[a(p), φ(x, t)] =
eiω(p)t−ip·x√

2ω(p)

shows that the operators a(p) are not even close to being localized anywhere: the
magnitude of the right-hand side is independent of x.

An energy-decreasing operator can’t be strictly localized in any finite region,
but it can be approximately localized. The energy-decreasing operator defined by

a(x, t) ≡
∫

dDp

(2π)D
a(p)e−iω(p)t+ip·x = eiHta(x, 0)e−iHt (7)

is almost localized at x at time t. This can be confirmed by using equation (1) to
write a(p) in terms of φ(y, t) and φ̇(y, t)10 and observing that the coefficients of
those field operators in a(x, t) are rapidly decreasing functions of |x − y|. It can
also be checked by evaluating the commutators

[a(x, t), φ(y, t)] =

∫
dDp

(2π)D
eip·(x−y)√

2ω(p)

[a(x, t), φ̇(y, t)] = i

∫
dDp

(2π)D
eip·(x−y)

√
ω(p)/2.

Article 22050 shows that these are both rapidly decreasing functions of |x− y|.

10 Article 00980
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5 Detectors: construction

This section constructs a family of observables that act like detectors. Each detector
is (approximately) localized in a specified region of space at time t = 0. Each of
these observables is represented by a projection operator that perfectly annihilates
the lowest-energy state, but they are only approximately localized (section 6).

The commutation relations (2) imply that the operators defined in (7) satisfy[
a(x, t), a(y, t)

]
= 0

[
a(x, t), a†(y, t)

]
= δ(x− y) (8)

and
[a(p), a†(x, t)] = eiω(p)t−ip·x. (9)

For any given time t, the set of all linear combinations of state-vectors of the form

|x1, x2, ..., xN , t〉 ≡ a†(x1, t)a
†(x2, t) · · · a†(xN , t)|0〉 with N ∈ {0, 1, 2, 3, ...}

(10)
is dense in the Hilbert space: every nonzero vector in the Hilbert space has a
nonzero inner product with at least one of these. If we specify an operator’s effect
on all of these state-vectors, then we have implicitly specified its effect on every
state-vector in the Hilbert space.

Thanks to (8), the states (10) are mutually orthogonal, so we can define a
projection operator P (R, t) for each region R of space and each time t by

P (R, t)|x1, x2, ..., xN , t〉 =

{
|x1, x2, ..., xN , t〉 if at least one xn ∈ R,
0 otherwise.

(11)

Many other families of observables that act like imperfectly-localized detectors can
also be constructed, but thanks to equations (8), the one defined here is especially
easy to handle.

9
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6 How localized are the detectors?

Remember (section 3) that an observable qualifies as being localized in a spatial
region R at time t if and only if it can be expressed in terms of operators φ(x, t) and
φ̇(x, t) with x ∈ R. According to that principle, the observables P (R, t) defined
in the previous section are not quite localized in R at time t. In fact, they’re not
quite localized in any finite region.

To prove this, first use the identity (9) to get

〈0|φ(y, t)a†(x, t)|0〉 = 〈0|
[
φ(y, t), a†(x, t)

]
|0〉 (use (6))

= 〈0|0〉 f1/2(x− y) (use (9))

with

f1/2(x− y) ≡
∫

dDp

(2π)D
eip·(y−x)√

2ω(p)
. (12)

The definition (11) gives

〈0|φ(y, t)P (R, t)a†(x, t)|0〉 = 〈0|φ(y, t)a†(x, t)|0〉 if x ∈ R (13)

〈0|P (R, t)φ(y, t)a†(x, t)|0〉 = 0, (14)

because P (R, t)|0〉 = 0. Now, suppose (incorrectly) that P (R, t) were localized in
a finite region of space at time t, and let y be a point outside of that region. If that
were true, then equations (4) would imply that P (R, t) commutes with φ(y, t), so
if x ∈ R, then the quantities (13) and (14) would be equal to each other. That
contradicts the fact that (12) is nonzero, so P (R, t) cannot be localized in any finite
region of space at time t.

On the other hand, the magnitude of the quantity (12) does decrease rapidly
as |x − y| increases,11 so this result is consistent with the idea that P (R, t) is
approximately localized in R at time t.

11Article 22050
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7 Single-particle states

Now that we’ve constructed some observables representing approximately localized
detectors, we can use the ideas listed in section 2 to discover which states qualify
as single-particle states. The observable P (R, t) defined by equation (11) is a
projection operator, so the probability that this detector will detect something in
a state |ψ〉 is12

p|ψ〉(R, t) ≡
〈ψ|P (R, t)|ψ〉
〈ψ|ψ〉

. (15)

The lowest-energy state |0〉 doesn’t have any particles, by definition. That’s con-
sistent with the identity

P (R, t)|0〉 = 0,

which implies p|0〉(R, t) = 0. Now consider the state

|x, t〉 ≡ a†(x, t)|0〉. (16)

This state satisfies

p|x,t〉(R, t) =

{
1 if x ∈ R,
0 otherwise.

(17)

It also satisfies
P (R, t)P (R′, t)|x, t′〉 = 0

for all R,R′ with R∩R′ = ∅, for all times t and t′ (not necessarily equal). According
to the ideas listed in section 2, this means that the state (16) qualifies as a single-
particle state, and equation (17) says that the particle is essentially localized in R
at time t.

Any superposition (linear combination) of single-particle states is still a single-
particle state, even though the particle in such a state might not be approximately

12Article 03431
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localized in any small region of space. Any superposition of the states (16) may be
written

|f, t〉 ≡
∫
dDx f(x)a†(x, t)|0〉. (18)

This state doesn’t (ever) have any more than one particle, because it does not
trigger any pair of well-separated detectors, at any time t′:

P (R, t′)P (R′, t′)|f, t〉 = 0

for all R,R′ with R ∩ R′ = ∅. To confirm that the state (always) has at least
one particle, choose a region R that is large enough to contain the region where
f is nonzero. If needed, we can even choose R to be all of space. Using the
notation (15), this ensures p|f,t〉(R, t) = 1, so the state is guaranteed to trigger
the detector P (R, t). If the region R only partly overlaps the region where f is
nonzero, then the detection probability will be less than 1. That’s okay, because the
criteria for diagnosing single-particleness don’t require the particle to be detectable
everywhere. They only require it to be detectable somewhere – not at any one point
(section 8), but within some sufficiently large region.

12
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8 How localized is the particle?

The state (16) represents a particle that is only imperfectly localized near x at
time t. Equation (17) doesn’t say that the particle is perfectly localized, because
the observables P (R, t) are not perfectly localized (section 6). We shouldn’t expect
perfect localization of any object to be possible anyway, because even the vacuum
state is entangled with respect to location.13 This section checks directly that the
particle represented by the state (16) is only imperfectly localized.

If it were perfectly localized at x, with no presence anywhere else, then the
state |x, t〉 would look just like the vacuum state to all observables localized away
from x at time t. More explicitly, the two quantities

〈x, t|A|x, t〉
〈x, t|x, t〉

〈0|A|0〉
〈0|0〉

(19)

would be equal to eacy other for all observables A ∈ Ω(R, t) with x /∈ R, where
Ω(R, t) is the set of observables localized in R at time t. But the two quantities
(19) are not equal to each other for all such observables. To confirm this, write the
first quantity as

〈x, t|A|x, t〉
〈x, t|x, t〉

=
〈0|a(x, t)Aa†(x, t)|0〉
〈0|a(x, t)a†(x, t)|0〉

=
〈0|[a(x, t), A]a†(x, t)|0〉+ 〈0|Aa(x, t)a†(x, t)|0〉

〈0|a(x, t)a†(x, t)|0〉

=
〈0|[a(x, t), A]a†(x, t)|0〉+ 〈0|A[a(x, t), a†(x, t)]|0〉

〈0|[a(x, t), a†(x, t)]|0〉

=
〈0|[a(x, t), A]a†(x, t)|0〉
〈0|0〉 [a(x, t), a†(x, t)]

+
〈0|A|0〉
〈0|0〉

.

This shows that the two quantities (19) cannot be equal to each unless the quantity

〈0|[a(x, t), A]a†(x, t)|0〉
13Article 00980
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were zero for all A ∈ Ω(R, t) with x /∈ R. One example that makes it nonzero is

A = φ2(f)/2 φ(f) ≡
∫
dDy f(y)φ(y, t)

for some real-valued function f whose value at the point x is zero. Then

〈0|[a(x, t), A]a†(x, t)|0〉 = 〈0|[a(x, t), φ(f)]φ(f)a†(x, t)|0〉
= 〈0|[a(x, t), φ(f)][φ(f), a†(x, t)]|0〉
= 〈0|0〉

∣∣[a(x, t), φ(f)]
∣∣2

= 〈0|0〉

∣∣∣∣∣
∫

dDp

(2π)D

∫
dDy

f(y)eip·(x−y)√
2ω(p)

∣∣∣∣∣
2

, (20)

which is nonzero even if f is zero at the point x, as long as f is nonzero somewhere
else. This shows that the particle represented by the state (16) is not perfectly
localized at x (or anywhere else).14

On the other hand, the quantity (20) decreases rapidly with increasing dis-
tance between x and the region where f is nonzero. Explicitly, it decreases like
∼ exp(−m|x − y|) where y is any point inside the region where f is nonzero.15

This indicates that the particle is mostly (but still not perfectly) localized inside a
region of diameter ∼ 1/m, which is called the particle’s Compton wavelength.
This is consistent with the fact that the vacuum state’s entanglement with respect
to location decreases with increasing distance in essentially the same way.16

14Smit (2002), sections 2.8 and 2.9
15Article 22050
16Article 00980
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9 Localized states: literature review

In quantum field theory, an association between observables and regions of space-
time is part of a model’s definition.17 The meaning of localization for a particle
is therefore implicit in the way observables are used to define particle. That’s the
key message in section 8. More generally, the association between observables and
regions of spacetime can be used as the foundation for the concept of localization
for any type of state, whether or not the particle concept is involved. Such an
observable-based definition of localized state is described in Knight (1961), who
showed that it cannot be strictly satisfied by any state with a finite number of
particles.18 Licht (1963) derived a general result about the nature of operators
that produce such states when applied to the vacuum state. The operators a†(x, t)
defined in section 4 don’t satisfy that condition, nor do any other operators that
are constructed using only a finite number of factors of a†(p).

A different (inequivalent!) way of defining localization for states was proposed
earlier in Newton and Wigner (1949). With their definition, the states (10) are
strictly localized, because a translation in space through a sufficiently large finite
distance makes the translated state orthogonal to the original one. That might seem
like a natural condition to require, but section 8 showed that it doesn’t quite agree
with the meaning of localization that comes from the model’s local observables.19

Language is arbitrary, of course. The real question here is how quantum field
theory relates to the real world, not how the words should be defined. Now matter
how we might prefer to use the word localization, the fact that the definition used in
Newton and Wigner (1949) disagrees with the one that comes from local observables
is a language-independent insight about how quantum field theory relates to the
real world.

17This association is usually specified with the help of field operators, but the general principles are independent
of the method (Haag (1996) and article 21916).

18Knight (1961) defines the number of particles as the number of factors of a†(p) applied to the vacuum state,
which is presumptuous. This definition used in this article is less presumptuous, but in the free scalar model, it turns
out to agree with the definition used in Knight (1961).

19Fleming (1998) studies the relationship between the Newton-Wigner definition and the Reeh-Schlieder theorem.
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10 Localization and causality

In classical field theory, the principle of causality says that the region in which the
initial data for two solutions of the equation of motion differ from each other can-
not grow faster than a finite maximum speed (usually called the speed of light).20

In QFT, the principle of causality is usually expressed exclusively in terms of ob-
servables (article 21916), without referring to states at all, but the definition of
localization used in Knight (1961) can be used to relate the principle to states: the
region in which two states differ from each other, as defined using local observables
as in Knight (1961), should not grow any faster than the speed of light.

On the other hand, one of the key messages in this article is that a particle can-
not be strictly localized: any one-particle state can be immediately distinguished
from the vacuum state by observables that are localized far away. This is a general
consequence of the Reeh-Schlieder theorem, not limited to the free scalar model.
Time evolution in the free scalar model can’t change the number of particles, but
time evolution in most other models can change the number of particles. How can
this be consistent with causality, if creating a particle requires modifying the state
immediately everywhere in space?

Part of the answer is that the principle of causality is a comparison: it compares
the consequences of two different initial states, with the same unitary time trans-
lation operator applied to both of them. Two states at time t > 0 cannot differ
from each other everywhere in space unless the corresponding states at time t < 0
already differed from each other everywhere in space. If the two states that we’re
comparing at t > 0 have different well-defined numbers of particles, then causality
says that the initial states that led to those final states must have already differed
from each other – at least slightly – everywhere in space. That isn’t paradoxical at
all.

The rest of the answer can be illustrated with an example. In the free scalar
model, the field operator φ(x, t) is self-adjoint, so the operator

exp(iβφ(x, t)) (21)

20Article 98038
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is unitary for any real number β. Applying this unitary operator to the vacuum
state gives

|β〉 = exp
(
iβφ(x, t)

)
|0〉. (22)

In this state, the number of particles is undefined according to the detectors that
were constructed in section 5. If β is small, then |β〉 is almost the same as the
vacuum state, but with a small admixture of single-particle terms, an even smaller
admixture of two-particle terms, and so on. An N -particle state cannot be strictly
localized, but the state |β〉 is strictly localized: it can’t be distinguished from
the vacuum state by any observable A localized in a region that doesn’t contain
the point x at time t.21 The proof is easy: A commutes with φ(x, t), and the
operator (21) is unitary, so 〈β|A|β〉 = 〈0|A|0〉. The principle of causality says
that if two states are initially differ from each other only within a finite region of
space (according to local observables), then they can’t ever differ from each other
everywhere in space, so they can’t end up with two different strictly well-defined
numbers of particles. But most states don’t have any strictly well-defined number of
particles anyway – unless we project the final state onto a term with a well-defined
number of particles, like we do when making probabilistic predictions about the
outcome of a scattering experiment (article 03431).

Here’s a less enlightening but more concise argument: the principle of causality
is used in the proof of the Reeh-Schlieder theorem, and the Reeh-Schlieder theorem
in turn implies that individual particles can’t be strictly localized in the sense
defined by local observables. This shows that causality is automatically consistent
with the nonlocal nature of particles, even though they might seem to contradict
each other at first glance.

21Here, I’m using the word localized the way Knight (1961) uses it.
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11 The mass of a single particle

Now that we’ve identified the single-particle states, we can calculate the mass of
a single particle. It turns out to be equal to the parameter m in the hamiltonian
(5).22

By definition, the mass of a particle is just its energy when its momentum is
zero.23 In a model with Lorentz symmetry, we can express this in a momentum-
independent way as (article 77597)

(mass)2 = (energy)2 − (momentum)2 mass ≥ 0. (23)

To use this definition, we need to know which observables represent energy and
momentum. The energy operator is the hamiltonian (5), the generator of transla-
tions in time. The momentum operator should be the generator of translations in
space. The usual concept of generator is not strictly valid when space is treated
as a lattice, but we can still use it as an approximation at coarse resolution (com-
pared to the lattice step-size ε), or equivalently at low energy (compared to 1/ε).24

Article 00980 showed that the effects of a unitary translation operator U(δx) on
the operator a(p) and the state |0〉 are

U−1(δx)a(p)U(δx) = a(p)eip·δx U(δx)|0〉. (24)

If space were continuous, we would define the generators of translations in space
to be operators P = (P1, P2, ..., PD) for which U(δx) = eiP·δx. For infinitesimal δx,
equations (24) would become

[a(p), P] = p a(p) P|0〉 = 0. (25)

22Warning: this is a special feature of the free scalar model. In models with interactions (nonlinear equations of
motion), the relationship between a particle’s mass and the parameters in the hamiltonian is usually not so simple.

23This statement uses natural units, in which the speed of light c is equal to 1. In standard international units,
the mass is proportional to the rest-energy, with a factor of c2 to convert between mass units and energy units.

24Article 00980 explains how the coarse-resolution condition can be expressed mathematically and why it’s equiv-
alent to low energy, at least for the free scalar model.
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The conditions (25) are both satisfied by

P =

∫
dDp

(2π)D
p a†(p)a(p), (26)

so we can use the components of P as the momentum operators at resolutions that
are coarse compared to ε. Now equation (23) says that the mass operator M should
satisfy25

M 2 ≡ H2 −P2 M ≥ 0. (27)

Use equations (5) and (26) in (27) to get

M 2 = m2

(∫
dDp

(2π)D
a†(p)a(p)

)2

.

The operator in large parentheses is a positive operator (its spectrum is nonnega-
tive), so we can take its square root to get

M = m

∫
dDp

(2π)D
a†(p)a(p),

with the sign chosen to enforce the condition mass ≥ 0.
Now we can calculate the mass of any of the single-particle states (18). Use the

identity (9) to get
M |f, t〉 = m|f, t〉

with |f, t〉 given by (18). This shows that the parameter m in the hamiltonian is
the mass of a single particle.26

25For an operator M , the condition M ≥ 0 means that the spectrum of M should be nonnegative.
26Most of the single-particle states (18) don’t have any strictly well-defined energy or momentum, because they

are not eigenstates of the operators H or P, but they all have a strictly well-defined mass m.
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12 The motion of a single particle

Consider a single-particle state (18) that is approximately localized and that also
has an approximately well-defined momentum p. This section shows that the par-
ticle’s location moves with velocity p/ω(p), as expected from Lorentz symmetry.27

To show this, we can use an observable whose expectation value indicates the
particle’s location. Sections 7-8 showed that the state a†(x, t)|0〉 represents a sin-
gle particle that is relatively well-localized at x at time t. Use the commutation
relations (8) to confirm that the operators X = (X1, ..., XD) defined by

X(t) =

∫
dDx a†(x, t)a(x, t)x (28)

satisfy
X(t) a†(x, t)|0〉 = x a†(x, t)|0〉.

This shows that within the space of single-particle states, we can use the operators
X(t) as observables for the particle’s location at time t,28 so we can use Ẋ ≡ dX/dt
as observables for the particle’s velocity. Use the definition (7) in (28) to get

Ẋ(t) =

∫
dDp

(2π)D

∫
dDx

(
ia†(p)a(x, t)eiω(p)t−ip·x + adjoint

)
ω(p)x, (29)

where “adjoint” stands for the adjoint of the preceding term. To continue, treat
p as a continuous quantity, which is a good approximation at resolutions much
coarser than the lattice step-size ε. This gives∫

dDx a(x, t)e−ip·x x = i∇p

∫
dDx a(x, t)e−ip·x = i∇p

(
a(p)e−iω(p)t

)
27Article 77597
28The concept of a strict “position operator” doesn’t make sense in relativistic QFT, because strict localization

is not compatible with strict single-particleness, but a single particle can still have an approximately well-defined
location. That’s what the observables X(t) represent.
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where ∇p is the gradient with respect to p. Use this in the equation (29) to get

Ẋ(t) = −
∫

dDp

(2π)D
ω(p)

(
a†(p)∇p

(
a(p)e−iω(p)t

)
eiω(p)t + adjoint

)
= −

∫
dDp

(2π)D
ω(p)

(
a†(p)

(
∇pa(p)− ia(p)

p

ω(p)

)
+ adjoint

)
= −

∫
dDp

(2π)D
ω(p)∇p

(
a†(p)a(p)

)
=

∫
dDp

(2π)D
a†(p)a(p)∇pω(p)

=

∫
dDp

(2π)D
a†(p)a(p)

p

ω(p)
. (30)

To apply this, consider a single-particle state (18) that is mostly localized at x0 at
time t = 0 and that has a somewhat well-defined momentum p0. Example:

|ψ〉 ≡
∫
dDx e−(x−x0)2/2σ2

eip0·xa†(x, 0)|0〉

∝
∫

dDp

(2π)D
e−(p−p0)2σ2/2eip·x0a†(p)|0〉,

where σ is a real parameter. This is a single-particle state with width ∼ σ in
the spatial domain and ∼ 1/σ in the momentum domain. By inspection, the
expectation values of X(0) and P in this state are

〈ψ|X(0)|ψ〉
〈ψ|ψ〉

= x0
〈ψ|P|ψ〉
〈ψ|ψ〉

= p0,

and equation (30) shows that the expectation value of Ẋ(t) is

〈ψ|Ẋ(t)|ψ〉
〈ψ|ψ〉

≈ p0

ω(p0)
. (31)

This completes the derivation.
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13 Multi-particle states

In the free scalar model, according to the ideas listed in section 2, a state of the
form

|ψ〉 = a†(x1, 0)a†(x2, 0) · · · a†(xN , 0)|0〉 (32)

is an N -particle state. It doesn’t have any more than N particles, because the
commutation relations (8) imply that such a state satisfies(∏

k

P (Rk, tk)

)
|ψ〉 = 0

for any list of more than N non-overlapping regions Rk at any times tk. If the N
points xn are all separated, then we can choose N regions Rn, each of which contains
just one of the points xn, to construct a coincidence arrangment of detectors that
will all be triggered with certainty. Such a coincidence arrangement is represented
by the observable

∏
n P (Rn, 0). This shows that it is an N -particle state, at least

if the points are separated.
Any superposition of N -particle states is still an N -particle state. We can use

this to construct states in which the location and momentum of each particle are
both somewhat well-defined, as in section 12. An example is

|ψ〉 = C1(0)C2(0) · · ·CN(0)|0〉 (33)

with

Cn(t) ≡
∫
dDx e−(x−xn)2/2σ2

eipn·xa†(x, t) = eiHtCn(0)e−iHt,

where xn and pn are the (approximately well-defined) location and momentum of
a particle at time t = 0. In the Schrödinger picture, the state (33) evolves in time
as

e−iHt|ψ〉 = C1(t)C2(t) · · ·CN(t)|0〉.
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From this, we can immediately infer that the particles don’t interact with each
other: each one behaves just as it would if the others were absent.29,30 This gives
us a good reason to call (32) an N -particle state even if two or more of the points
xn coincide.

In models with interactions, things are usually not so simple. In the free scalar
model, the guidelines described in section 2 lead to a relatively straightforward
relationship between particles and the energy increasing/decreasing parts of the
field operators. In most models, the relationship between particles and the field
operators is more complicated – so much so that it’s usually intractable. And in
most models, particles are transient phenomena: their number can change and
usually isn’t even well-defined at all. The guidelines described in section 2 can be
used in any model, but they don’t guarantee that the particle concept will make
sense in all circumstances. It often doesn’t, and accepting this fact removes one of
the most common obstacles to a better understanding of QFT.

29This is why the free scalar model is called free or non-interacting.
30This result would not hold if the hamiltonian involved powers of φ higher than quadratic. For this reason,

higher-than-quadratic terms in the hamiltonian are called interaction terms.
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14 The nonrelativistic approximation

The nonrelativistic approximation is defined by the condition

(momentum)2 � (mass)2.

Equations (2) and (26) give

P a†(p)|0〉 = p a(p)|0〉,

so for a single-particle state (18), the nonrelativistic approximation amounts to
considering only superpositions of the states a†(p)|0〉 with p2 � m2. In the context
of such states, we can use this approximation for the quantity (3):

ω(p) ≈ m+
p2

2m
.

Substitute this into (5) and use (7) to get this expression for the effective hamilto-
nian in the nonrelativistic approximation:

H ≈
∫
dDx a†(x, t)

(
m− ∇

2

2m

)
a(x, t).

This matches the no-interaction case of the nonrelativistic boson model constructed
in article 15939.
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15 Other ways to think about particles

The criteria described in section 2 are physically intuitive, but they’re not always
computationally convenient. A more convenient criterion uses the spectrum of the
mass operator. Roughly, the idea is that when a model is defined in infinite volume
so that the total momentum can be varied continuously, (normalizable) eigenstates
of the mass operator are single-particle states.31 To see why this makes sense,
consider a state with two or more particles with zero total momentum. When the
total momentum is zero, the mass is (by definition) proportional to the total energy.
In a state with two or more particles, we can change the total energy continuously
by changing the particles’ relative velocities without changing the total momentum.
This shows that a state with two or more particles cannot be an (normalizable)
eigenstate of the mass operator, so eigenstates of the mass operator must be single-
particle states.32 This criterion doesn’t work in all cases,33 but when it works, it is
convenient.

When it works, the mass-spectrum criterion has a nice implication: eigenvalues
of the mass operator (with normalizable eigenstates) lead to poles in correlation
functions. This is explained in most standard introductions to quantum field theory,
because it’s part of the justification for the usual approach to calculating scattering
cross sections.34

Another way to think about particles is to use the representation theory of the
Poincaré group. Here’s the idea: for any given species of particle, the corresponding
set of one-particle states is self-contained under linear combinations and also under
the action of the (identity component of the) Poincaré group.35 Conversely, if a set

31In a model with more than one superselection sector, this criterion can be applied separately in each sector.
32Enss (1975) gives a more detailed analysis of how the mass-spectrum criterion relates to the guidelines that were

listed in section 2.
33It doesn’t work nicely in models with massless particles. It also doesn’t work nicely for massive particles that

carry long-range charges, like electrostatic charges (Buchholz (1986)). In other words, it doesn’t work nicely for most
of the particles in the Standard Model! A large amount of literature has been written about how to work around
this little inconvenience. Some of it can be found by searching online for the keyword infraparticle.

34Weinberg (1995), sections 10.2 and 10.3
35Transformations that aren’t in the identity component, like a reflection along a single dimension of spacetime,
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of single-particle states constitutes a reducible representation of the Poincaré group,
then its irreducible components can be regarded as distinct species.36 This leads to
a coarse classification of particles according to irreducible unitary representations
of the Poincaré group.37

Thse other ways of thinking about particles in QFT are already explained well
in plenty of other sources, so I won’t review them in any detail here.

might transform different species into each other.
36This makes sense because a reducible unitary representation (of any group) is completely reducible. Proof: let
H1 be a subspace of the Hilbert space, and let H2 be its orthogonal complement. If H1 is self-contained under the
action of the group, then 〈2|U |1〉 = 0 for every |1〉 ∈ H1, every |2〉 ∈ H2, and every U in the representation of
the group. This implies 〈1|U†|2〉 = 0 for every |1〉 ∈ H1, which implies U†|2〉 ∈ H2. A unitary representation is
self-contained under adjoints, so this implies that H2 is self-contained under the action of the group.

37Bekaert and Boulanger (2006)
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