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Homology Groups
Randy S

Abstract Homology groups are examples of topological invariants: topologically
equivalent spaces have the same homology groups. The idea behind homology
groups is to consider a special family of topological spaces C for which the concept
of a boundary makes sense, namely spaces made of simple polyhedra, and to use
maps from those spaces into another topological space X as a way of exploring
the topology of X. Roughly, the nth homology group of X describes continuous
maps into X from those special n-dimensional spaces C that cannot be extended
to a continuous map into X from any of the special (n + 1)-dimensional spaces
whose boundary is C. This article introduces homology groups. A brief overview of
related topological invariants called cohomology groups and cohomology rings
is also included.
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1 Notation and conventions

In this article, the unqualified word map always means continuous map, and the
unqualified word manifold means a finite-dimensional topological manifold with
boundary.1 The boundary may be empty, in which case it’s a manifold without
boundary. Some notation:

• R, Q, and Z are the real numbers, rational numbers, and integers.

• Zn is the integers modulo n. (Another common way to write Zn is Z/nZ.)

• R is the field of real numbers.

• Rn is n-dimensional euclidean space.

• Sn is the n-dimensional sphere, the boundary of an (n+ 1)-dimensional ball.

• RPn is n-dimensional real projective space.

• If G and H are algebraic structures (like groups), then the notation G ' H
means that G and H are isomorphic to each other.2,3

• If X and Y are topological spaces, then X×Y is their cartesian product with
the product topology.

• Sections 2-3 will define ×, ⊕, and ⊗ for abelian groups.

• T (G) is the torsion part of an abelian group G (section 19).

• πk(X) is the kth homotopy group4 of a topological space X.

Some references to Lee (2011) are paired with references to the earlier edition Lee
(2000), because the earlier edition is freely accessible online.

1Many math texts – including some of the sources cited in this article – use a different convention in which the
word manifold by itself implies without boundary.

2Article 29682 defines isomorphism of groups.
3Sometimes, distinguishing between isomorphism (equality as abstract groups) and other forms of equality is

important. When this distinction is not important, isomorphism is sometimes written G = H.
4This is defined in article 61813.
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2 The direct product and the direct sum

Let G and H be arbitrary groups. Their direct product G × H is the group
consisting of pairs (g, h) with g ∈ G and h ∈ H and with the group operation
defined by5

(g, h) ◦ (g′, h′) ≡ (g ◦ g′, h ◦ h′).
This can be extended to an arbitrary number of factors, G1 × G2 × · · · , in the
obvious way.

The group operation ◦ is usually described as multiplication, but it is sometimes
described instead as addition when the group is abelian.6 The additive description
is normally used for homology groups and their coefficient groups, which are always
abelian. This article uses that convention. The direct sum of abelian groups,
denoted G1 ⊕ G2 ⊕ · · · , can be defined for any number of factors. When the
number of factors is finite, which is the only case that will be needed in this article,
the direct sum is the same as the direct product.5,7 Only the notation is different
(additive instead of multiplicative). In symbols:

A⊕B = A×B.

The composition rule for the direct sum G⊕H (and for the direct product G×H
when additive notation is used) is8

(g, h) + (g′, h′) ≡ (g + g′, h+ h′).

5Lee (2011), appendix C, page 402
6A group is called abelian if all of its elements commute with each other.
7Whitehead (1978), appendix B, theorem 1.4
8Sullivan (2020)
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3 The tensor product

The tensor product G⊗H is another way of combining two groups to get a new
group. When G and H are abelian, their tensor product is the group consisting of
pairs (g, h) with g ∈ G and h ∈ H and with the group operation defined by9

(g, h) ◦ (g′, h) = (g ◦ g′, h) (g, h) ◦ (g, h′) = (g, h ◦ h′).

If G is any abelian group and {0} is the trivial group, then {0} ⊗ G = G and
Z⊗G ' G.8

In the context of homology (and cohomology), where the groups are abelian and
the group operation is written as addition, the sum of n copies of g ∈ G may be
written ng, and the sum of n copies of the inverse of g may be written −ng. This
defines a natural action of the ring Z of integers on the group G. The definition
of the tensor product of abelian groups G and H implies that integer factors may
be passed back and forth from one side of the tensor product to the other, and the
tensor product is sometimes written G⊗Z H to indicate this. More generally, the
ring Z of integers may be replaced by another commutative ring R that acts on the
groups in a natural way.10 The notation G ⊗R H indicates that coefficients in R
may be passed back and forth from one side of the tensor product to the other.11

In this article, ⊗ with no subscript means ⊗Z.
Remember12 that the direct sum ⊕ of a finite number of abelian groups is the

same as the direct product × of those groups, but the tensor product ⊗ is different.
In symbols:

A⊕B = A×B 6= A⊗B.
Starting in section 22, both ⊕ and ⊗ will appear together in some equations.

9Sullivan (2020) gives the precise definition. Unlike the direct product (or direct sum), the group operation ◦ in
the tensor product is such that some combinations (g1, h1) ◦ (g2, h2) cannot be reduced to a single term (g, h). This
is analogous to the situation called entanglement in the context of Hilbert spaces.

10Section 25
11Hatcher (2001), section 3.1, page 215
12Section 2
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4 Homology groups: preview

Homotopy groups, which were defined in article 61813, are topological invariants:
if two spaces are homeomorphic (topologically equivalent) to each other, then they
have the same homotopy groups. Section 12 will introduce another collection of
topological invariants called homology groups. One homology group Hn(X;G) is
defined for each topological space X, each positive integer n, and each abelian
group G (called the group of coefficients).13

The concept of a boundary isn’t defined for arbitrary topological spaces, but
it is defined for manifolds14 and for polyhedra. The idea behind homology groups
is to consider a family of topological spaces for which the concept of a boundary
makes sense, and to use maps from those spaces into another topological space X as
a way of exploring the topology of X. Let M be a space with non-empty boundary
∂M , and let X be a space whose topology we want to explore. A subject called
bordism homology explores the topology of X by asking questions like this: do
any maps ∂M → X exist that cannot be reproduced by restricting the domain of a
map M → X to the boundary ∂M?15,16 The rest of this article is about singular
homology, which uses a variation of that idea to make the math easier.

13Hatcher (2001), section 2.2, page 153
14Article 44113
15Freed (2013), lecture 12, page 103; also mentioned in Hatcher (2001), section 2.1
16Recall that in this article, map means continuous map (section 1).
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5 An example for motivation

This section describes a pair of manifolds whose homology groups are different
even though their homotopy groups are the same.17,18,19 The two manifolds in this
example are X = RP3 × S2 and Y = RP2 × S3. The manifolds X and Y are both
five-dimensional, connected, closed, and smooth.

To show that they have different homology groups, start with the fact that X
is orientable and Y is not. This follows from the fact that Sn is orientable for all
n and the fact that RPn is orientable if and only if n is odd.20 Now invoke this
general result about homology groups: if M is a closed connected n-dimensional
manifold, then Hn(M ;Z) ' Z if M is orientable, and Hn(M ;Z) = 0 otherwise.21

This shows that
H5(X;Z) 6' H5(Y ;Z),

so the homology groups of X are not all the same as those of Y .
On the other hand, their homotopy groups are the same. Results reviewed in

article 61813 give

πk(RPn × Sm) ' πk(RPn)× πk(Sm) for all k ≥ 1

πk(RPn) ' πk(S
n) for all k ≥ 2

π1(RPn) ' Z2 for all n ≥ 2

π1(S
n) = 0 for all n ≥ 2.

Combine these results to deduce that πk(X) ' πk(Y ) for all k ≥ 1.
17This is example 1.19 in Maxim (2018). It’s a special case of Whitehead (1978), section IV.7, example 1.
18If a map X → Y induces isomorphisms between πn(X) and πn(Y ) for all n, then it also induces isomorphisms

between Hn(X;G) and Hn(Y ;G) (Maxim (2018), theorem 10.3), but the existence of isomorphisms between πn(X)
and πn(Y ) does not imply the existence of such a map.

19The opposite situation can also occur: two manifolds that have the same homology groups may have different
homotopy groups. One example is the Poincaré homology sphere. The homology groups of this 3d manifold are
the same as those of S3 (that’s why it’s called a homology sphere), but its first homotopy group π1 is different: zero
for S3, nonabelian for the Poincaré homology sphere. Article 61813 says more about this example.

20Intuition: RPn is Sn ⊂ Rn+1 modulo x 7→ −x, which preserves the orientation of Sn if and only if the number
of reflected coordinates is even. Also see https://ncatlab.org/nlab/show/real+projective+space.

21Hatcher (2001), text below theorem 3.26, and the top of page 142 in chapter 2
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6 Simplexes

An n-simplex, denoted ∆n, is an n-dimensional polyhedron in Rn with n + 1
vertexes,22 with the vertexes listed in a particular order. Geometrically, a 1-simplex
is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron. This
article uses a notation in which each vertex is represented by an integer. With this
notation, [0, 1, 2, 3] denotes a 3-simplex, and [0, 1, 2, 4] denotes another 3-simplex
that shares three of its vertexes with the first one.

Geometrically, the boundary of an n-simplex is a union of (n − 1)-simplexes,
each of whose vertex-lists is obtained by omitting one vertex from the list that
defines the original n-simplex. As an example, consider the 3-simplex whose four
vertexes are [0, 1, 2, 3]. Its boundary is the union of these four 2-simplexes: [1, 2, 3],
[0, 2, 3], [0, 1, 3], and [0, 1, 2]. This is a set of four triangles, the faces of the original
tetrahedron.

Many n-dimensional manifolds M may be constructed by gluing n-simplexes
together face-to-face. Such manifolds may be used to probe the topology of another
space X, as previewed in section 4. Homology does this in a clever way: instead
of mapping the fully-assembled manifold M into X, it maps each constituent n-
simplex into X, using an algebraic device to keep track of how the simplexes fit
together to make M . The next few sections will explain how it works.

22This article uses vertexes as the plural form of vertex, and similarly for other nouns ending in -ex. The traditional
rule for pluralizing these words is to replace -ex with -ices, maybe because that makes the plural form easier to
pronounce, but that weird tradition has a negative side effect: newcomers who learn the plural form first often
assume that the singular form must end in -ice. If we fix the language the right way by using -exes as the plural of
-ex, then we can help well-meaning students avoid accidentally fixing it the wrong way.
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7 Singular simplexes

Given a topological space X, a map σ : ∆n → X is called a singular n-simplex.
The name singular refers to the fact that the map only needs to be continuous, so
its image might not be a simplex geometrically. It might not even be n-dimensional.
Homology uses these maps to explore the topology of X.

A singular n-simplex is a map σ : ∆n → X, not just the subset σ(∆n) ⊂ X,
so the definition of boundary that was given in article 44113 cannot be applied to
a singular n-simplex. We can apply it to the map’s domain ∆n, and we can even
apply it to the map’s image σ(∆n) ⊂ X if that image happens to be a manifold
(which is not required), but we can’t apply it to the map σ itself. Section 10 will
introduce a concept of boundary that applies to such maps – actually to formal
linear combinations of such maps – that accounts for the ordering of the vertexes
and that has this key property: the boundary of a boundary is zero.

10
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8 Which manifolds can be triangulated?

A (euclidean) simplicial complex is a set S of simplexes in Rn, for some n, with
these properties:23

• If a simplex is in S, then every face of that simplex is in S.

• The intersection of any two simplexes in S is either empty or is a face shared
by both of them.

• Every point in S has a neighborhood that intersects at most finitely many
simplexes in S.

An abstract simplicial complex is defined similarly, using only abstract vertex-
sets without reference to any ambient euclidean space. Every finite abstract sim-
plicial complex can be realized as a euclidean simplicial complex.24

A polyhedron is a topological space X that is homeomorphic to the union of
the simplexes in a simplicial complex. Such a homeomorphism is called a trian-
gulation of X, and a space that admits a triangulation is called triangulable.25

A manifold is called triangulable if it is homeomorphic to a polyhedron, and
then the homeomorphism is called a triangulation.26 For any triangulated man-
ifold, every (n − 1)-simplex is a face of no more than two n-simplexes.27 Every
2-dimensional manifold is triangulable,28 and so is every 3-dimensional manifold,29

but some 4-dimensional manifolds are not,30 and in 5 and more dimensions the
situation is unknown.30

23Lee (2011), chapter 5, page 149 (also Lee (2000), chapter 5, page 93)
24Lee (2011), proposition 5.41 (also Lee (2000), exercise 5.5)
25Lee (2011), chapter 5, page 151 (also Lee (2000), chapter 5, page 100)
26Lee (2011), chapter 5, page 151 (also Lee (2000), chapter 5, page 91)
27Lee (2000), chapter 5, parenthetical remark on page 107
28Lee (2011), theorem 5.36 (also Lee (2000), theorem 5.12)
29Lee (2011), theorem 5.37 (also Lee (2000), theorem 5.13)
30Lee (2011), text after theorem 5.37 (also Lee (2000), text below theorem 5.13)
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9 Singular n-chains

The boundary of an n-simplex ∆n consists of (n− 1)-simplexes called the faces of
∆n.31 Many spaces homeomorphic to n-dimensional topological manifolds may be
constructed as a union of n-simplexes that share faces with each other. When two
n-simplexes in Rn share a face, that face is not part of the boundary of their union.

We could build interesting topological spaces from n-simplexes and then use
maps from those spaces into X as a way of exploring the topology of X. Homology
uses a slightly different idea: instead of assembling the n-simplexes first and then
mapping their union into X, we map each individual n-simplex into X in a way that
matches some of their faces with each other inside X. Then, instead of considering
the boundary of the resulting shape inside X, we use a new concept of boundary
that applies to the collection of maps instead of only to their images. To make this
work, the collection of maps is treated as more than just a collection: it’s treated
as a formal linear combination called a singular n-chain.

Recall that a singular n-simplex is a map from ∆n to another topological space
X. A singular n-chain with coefficients in G is a formal linear combination
of such maps, with coefficients in a given abelian group G. Since G is abelian,
we can express the group operation as addition. Then the inverse of g is −g, and
the identity element is expressed as zero: g + (−g) = 0. Given two singular n-
chains, we can add them to each other in the obvious way: terms involving the
same singular n-simplex may be combined by adding their coefficients, and terms
involving different singular n-simplexes (different maps from ∆n to X) remain as
separate terms. Any term whose coefficient is zero may be discarded, and if no
terms remain, then the whole thing is zero. In this way, the set of singular n-chains
forms an abelian group, denoted Cn(X;G).

Section 10 will define the boundary of a singular n-chain, the key idea that
makes homology work.

31Hatcher (2001), section 2.1, page 103
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10 The boundary of a singular n-chain

To define the boundary of a singular n-chain, first consider a singular n-chain c
with only one term, so c = gσ for some map σ : ∆n → X and some g ∈ G. The
boundary of c, denoted ∂c, is a singular (n− 1)-chain. Instead of writing out the
general definition, here’s an example with n = 3. If c is the standard 3-simplex
∆3 ≡ [0, 1, 2, 3], then the boundary of c is

∂c = ∂(gσ) ≡ gσ|[1,2,3] − gσ|[0,2,3] + gσ|[0,1,3] − gσ|[0,1,2], (1)

where σ|s denotes the restriction of the map σ to the 2-simplex s. The general
definition should be evident from this example. The relative sign of each term is
determined by which vertex was omitted from the 3-simplex to get that 2-simplex.
The definition of ∂ is extended to arbitrary singular n-chains by requiring ∂ to be
a G-linear map from Cn(X;G) to Cn−1(X;G).

Calculating ∂(∂c) leads to a linear combination in which the restriction σ|[v,v′]
to each 1-simplex [v, v′] occurs twice, with opposite signs, so everything cancels.
More generally if σ1 and σ2 are two maps from an n-simplex into X that are equal
to each other when restricted to one face of the n-simplex, then that face does not
contribute to the boundary of gσ1 − gσ2. As a result, the boundary of a boundary
of every singular n-chain is zero, as promised in section 7:

∂(∂c) = 0. (2)

To make this clear, consider an example using a 3-simplex ∆3 = [0, 1, 2, 3]. Let
σ1 : ∆3 → X and σ2 : ∆3 → X be two maps for which σ1|[0,1,2] = σ2|[0,1,2]. Then
equation (1) combined with the linearity of ∂ gives

∂(gσ1 − gσ2) = gσ1|[1,2,3] − gσ1|[0,2,3] + gσ1|[0,1,3] − gσ1|[0,1,2]

−
(
gσ2|[1,2,3] − gσ2|[0,2,3] + gσ2|[0,1,3] − gσ2|[0,1,2]

)
. (3)

We have assumed that σ1 and σ2 are equal to each other when restricted to the
face [0, 1, 2], so the two terms involving that face cancel each other in the linear
combination (3).

13
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11 An example with non-spherical topology

An n-simplex is homeomorphic to (topologically equivalent to) an n-dimensional
ball. This section describes a collection of 3-simplexes (tetrahedra) whose union
is a 3-dimensional manifold homeomorphic to a solid ring. This will be used to
construct a singular 3-chain c whose boundary ∂c does not involve any of the
shared faces.

To begin, consider this sequence of 3-simplexes:32

∆0 = [0, 1, 2, 3]

∆1 = [1, 2, 3, 4]

∆2 = [2, 3, 4, 5]

∆3 = [3, 4, 5, 6]
...

The union of these tetrahedra forms a Boerdijk–Coxeter helix. Each tetrahe-
dron ∆k with k ≥ 1 shares exactly two of its faces with other tetrahedra in the
sequence.33 Now, truncate the sequence so that it has only a finite number N of
tetrahedra, so that ∆N−1 is the last tetrahedron in the sequence. The faces [0, 1, 2]
and [N,N + 1, N + 2] are not shared, and if N ≥ 4, then the tetrahedra that own
those faces don’t don’t share any faces with each other. Now, think of those two
faces as opposite faces of a faceted “cylinder,” and identify them with each other
by identifying the points N,N + 1, N + 2 with the points 0, 1, 2, in that order.34 If
N ≥ 4, then the result is topologically equivalent to a solid ring.35

To do this in three-dimensional space, we would need to distort at least some
of the tetrahedra so that at least some of their faces are no longer flat. That’s fine,

32This section uses a subscript to distinguish different 3-simplexes and omits the superscript that previous sections
used to indicate the number of dimensions.

33Example: ∆1 shares the face [1, 2, 3] with ∆0, and it shares the face [2, 3, 4] with ∆2. Its other two faces, [1, 3, 4]
and [1, 2, 4], are not shared.

34The order is important, because if we glued the faces together with the wrong orientation, then we would get
something called a solid Klein bottle instead of a solid ring.

35You can check this by drawing a Boerdijk–Coxeter helix with N = 4 on paper, with the vertexes labelled.
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because in this example, only the topology matters. Just for fun, though, here’s
an example of such a ring in which every tetrahedron is an undistorted regular
tetrahedron, which means that its faces are all undistorted equilateral triangles.
Such a ring would be impossible in three-dimensional euclidean space, but it is
possible in four-dimensional euclidean space. This example uses eight tetrahedra
(N = 8), and the eight vertexes have these coordinates:36

[0] = (1, 0, 0, 0) [4] = (−1, 0, 0, 0)

[1] = (0, 1, 0, 0) [5] = (0,−1, 0, 0)

[2] = (0, 0, 1, 0) [6] = (0, 0,−1, 0)

[3] = (0, 0, 0, 1) [7] = (0, 0, 0,−1).

With this sequence of vertexes, we can check by inspection that all eight of the
tetrahedra defined above are regular (their faces are equilateral triangles), and
we already know from the previous paragraph that their union is topologically
equivalent to a solid ring.37

Now let’s use this to construct a singular 3-chain c in which all of the shared
faces cancel each other in the boundary ∂c. Let ∆3 be an arbitrary 3-simplex,
and let σk be a map from ∆3 into Rn whose image is the kth 3-simplex ∆k in
the preceding solid-ring construction, where the number n of dimensions is large
enough to allow identifying the vertexes N,N + 1, N + 2 with 0, 1, 2. In symbols:
σk(∆

3) = ∆k ⊂ Rn. Let G be any abelian group, choose any nonzero element
g ∈ G, and consider this singular 3-chain:

c = gσ0 − gσ1 + gσ2 − gσ3 + · · ·+ gσN−2 − gσN−1. (4)

The alternating pattern of signs ensures that if N is even, then all of the shared
faces cancel in the boundary ∂c,38 so the union of the images of the surviving
2-simplexes is homeomorphic to the two-dimensional surface of a torus in Rn.

36A vertex is a 0-simplex, so the notation [k] for the kth vertex is a special case of the notation that section 6
introduced for any n-simplex.

37https://en.wikipedia.org/wiki/Boerdijk%E2%80%93Coxeter_helix gives additional information about this
eight-vertex example.

38If G = Z2, the group with only two elements, then this also works when N is odd because g = −g.
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12 Homology groups: definition

For each n, the boundary operator ∂ defined in section 10 is a homomorphism from
the abelian group Cn(X;G) of singular n-chains to the abelian group Cn−1(X;G)
of singular (n− 1)-chains. In the sequence of homomorphisms

Cn+1(X;G) ∂ //Cn(X;G) ∂ //Cn−1(X;G),

equation (2) says that the image of the first map is contained within the kernel of
the second map.39 The image of the first map is an abelian subgroup of Cn(X;G)
denoted Bn(X;G). Its elements are called boundaries, because they each have
the form ∂c for some c ∈ Cn+1(X;G). The kernel of the second map is an abelian
subgroup of Cn(X;G) denoted Zn(X;G). Its elements are called cycles, and it
consists of the elements c ∈ Cn(X;G) that satisfy ∂c = 0.

Equation (2) says that every boundary is a cycle, but some cycles might not be
boundaries. As a result, the quotient group

Hn(X;G) ≡ Zn(X;G)/Bn(X;G),

which consists of elements of Zn(X;G) modulo elements of Bn(X;G), might be
nontrivial. This is the nth singular homology group with coefficients in G.40

The case G = Z is especially important, so the more concise notation Hn(X)
is used as an abbreviation for Hn(X;Z). The groups Hn(X) are called integral
homology groups. When the group G is not specified, G = Z is usually under-
stood.

39This pattern is depicted graphically in article 29682.
40This article considers only singular homology, so the prefix singular will usually be omitted.

16



cphysics.org article 28539 2024-04-20

13 Some intuition from an example

This section uses the singular 3-chain that was defined in equation (4) to give some
intuition about how homology groups can be sensitive to the topology of another
manifold X. The conclusion will be that H2(S

1 × S1) 6' H2(R2).
The union of the images of the singular 3-chain c in equation (4) is a solid torus

in Rn. Let M denote this solid torus. The union of the images of the singular
2-chain ∂c is the boundary ∂M of M , which is homeomorphic to S1 × S1. Let X
be some other manifold whose topology we want to explore, and consider maps
ω3 : M → X and ω2 : ∂M → X. Here, the subscript on ωk indicates the number of
dimensions of the map’s domain. By composing the maps in the singular 3-chain
c with ω3, we get a singular 3-chain c3 whose target space is X. By composing the
maps in the singular 2-chain c with ω2, we get a singular 2-chain c2 whose target
space is X. We could choose the maps ω3 and ω2 so that c2 = ∂c3, but that’s
not required. In fact, to explore the topology of X, we really want to know if any
choices of ω2 exist for which c2 is not equal to ∂c3 for any ω3 whatsoever.

If X = S1 × S1, then such a choice for ω2 does exist: just take ω2 to be the
obvious homeomorphism from ∂M to X. With that choice for ω2, no matter how we
choose ω3, we cannot make c2 = ∂c3. Intuitively, this is clear because a continuous
map M → ∂M that acts as the identity map on ∂M does not exist: a solid torus
cannot be continuously retracted onto its boundary. The identity ∂(∂c) = 0 implies
∂c2 = 0, because composing ∂c with ω2 can’t separate any 2-simplexes that already
coincide in the image of ∂c. This shows that c2 is a cycle (∂c2 = 0), even though
it’s not a boundary (c2 6= ∂c3 for any c3). As a result, the homology group H2(X)
nontrivial.

If X = R2 instead (or if X is any other two-dimensional contractible manifold),
then no such choice for ω2 would exist: we would always be able to choose a map
ω3 for which c2 = ∂c3. This is not obvious (to me), but it is a special case of the
general fact that if X is contractible, then Hk(X) = 0 for all k ≥ 1.41

41Lee (2011), corollary 13.11
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14 Some properties of homology groups

Homology groups are topological invariants: if X and Y are homeomorphic to each
other, then their homology groups Hk(X;G) and Hk(Y ;G) are isomorphic to each
other.42 Homology groups are also invariant under a more inclusive equivalence
relation: homotopy equivalent manifolds have isomorphic homology groups.43 In
particular, if X is contractible, then Hk(X) = 0 for all k ≥ 1.44 The fact that
Hk(point) = 0 for all k ≥ 1 has this generalization: if M is a triangulable compact
n-dimensional manifold, then Hk(M) = 0 for k ≥ n+ 1.45

42Lee (2011), corollary 13.3 (also Lee (2000), corollary 13.3)
43Lee (2011), corollary 13.9 (also Lee (2000), corollary 13.8); Hatcher (2001), corollary 2.11. Those results are

stated for homology groups with integer coefficients, but the universal coefficient theorem (section 22) then implies
that they also hold when other coefficient groups are used. Example: Eschrig (2011), section 5.5, page 136 (for
coefficients in R)

44Lee (2011), corollary 13.11 (also Lee (2000), corollary 13.9)
45Lee (2000), problem 13-7
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15 Relating homology groups to homotopy groups

Section 5 mentions that two manifolds may have different homology groups even
if their homotopy groups are identical, and conversely, but some relationships do
exist between homology groups Hk(X) and homotopy groups πk(X).

A relationship exists for k = 1, in spite of the fact that π1(X) can be nonabelian
and H1(X) is always abelian. Let G be any group, not necessarily abelian.46 The
commutator subgroup of G, denoted [G,G], is the subgroup generated by all
elements of the form aba−1b−1. (I’m using multiplicative notation here because
G is not necessarily abelian.) The abelianization of a group G is the quotient
group G/[G,G].47,48 The quotient group G/[G,G] is abelian even if G is not. Now
the relationship between H1(X) and π1(X) can be stated like this: if X is path-
connected, then H1(X) is isomorphic to the abelianization of π1(X).49

When k ≥ 2, both Hk(X) and πk(X) are always abelian, but they may still
differ from each other. Here’s one situation where at least some of them are equal
to each other: if a manifold M is n-connected50 with n ≥ 1, then Hk(M) = 0 for
1 ≤ k ≤ n, and Hn+1(M) ' πn+1(M).51 That result is implied by this stronger
result:52,53 if X is a path-connected topological space, then the smallest value of
k for which Hk(X) is nontrivial is the same as the smallest value of k for which
πk(X) is nontrivial, and Hk(X) ' πk(X) for that value of k. This is the Hurewicz
isomorphism theorem.

46I’m recycling the letter G here. This G is not related to the coefficient group G in Hk(X;G).
47Lee (2011), text above theorem 10.19 (also Lee (2000), text above theorem 10.11)
48Article 29682 introduces the concept of a quotient group.
49Lee (2011), theorem 13.14 (also Lee (2000), theorem 13.11); Hatcher (2001), section 2.1, page 110
50n-connected means πk(M) = 0 for k ≤ n (article 61813).
51Hatcher (2001), theorem 4.32; Maxim (2018), theorem 10.1
52Bott and Tu (1982), theorem 17.21; Whitehead (1978), chapter IV, corollaries 7.7 and 7.8
53Theorem 17.21 in Bott and Tu (1982) assumes that X is a CW complex, but the paragraph after remark 17.21.1

says that the theorem still holds when this condition is omitted.
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16 Contrasting homology and homotopy groups

The intuition in section 13 illustrates an important difference between homology
groups and homotopy groups. Roughly, the homotopy group π2(X) is defined using
maps from S2 into X. In contrast, the homology group H2(X) is defined using maps
from a variety of topologically distinct spaces (including S2 and S1 × S1) into X.
That’s at least part of why H2(S

1 × S1) is nontrivial even though π2(S
1 × S1) is

trivial.54

Homology groups and homotopy groups also differ in other ways: they differ in
the way their group operations are defined, and they differ in the criterion they use
for deciding whether a given map into X is trivial.55 The message here is that they
also differ in the set of spaces that they use to probe the space X: homotopy groups
use only spheres, and homology groups use polyhedra, which are topologically more
variable than spheres.

54Article 61813
55A homotopy group considers a map from Sk into X to be trivial if it can be continuously morphed into a map

from Sk to a single point of X. A homology group considers a map from ∂M into X to be trivial if it’s not the
boundary of any map from M into X.
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17 The zeroth homology group

Section 12 defined the nth homology group Hn(X) as the group of n-chains c for
which ∂c = 0 modulo the group of n-chains c for which c = ∂c′. Every 0-chain c
satisfies ∂c = 0, so H0(X) = C0(X)/B0(X), where B0(X) is the kernel of the map
∂ : C1(X)→ C0(X).

If X is a single point, then only one singular 0-simplex exists (only one map
from a single vertex to a single point), so every singular 0-chain is an integer
multiple of this one singular 0-simplex. This gives C0(X) ' Z. The boundary of
every singular 1-simplex is zero, so H0(X) ' Z when X is a single point.56 That
implies H0(X) ' Z for every contractible space X, because homotopy equivalent
manifolds have isomorphic homology groups.57 More generally, H0(X) ' Zk if X
has k path-connected components.58

Some results can be stated more concisely in terms of the reduced homology
groups H̃n(X). The definition won’t be reviewed here, but the key properties are59

• H̃n(X) ' Hn(X) for all n ≥ 1, for every space X.

• H̃0(X) = 0 for every contractible space X.

For any space X, the last result generalizes to H0(X) ' H̃0(X)⊕ Z.

56Hatcher (2001), proposition 2.8
57Section 14
58Hatcher (2001), proposition 2.7
59Hatcher (2001), section 2.1, page 110
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18 Homology groups of Sn, RPn, and lens spaces

The homology groups of an n-sphere Sn with n ≥ 1 are:60,61

Hk(S
n) '

{
Z if k ∈ {0, n},
0 otherwise.

(5)

Another example related to spheres: using the convention Hk(·) ≡ 0 for k < 0, the
group Hk(M × Sn) is isomorphic to Hk(M)⊕Hk−n(M) for all k, n.62

The homology groups of n-dimensional real projective space RPn are:63

Hk(RPn) '


Z if k = 0,

Z2 if k is odd and 1 ≤ k < n,

Z if k is odd and k = n,

0 otherwise.

(6)

Odd-dimensional real projective spaces are a special case of a more general pattern.
To describe the generalization, think of S2n−1 as the unit sphere in R2n. Choose an
integer m ≥ 2 and a list of integers k1,2, k3,4, ..., k2n−1,2n that are relatively prime
to m. Let G be the group generated by R, where R is the transformation that
rotates through angle 2πk1,2/m in the 1-2 plane, through angle 2πk3,4/m in the 3-4
plane, and so on. The quotient space M ≡ S2n−1/G is called a lens space, and its
homology groups Hk(M) are64 Z,Zm, 0,Zm, 0, ...,Zm, 0,Z for k = 0, 1, 2, ..., 2n− 1,
respectively. This reduces to the previous result for RP2n−1 when m = 2 and
k•,• = 1 so that R has the same effect as reflecting every coordinate in R2n.

60Lee (2011), proposition 13.23 (also Lee (2000), proposition 13.14)
61The restriction n ≥ 1 is imposed here so that Sn is connected. The 0-sphere S0 is a pair of points.
62Hatcher (2001), chapter 2, exercise 36
63Hatcher (2001), example 2.42; Miller (2016), proposition 17.1
64Hatcher (2001), example 2.43
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19 Finitely generated abelian groups and torsion

Consider any abelian group of the form

G = G1 ⊕G2 ⊕G3 ⊕ · · · (7)

with a finite number of terms, where each term Gk is either Z or a finite cyclic
group.65 Then the torsion subgroup T (G) is the group obtained by excluding all
factors of Z from (7).66 Examples:

T (Z) = 0 T (Zn) ' Zn T (Z⊕ Z⊕ Z3 ⊕ Z2) ' Z3 ⊕ Z2.

A group is called finitely generated if it is generated by a finite number of
elements.67 Every finitely generated abelian group G may be written uniquely in
the form68

G ' Z⊕ Z⊕ · · · ⊕ Z⊕ T (G), (8)

where the torsion T (G) is a direct sum of cyclic groups of prime order, and the
total number of summands is finite. The additive group of real numbers, R, is one
example of an abelian group that is not finitely generated.

65Every cyclic group with n elements is isomorphic to Zn (Scott (1987), theorem 2.4.2).
66More generally, the torsion subgroup of an abelian group A is the subgroup consisting of all elements g ∈ A with

finite order (Scott (1987), text after theorem 5.1.2).
67Scott (1987), section 5.4
68Scott (1987), theorem 5.4.4
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20 Homology groups of compact manifolds

When M is a compact manifold, the homology groups with coefficients in Z are
finitely generated.69,70 According to equation (8), this implies that the homology
groups Hk(M) of any compact manifold have the form

Hk(M) ' Zn ⊕ T (9)

for some n, where Zn is the direct sum of n copies of Z, the torsion part T is a
finite abelian group. Examples:71

H1(S
1 × S1) ' Z⊕ Z H1(Klein bottle) ' Z⊕ Z2 (10)

The number of Z summands in Hk(M) is called the kth Betti number of M , and
each integer n appearing in a summand Zn is a torsion coefficient.72 Informally,
a finitely generated abelian group is sometimes said to have p-torsion if its torsion
subgroup has Zp as a direct summand.73 Examples from equations (10):

• The first Betti number of the torus S1 × S1 is 2.

• The first Betti number of the Klein bottle is 1.

• The first homology group of the torus does not have any torsion.

• The first homology group of the Klein bottle has 2-torsion.

If M is a closed and connected n-dimensional manifold, then Hn(M ;Z) is Z if M
is orientable and is 0 otherwise.74 For the same M , the torsion part of Hn−1(M ;Z)
is 0 if M is orientable and is Z2 otherwise.75

69Hatcher (2001), by combining corollaries A.8 and A.9
70Section 19 defined finitely generated.
71Hatcher (2001), examples 2.3 and 2.47
72Hatcher (2001), section 2.1, page 130
73This language is common when the manifold M is a Lie group. Examples include Mimura and Toda (1991) and

https://mathoverflow.net/questions/3700/.
74Hatcher (2001), text below theorem 3.26
75Hatcher (2001), corollary 3.28
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21 Rings, principal ideal domains, and fields

This section briefly reviews a few of the algebraic structures that will appear in the
remaining sections.

Article 29682 introduces the concept of a group G, one of the simplest mathe-
matical structures with an operation that combines any two elements of G to get
another element of G. This operation is usually called a product when it’s not
necessarily commutative. When it is commutative, it is often called a sum, as it is
in this article because (co)homology groups are always commutative.

A ring76 R is one of the simplest mathematical structures with two operations,
each of which combines two elements of R to get another element of R. One
is a commutative operation called a sum that makes R an abelian group. The
other operation is called a product. The product is associative, and it distributes
over addition, but it is not necessarily commutative, and elements of the ring
don’t necessarily have multiplicative inverses. A ring is called commutative if the
product is commutative. Examples:

• The integers Z form a commutative ring.

• A matrix algebra forms a noncommutative ring.

A commutative ring is called a field if it has an identity element for multiplication
and if every nonzero element has an inverse.77 Examples include:78

• the field R of real numbers,

• the field Q of rational numbers,

• the field of integers modulo a prime number p, denoted Zp.
76Fraleigh (2014), definition 18.1; Pinter (1990), chapter 17, page 170
77Fraleigh (2014), definition 18.16; Pinter (1990), chapter 17, page 172
78Fraleigh (2014), example 18.18 and corollary 19.12
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The integers Z do not form a field, because most nonzero integers do not have
multiplicative inverses.

The concept of a principal ideal domain (often abbreviated PID) is more
specific than the concept of a commutative ring79 but more general than the concept
of a field. Instead of reviewing the definition,80 here are the examples that will be
needed in this article:81

• The integers Z form a PID.

• Every field is also a PID.

This Venn diagram depicts the relationships:

Groups

Abelian Groups

Rings

Fields

Commutative Rings

Principal Ideal Domains

Require the group 
operation to be 
commutative

Call the group 
operation "addition" 
and also define 
"multiplication"

Require multiplication 
to be commutative

Require every 
nonzero element to 
have a multiplicative 
inverse

79If n is not a prime number, then Zn (the ring of integers modulo n) is a commutative ring but not a PID (Fraleigh
(2014), example 18.17). It’s not a PID because it has nonzero elements whose product is zero: if j 6= 1 and k 6= 1
are two integers for which jk = n, then the product of j and k is equivalent to zero in Zn. If n is a prime number,
then Zn is a field, and every field is a PID.

80Fraleigh (2014), definitions 19.6 and 45.7
81Fraleigh (2014), text below definition 45.7
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22 The universal coefficient theorem

Each chain group with coefficients in G has the form82

Cn(X;G) ' Cn(X)⊗G

where Cn(X) is the chain group with coefficients in Z. This leads to the universal
coefficient theorem for homology groups, which says that if X is any topological
space and G is any abelian group, then83

Hk(X;G) '
(
Hk(X)⊗G

)
⊕ Tor

(
Hk−1(X), G

)
(11)

for all k. The general definition of Tor(H,G) won’t be reviewed here, but this is
an important special case: if A and B are finitely generated abelian groups, then84

Tor(A,B) = T (A)⊗ T (B)

where T (G) is the torsion subgroup of G as defined in section 19. In particular,

T (Z) = 0 T (Zn) ' Zn.

Equation (11) says that the homology groups with coefficients inG don’t convey any
information about X beyond what the integral homology groups already convey.
However, for any one value of k, Hk(X;G) may convey information about X that
Hk(X) doesn’t convey, because Hk(X;G) depends on both Hk(X) and Hk−1(X).

82Section 1.4 in Maxim (2013) uses this to define Cn(X;G) in terms of Cn(X). This is equivalent to the definition
in section (10), because Z⊗G ' G (Sullivan (2020)).

83Bott and Tu (1982), theorem 15.14; Casacuberta (2015), the unnumbered equation after equation (7)
84Maxim (2013), equation (1.5.7)
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23 The universal coefficient theorem: examples

This section uses the universal coefficient theorem to determine Hn(M ;G) for the
cases M = Sn and M = RPn, whose integral homology groups were given in section
18.

First consider the case M = Sn with n ≥ 1. In this case, equation (5) implies
that T (Hk(S

n)) is zero for all k, so equation (11) reduces to

Hk(S
n;G) ' Hk(S

n)⊗G.

Combine this with equation (5) and the identity85

Z⊗G ' G

to get the final result86

Hk(S
n;G) '

{
G if k ∈ {0, n},
0 otherwise.

Next, consider M = RPn and G = Z2. Use T (Z2) ' Z2 in (11) to get

Hk(RPn;Z2) '
(
Hk(RPn)⊗ Z2

)
⊕
(
T
(
Hk−1(RPn)

)
⊗ Z2

)
.

Combine this with equation (6) and the identities85

Z⊗ Z2 ' Z2 Z2 ⊗ Z2 ' Z2 0⊗ anything = 0

to get the final result87

Hk(RPn;Z2) ' Z2 for 0 ≤ k ≤ n and n ≥ 1. (12)

85Sullivan (2020)
86Maxim (2013), section 1.4, page 23
87Maxim (2013), example 1.4.1; Hatcher (2001), example 2.50; Miller (2016), section 19
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24 Homology with coefficients in a field

When F is the field R of real numbers or the field Q of rational numbers,88 the
universal coefficient theorem gives89

Hk(M ;F) ' Hk(M ;Z)⊗ F for all k, (13)

and the relationships90,91

Z⊗ F ' F T ⊗ F = 0 (T = torsion part) (14)

imply that Hk(M ;F) doesn’t know about the torsion part of Hk(M ;Z).
Equation (13) holds for a field of characteristic 0. If p is a prime number, then

Zp is a field with nonzero characteristic p. For this field, (11) implies92

Hk(M ;Zp) ' Hk(M ;Z)⊗ Zp if Hk−1(M ;Z) doesn’t have p-torsion. (15)

If the (k − 1)th homology group of M does have p-torsion, then the equation on
the left doesn’t hold.93

88Q is sometimes denoted Z0. Example: Borel (1955), section 3, page 400.
89Hatcher (2001) states this for F = Q in corollary 3A.6, and it can be deduced for F = R by using proposition

3A.5(3) in the universal coefficient theorem (section 22).
90Derivation of the first relationship: If n is an integer and r ∈ F, then nr ∈ F. The definition of ⊗ allows integers

to be passed from one side to the other, so n⊗ r = 1⊗nr. Every element of Z⊗F is a linear combination of elements
of the form n⊗ r, so every element is equivalent to one of the form 1⊗ (something). This gives Z⊗ F ' F.

91Derivation of the second relationship: T is finite and abelian (using addition as the group operation), so for
each element t ∈ T , a nonzero integer n exists for which nt = 0. If r ∈ F, then r/n ∈ F, so t ⊗ r = t ⊗ (nr/n) =
(nt)⊗(r/n) = 0 for all t⊗r. Each element of T ⊗F is a linear combination of elements of the form t⊗r, so T ⊗F = 0.

92To derive this, use the fact that Zp ⊗ Zq = 0 whenever p and q are distinct prime numbers (Sullivan (2020)).
93Example: H3(RP5;Z) has 2-torsion (equation (6)), so the equation in (15) doesn’t hold for H4(RP5;Z2). De-

tails: H4(RP5;Z) = 0 (equation (6)) and H4(RP5;Z2) ' Z2 (equation (12)), so H4(RP5;Z2) is not isomorphic to
H4(RP5;Z)⊗ Z2, even though H4(RP5;Z) itself doesn’t have 2-torsion.
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25 Cartesian products of spheres

This section explains how to determine the homology groups of a cartesian product
of any number of spheres with arbitrary dimensions. This is relevant to the topology
of Lie groups, because when torsion is ignored, the homology groups of a compact
connected Lie group are the same as the homology groups of a cartesian product
of odd-dimensional spheres.94

If X and Y are CW complexes,95 and if R is a principal ideal domain,96 and if the
homology groups Hk(X;R) and Hk(Y ;R) don’t have torsion,97 then the homology
groups Hk(X × Y ;R) may be determined using98

Hn(X × Y ;R) =
(
H0(X;R)⊗R Hn(Y ;R)

)
⊕
(
H1(X;R)⊗R Hn−1(Y ;R)

)
⊕ · · ·
⊕
(
Hn(X;R)⊗R H0(Y ;R)

)
(if no torsion), (16)

where the subscript on ⊗R means that elements of R may be passed from one side
of ⊗ to the other. This is an example of a Künneth formula.

If we set R = Z and use the result shown in section 18 for the homology groups
of a single sphere, then we can use (16) together with the identity99 Z ⊗ Z = Z
to determine the integral homology groups for any cartesian product of spheres.
Equation (16) holds in this case because the homology groups of an individual
sphere don’t have any torsion. Section 26 will show some examples.

94Article 92035
95Article 93875 reviews the definition of CW complex.
96Section 21
97Section 19
98This is theorem 3B.6 in Hatcher (2001), specialized to the case where Hk(X;R) and Hk(Y ;R) don’t have torsion.

The result looks the same as corollary 3B.7 in Hatcher (2001), which assumes that R is a field (in which case the
no-torsion condition is satisfied automatically), but here we will use it for R = Z (in which case the no-torsion
condition is an additional condition).

99Section 23
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26 Cartesian products of spheres: examples

In these examples, all spheres are assumed to have at least one dimension.100 For
the product of two spheres with different numbers of dimensions (m 6= n),101

Hk(S
m × Sn) =

{
Z if k ∈ {0, m, n, m+ n},
0 otherwise.

For the product of two spheres with the same number of dimensions,101

Hk(S
n × Sn) =


Z if k ∈ {0, 2n},
Z⊕ Z if k = n,

0 otherwise.

For the product of three spheres with different dimensions (`,m, n all different),

Hk(S
` × Sm × Sn) =

{
Z if k ∈ {0, `, m, n, `+m, `+ n, m+ n, `+m+ n},
0 otherwise.

The fact that all homology groups of a single sphere are either Z or zero allows the
general pattern to be expressed concisely using the Poincaré polynomial102,103

P (X, t) ≡
∑
k

tk Betti
(
Hk(X;Z)

)
.

Equation (16) implies that the Poincaré polynomial for a product of spheres is the
product of the Poincaré polynomials of the individual spheres. Example:

P (S` × Sm × Sn, t) = P (S`, t)P (Sm, t)P (Sn, t) = (1 + t`)(1 + tm)(1 + tn),

with no restriction on `,m, n.
100Cases involving a zero-dimensional sphere S0, which is just a pair of points, are excluded.
101The results for a cartesian product of two spheres are also shown in Powell (2019), example 2.7.
102Mimura and Toda (1991), section 3.1, page 101
103The coefficients of the polynomial P (X, t) are the Betti numbers of X that were defined in section 20.
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27 From homology groups to cohomology groups

Cohomology groups are another set of topological invariants, closely related to
homology groups. Like homology groups, cohomology groups are abelian groups
expressed using addition as the group operation. The homology groups of a space
determine its cohomology groups,104 so the cohomology groups don’t provide any
new information, but cohomology groups can be promoted to cohomology rings
that convey more information. Section 29 will introduce cohomology rings. This
section highlights a relationship between cohomology groups and homology groups,
as a substitute for reviewing their definition.105

The notation for cohomology groups is almost identical to the notation for
homology groups:106 homology groups are written with a subscript, as in Hk(X;Z),
and cohomology groups are written with a superscript, as in Hk(X;Z).

If the homology groups are finitely generated,107 as they are for any compact
manifold M ,108 then the relationship between cohomology groups and homology
groups is especially simple:109

Hk(M ;Z) ' (non-torsion part of Hk(M ;Z))

⊕ (torsion part of Hk−1(M ;Z)). (17)

Example: if the manifold is M = RP2, then110

H0(RP2;Z) ' Z H1(RP2;Z) = 0 H2(RP2;Z) ' Z2

H0(RP2;Z) ' Z H1(RP2;Z) ' Z2 H2(RP2;Z) = 0.

104Hatcher (2001), intro to chapter 3, page 185
105Section 3.1 in Hatcher (2001) introduces cohomology groups.
106For the rest of this article, the ring of coefficients will be indicated explicitly, even when it’s Z.
107Section 19 defined finitely generated.
108Section 20
109Hatcher (2001), section 3.3, second-to-last paragraph on page 231; Davis and Kirk (2001), section 2.6, text

between exercise 31 and theorem 2.33; Mimura and Toda (1991), section 7.1, result 1.19 on page 372
110Davis and Kirk (2001), section 1.4, page 15
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28 Cohomology with other coefficients

Cohomology has its own version of the universal coefficient theorem. It looks like
this:111

Hk(X;G) ' Hom
(
Hk(X;R), G

)
⊕ Ext

(
Hk−1(X;R), G

)
(18)

where R is a principal ideal domain (like Z or a field) that acts on G in a natural
way.112 The definitions of Hom and Ext won’t be reviewed here, but special cases
will be highlighted below. Notice the superscripts and subscripts: equation (18)
involves both a cohomology group and homology groups.

One special case was already highlighted in section 27: if H is finitely generated,
then Hom(H,Z) and Ext(H,Z) are isomorphic to the non-torsion and torsion parts
of H, respectively,113 so if M is a compact manifold, then (18) reduces to (17) when
R = G = Z.114

Another easy special case is when R = G = F for a field F of characteristic
zero, like Q or R. In that case, if we again suppose that the homology groups are
finitely generated115 (true for any compact manifold), then equation (18) gives116

Hk(M ;F) ' Hk(M ;F) for all k. (19)

Equation (19) can also be inferred from equations (13) and (17), and so can

Hk(M ;F) ' Hk(M ;Z)⊗ F for all k. (20)

The cohomology groups over different fields are essentially interchangeable, but
Hk(M ;Z) and Hk(M ;F) are not interchangeable when F is a field, because only

111Mimura and Toda (1991), chapter 3, equation (1.7); Casacuberta (2015), page 9 (for R = Z); Hatcher (2001),
section 3.1, page 198 (for R = Z)
112More precisely: G is an R-module (Mimura and Toda (1991), chapter 3, text above equation (1.5)).
113Hatcher (2001), text above corollary 3.3
114https://ckottke.ncf.edu/docs/exttoruct.pdf, proposition 6.3
115https://math.stackexchange.com/questions/42581/ illustrates the importance of this condition.
116Mimura and Toda (1991), chapter 3, equation (1.8)
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the first one knows about torsion. We can switch between the different coefficient-
fields Q and R using117,118

Hk(M ;R) ' Hk(M ;Q)⊗Q R for all k

and Q×R ' R. If F is Q or R, then applying ⊗F to Hk(M ;Z) discards information
because of the second equation in (14), but applying ⊗QR to Hk(M ;Q) does not
discard any information.

Even though they don’t convey as much topological information as integral
cohomology groups Hk(M ;Z) do, the real cohomology groups Hk(M ;R) are im-
portant partly because of this relationship: if M is a smooth manifold, then the
de Rham cohomology groups Hk

dR(M) can also be defined,119 and the groups
Hk

dR(M) and Hk(M ;R) are isomorphic to each other.120 This provides a calculus-
based way of thinking about the non-torsion part of cohomology groups.121

117Mimura and Toda (1991), section 6.5, page 341
118The subscript on ⊗ indicates what kinds of factors can be passed back and forth from one side of ⊗ to the other.
119The kth de Rham cohomology group Hk

dR(M) is the additive group of differential k-forms ω satisfying dω = 0
modulo terms of the form dλ, where λ is a (k − 1)-form (Madsen and Tornehave (1997)).
120This is called de Rham’s theorem (Davis and Kirk (2001), section 1.4, page 16).
121Madsen and Tornehave (1997)
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29 Cohomology rings

For a given space X, the collection of cohomology groups may be promoted to a
cohomology ring that has both a sum operation and a product operation. The
sum operation is the one inherited from the cohomology groups, and the prod-
uct operation is a new device called the cup product whose definition won’t be
reviewed here.122 The goal in this section is to review just enough about the con-
cept of a cohomology ring to explain how results about cohomology groups can be
extracted from results that are expressed in terms of cohomology rings.

Homology and cohomology groups may both be defined using coefficients in
an abelian group G.123 Universal coefficient theorems, examples of which were
reviewed in the preceding sections, relates those homology and cohomology groups
to the ones with coefficients in Z. In a cohomology ring, we need both a sum and
a product,124 so we use a ring R of coefficients instead of just an abelian group.125

This is an easy step, because the typical choices for the group of coefficients –
namely Z, Zp, R, and Q – are already rings. For a given space X, the cohomology
ring with coefficients in R is denoted H∗(X;R), with an asterisk instead of an
index.

The ring H∗(X;R) is generated by the groups Hk(X;R). An extra bit of struc-
ture called a grading is used to keep track of the index k that labels the individual
cohomology groups. This makes H∗(X;R) a graded ring.126 An element a of
H∗(X;R) is called homogeneous if it belongs to one of the subsets Hk(X;R),
and the subset to which it belongs is indicated by writing |a| = k. I’ll call the
integer |a| the grade127 of a. If two elements a ∈ H∗(X;R) and b ∈ H∗(X;R)
have the same grade, then their sum a+ b is defined just like it is in that individual

122Hatcher (2001), chapter 3; Maxim (2013), chapter 3
123Hatcher (2001), section 2.2, page 153 (for homology groups) and section 3.1, page 197 (for cohomology groups)
124Section 21
125Hatcher (2001), section 3.2, page 206
126Hatcher (2001), section 3.2, page 212; https://math.stackexchange.com/questions/1581681/
127It’s usually called the degree or the dimension, but those words are overloaded. The name grade seems like a

more natural choice, because it relates naturally to the name graded ring (which is standard) and it is less overloaded.
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cohomology group. If they have different grades, then we can still write their sum
as a+ b, subject to the usual axioms like a+ b = b+ a and a+ 0 = a. In this case,
a+ b doesn’t belong to any of the individual cohomology groups Hk(M ;R), but it
still belongs to the ring H∗(M ;R).

The product operation in the cohomology ring H∗(X;R) is a new structure that
wasn’t present in the cohomology groups Hk(X;R). Its definition (not reviewed
here) ensures that if a and b are homogeneous elements with grades j and k,
respectively, then their product ab is homogeneous with grade j + k. The product
is not necessarily commutative, and its “multiplication table” can hold information
about the topology of X that is not conveyed by the cohomology groups alone. As
an example, the cohomology groups of SO(5) and RP7×S3 with coefficients in Z are
isomorphic to each other, but the cohomology rings are not.128,129 This is possible
because an isomorphism of cohomology rings must preserve the structures that
make it a graded ring (the sum, the product, and the grading), but an isomorphism
of cohomology groups only needs to preserve the structure that makes them groups
(namely the sum).

128Hatcher (2001), section 3.E, page 309
129Another example is described in https://topospaces.subwiki.org/wiki/Cohomology_groups_need_not_

determine_cohomology_ring/.
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30 Cohomology rings: example

To illustrate the concept of a cohomology ring, consider the manifold130

X = S3 × S3 × S5. (21)

This section starts with an expression for the cohomology ring H∗(X;Z) and then
explains how to extract the cohomology groups Hk(X;Z) from it.

The cohomology ring H∗(X;Z) of the space (21) is an exterior algebra gen-
erated by three elements with grades 3, 3, and 5, respectively:131

H∗(X;Z) ' ΛZ[a, b, c] |a| = |b| = 3, |c| = 5. (22)

An exterior algebra Λ is a graded ring whose product is such that two homogeneous
elements anticommute with each other if their grades are both odd and commute
with each other otherwise. In this example, the generators all have odd grade, so
they all anticommute with each other. This tells us that every element of H∗(X;Z)
is a linear combination of the elements

1, a, b, c, ab, ac, bc, abc

with coefficients in Z (the subscript on ΛZ[· · · ]). The grades of these elements are

0, 3, 3, 5, 6, 8, 8, 11,

respectively.132 This tells us that every element of grade 6 is proportional to ab
with a coefficient in Z, so H6(X;Z) ' Z. This also tells us that nonzero elements
of grade 7 don’t exist, so H7(X;Z) = 0. It also tells us that every element of grade
8 is a linear combination of ac and bc with coefficients in Z, so H8(X;Z) ' Z⊕Z.

Equation (17) may be used to check that this is consistent with sections 25-26.

130Section 26
131Hatcher (2001), examples 3.13 and 3.16
132Example: the grade of bc is |bc| = 8 because |b|+ |c| = 3 + 5 = 8.
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