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Nonrelativistic Fermions and Bosons
Randy S

Abstract In quantum field theory, observables are associated with
regions of spacetime, not with individual particles. This article in-
troduces one of the simplest models in which that distinction really
is important: a nonrelativistic model of multiple interacting particles
with zero spin, all of the same species, sometimes called identical par-
ticles. A generalization to multiple species, with multiple particles of
each species, is also introduced. Despite their shortcomings (they are
nonrelativistic, they ignore the dynamics of the electromagnetic field,
and their elementary particles all have zero spin), these models can
still exhibit complex phenomena that resemble real molecules, fluids,
and solids.

Article 15939 introduces a different way of constructing these mod-
els, using field operators.
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1 An auxiliary Hilbert space

All infinite-dimensional separable Hilbert spaces over the complex numbers are
isomorphic to each other (article 90771),1 but different ways of constructing this
Hilbert space are convenient for different purposes. Each of the models introduced
in this article will be defined using a different subspace of an auxiliary Hilbert space
Haux, which in turn is given by the construction in article 41522 (reviewed below).
These subspaces are isomorphic to each other (and to Haux), but these different
ways of presenting them are convenient for constructing different models.

Let D denote the number of dimensions of space (normally D = 3). Boldface
symbols will be used to denote quantities with D components: x = (x1, ..., xD).
Subscripts on boldface symbols indicate different D-component quantities, so xj
and xk each have D components.

A vector |ψ〉 in the auxiliary Hilbert space Haux will be represented by a
complex-valued function

ψ(x1,x2, ...,xN) (1)

of N × D real variables, where N will correspond to the number of particles. A
function (1) represents a vector |ψ〉 only if its norm is finite,2 and two functions
represent the same vector if the norm of their difference is zero. The inner product
of two vectors |φ〉 and |ψ〉 is defined by

〈φ|ψ〉 ≡
∫
φ∗(x1, ...,xN)ψ(x1, ...,xN), (2)

where
∫

denotes the integral over all space for each argument xn.

1To prove this, let HA and HB be two such Hilbert spaces. Choose any orthonormal basis for HA and any
orthonormal basis for HB . These two sets of elements are both countably infinite (because both spaces are infinite-
dimensional and separable), and any one-to-one map between them defines a unitary equivalence (isomorphism)
between the two Hilbert spaces.

2Norm is defined in article 41522.
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2 Two special subspaces

Let Ej,k be the linear operator that exchanges the arguments xj and xk with each
other. Example:

E1,2 ψ(x1,x2,x3, ...,xN) = ψ(x2,x1,x3, ...,xN).

A function (1) representing a vector |ψ〉 will be called

• symmetric if Ej,k|ψ〉 = |ψ〉 for all j, k

• antisymmetric if Ej,k|ψ〉 = −|ψ〉 for all j, k.

The vectors represented by symmetric functions constitute a self-contained Hilbert
space all by themselves, as do the vectors represented by antisymmetric functions.
Let P+ and P− denote the projections onto these two subspaces, respectively. When
N ≥ 2, these projection operators are orthogonal to each other: P+P− = 0.3

For any N , the Hilbert spaces

H+ ≡ P+Haux H− ≡ P−Haux

are both isomorphic to the original Hilbert space Haux, but these different ways
of describing them are convenient for constructing different models. The following
sections use H+ to construct a model of bosons and use H− to construct a model
of fermions. Section 6 shows that these models are generally not equivalent to each
other, even though the Hilbert spaces H+ and H− are isomorphic to each other. A
model is defined by the pattern of its observables, not just by the Hilbert space on
which those observables are represented as linear operators.

3When N = 1, they are both equal to the identity operator: P+ = P− = 1.
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3 Single species: hamiltonian

In a system of units in which ~ = 1, let H be the operator on Haux defined by

H = T + V (3)

with T and V defined by4

Tψ(x1, ...,xN) ≡
∑
n

−(∇n)
2

2m
ψ(x1, ...,xN) (4)

V ψ(x1, ...,xN) ≡
∑
j<k

V (xj − xk)ψ(x1, ...,xN), (5)

where ∇n is the gradient with respect to xn and where V (x) depends only on
|xj − xk|. The operator H commutes with the exchange operators Ej,k. In other
words, H is invariant under permutations of the arguments xn. This implies that
H commutes with the projection operators P±, so applying the unitary operator

U(t) ≡ e−iHt (6)

to any vector inH+ (respectivelyH−) gives another vector inH+ (respectivelyH−).
This allows us to use H as the hamiltonian, the generator of time translations, for
a model whose Hilbert space is only H+ or only H−.

4I’m using the notation that was introduced in article 20554: for any linear operator A on the Hilbert space,
“Aψ” is the name of a function that represents the vector A|ψ〉.
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4 Single species: local observables

For any time t and any region R of space, define a counting operator C(R, t) by

C(R, t) ≡ U−1(t)C(R, 0)U(t) (7)

with
C(R, 0)ψ(x1, ...,xN) = k ψ(x1, ...,xN), (8)

where U(t) is the time translation operator defined in (6) and k is the number of
xns in R. Applying C(R, t) to any vector in H+ (respectively H−) gives another
vector inH+ (respectivelyH−), so we can use these operators to define two different
single-species models, one based on H+ and one based on H−. In both models, the
basic observables are these counting operators. They may be expressed in terms of
mutually orthogonal projection operators like this:

C(R, t) =
∑
k

Q(k)(R, t) k,

where each projection operator Q(k)(R, t) is defined by

Q(k)(R, t) ≡ U−1(t)Q(k)(R, 0)U(t) (9)

Q(k)(R, 0)ψ(x1, ...,xN) ≡

{
ψ(x1, ...,xN) if exactly k of the xns are in R,

0 otherwise.
(10)

For eachR and t, the possible outcomes when the observable C(R, t) is measured are
represented by the mutually orthogonal projection operators Q(k)(R, t), interpreted
as “exactly k particles are in R at time t.”

Any other observable A is interpreted as being localized in R at time t if and
only if

A|ψ〉 ∝ |ψ〉 whenever C(R, t)|ψ〉 = 0,

for all |ψ〉 in the appropriate space (H+ or H−). The observables C(R, t) and
Q(k)(R, t) clearly satisfy this condition, as do many others.
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With this association between regions of spacetime and observables, the model
restricted to the subspace H+ is a model of N spinless bosons, and the model
restricted to the subspace H− is a model of N spinless fermions.5 The observables
defined above are associated with regions of spacetime, not with individual parti-
cles. That’s what physicists mean when they say that particles of the same species
are identical or indistinguishable.

5According to the spin-statistics theorem, “spinless fermions” would be an oxymoron in relativistic QFT, but the
spin-statistics theorem does not apply in nonrelativistic QFT. A nonrelativistic model of spinless fermions may not
be an approximation to any relativistic model, but it can still be a good warm-up for more realistic models.
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5 The Pauli exclusion principle

The auxiliary Hilbert space Haux includes states of the form

ψ(x1,x2, ...,xN) = g1(x1)g2(x2) · · · gN(xN). (11)

Summing over all permutations of the arguments xn (that is, applying the projec-
tion operator P+) gives a state in the Hilbert space H+, which is used to construct
the boson model. This state is nonzero even if two or more of the factors gn(x) are
equal to each other, such as

ψ(x1,x2, ...,xN) = g(x1)g(x2) · · · g(xN). (12)

This is often expressed by saying that two or more particles of the same boson
species can occupy the same “state” (using the word “state” for a single factor on
the right-hand side, not to be confused with the full N -particle state).

In contrast, two or more particles of the same fermion species cannot occupy
the same “state” in this sense, because applying P− to (11) gives zero whenever
two or more of the factors gn(x) are equal to each other. This is called the Pauli
exclusion principle.

Electrons are fermions, so they respect the Pauli exclusion principle. The conse-
quences of this in chemistry are widely appreciated. Section 10 highlights another
important consequence that might not be so widely appreciated: it is essential for
the stability of macroscopic matter.
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6 Inequivalence of fermions and bosons

Let L(R, t) denote the set of local observables that a given model associates with
region R at time t, and suppose that these observables are represented by operators
on a Hilbert space H. We can say that two models A and B are equivalent to
each other if6

U−1LA(R, t)U = LB(R, t) (13)

for all R and all t, for some unitary transformation U between their Hilbert spaces:

UHB = HA U−1HA = HB. (14)

Now suppose that A and B are the fermion and boson models, respectively, so that
HA/B = H±, and take them both to have the same values of D, N , m, and V (x).
Plenty of unitary transforms satisfying (14) exist in this case, so the Hilbert spaces
are equivalent, but do any of those unitary transforms also satisfy (13)? If not,
then the models are not equivalent, even though their Hilbert spaces are.

Here’s an intuitive argument that the models are not equivalent when N ≥ 2,7

in the easiest case H = T with T defined by (4), so the interaction term V is
absent. Consider states of the form Q(N)(R, t)|ψ〉, so that the probability p(R, t)
of detecting any of the particles outside of the region R is zero at time t. This
probability will increase over time (article 20554). We can choose the vector |ψ〉
to minimize the rate at which it increases. For the boson model, we can do this by
taking the function ψ(x1, ...,xN) that represents |ψ〉 to be the product of N copies
of the function ψ1(x) that satisfies this rate-minimizing condition when N = 1,
but the Pauli exclusion principle says that we can’t do that in the fermion model.
In the fermion model, the Pauli exclusion principle forces us to put some of the
fermions in other states that disperse more quickly, so we expect that p(R, t) must
grow faster in the fermion model than its minimum rate of increase the boson
model. This implies that the condition (13) does not hold, so the two models are
not equivalent.

6LA and LB are sets of observables in models A and B, respectively.
7They are manifestly equivalent when N = 1.
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To give that intuitive argument a little more substance, choose a region R and
a time t, and let i(T |R) denote the infimum of

〈ψ|T |ψ〉
〈ψ|ψ〉

(15)

among all vectors |ψ〉 in Haux on which T is defined and that satisfy the constraint

Q(N)(R, t)|ψ〉 = |ψ〉. (16)

In words: this is the lower bound of the energy’s expectation value among states in
which all of the particles are in R at time t. If we can show that i(T |R) is greater
in the fermion model than it is in the boson model, then we can infer that the
probability p(R, t) must grow more quickly in the fermion model than it does in
the boson model (because greater i(T |R) means higher momenta), which in turn
shows that the two models are not equivalent.

In the boson model, we can deduce an upper bound on i(T |R) by evaluating
(15) for any state of the form (12), in which case (15) is N times its value for
N = 1. By definition, the infimum i(T |R) cannot exceed this, so

i(T |R) ≤ κBN (boson case), (17)

where κB depends on R but not on N . In the fermion model, this lower bound on
i(T |R) can be derived:8

i(T |R) ≥ κFN
1+2/D (fermion case), (18)

where κF depends on R but not on N .9 Even without knowing the values of κB
and κF , this shows that the infimum i(T |R) in the fermion model is greater than

8The derivation for D = 3 is reviewed on pages 556-557 in Lieb (1976), and its generalization to arbitrary D
is mentioned on pages 16-17 in Lieb (1990). In those theorems, the right-hand side of the inequality involves an

integral
∫
dDx

(
ρψ(x)

)1+2/D
, where ρψ(x) is the integral of |ψ(x1, ...,xN )|2 over all but one of its N arguments.

The constant κF in (18) is obtained by taking ρψ(x) to be uniform over the region R and zero outside of R, which
minimizes this integral among states satisfying (16).

9Some constraints on the coefficients in inequalities like this are reviewed in Schimmer (2022).
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it is in the boson model wnen N is sufficiently large. We could refine the argument
to quantify “sufficiently large,” but the point is already made: the fermion and
boson models cannot always be equivalent to each other, even though their Hilbert
spaces are.
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7 Multiple species: Hilbert space

Section 9 describes a model with any number of distinct species, each of which
may be either fermionic or bosonic. The number of species will be denoted Nspec.
The special case Nspec = 1, in which all of the particles are the same species, was
constructed in the preceding sections. The opposite extreme Nspec = N , which has
just one particle of each species, was constructed in article 41522.

For the general case, start with the auxiliary Hilbert space constructed in section
1. Partition the index-set {1, ..., N} into Nspec subsets, each corresponding to one of
the Nspec species, and let let Is be subset corresponding to species s. The number of
elements in Is, denoted |Is|, is the number of particles of species s. These numbers
satisfy ∑

s

|Is| = N.

Define

σs ≡

{
+1 if species s is bosonic,

−1 if species s is fermionic.

The model is based on a special subspace of the auxiliary Hilbert space Haux,
namely the subspace H represented by functions satisfying this condition:10

Ejk|ψ〉 = σs|ψ〉 whenever j, k ∈ Is,

for every species s. In words: whenever the indices j and k are both associated with
the same species, exchanging the arguments xj and xk either leaves ψ(x1, ...,xN)
unchanged or changes its sign, depending on whether the species is bosonic or
fermionic.

10The exchange operators Ejk are defined in section 2.
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8 Multiple species: hamiltonian

The hamiltonian is H = T + V with11

T ≡
∑
s

∑
j∈Is

−∇2
j

2ms

V ≡ 1

2

∑
s,s′

∑
j∈Is

∑
k∈Is′

Vs,s′(xj − xk),

where∇j is the gradient with respect to xj and where each function Vs,s′(x) depends
only on |x|. The sum over s, s′ is over all ordered pairs of species, and the factor
1/2 compensates for including both orderings (s, s′) and (s′s) when s 6= s′, and for
including both orderings of j, k when s = s′.

In words: all particles of species s have the same mass ms, and all interactions
between particles of the two given species s and s′ have the same form Vs,s′. This
ensures that applying the unitary operator U(t) ≡ exp(−iHt) to any vector in H
gives another vector in H.

11This generalizes equations (4)-(5) to multiple species. For brevity, the function ψ(x1, ...,xN ) is not written here.
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9 Multiple species: local observables

The model has separate counting observables for each species, defined by

Cs(R, t) ≡ U−1(t)Cs(R, 0)U(t) (19)

with
Cs(R, 0)ψ(x1, ...,xN) = k ψ(x1, ...,xN),

where k is the number of xns for which n ∈ Is and xn ∈ R. The operator Cs(R, t)
may be written in terms of mutually orthogonal projection operators like this:

Cs(R, t) =
∑
k

Q(k)
s (R, t) k

where Q
(k)
s (R, t) is the projection operator defined by

Q(k)
s (R, t) ≡ U−1(t)Q(k)

s (R, 0)U(t)

and

Q(k)
s (R, 0)ψ(x1, ...,xN) ≡

{
ψ(x1, ...,xN) if exactly k of the xns with n ∈ Is are in R,

0 otherwise.

For each s, R, t, the observable (19) counts the number of particles of species s in
the region R at time t. An observable A is localized in R at time t if and only if
it acts like something proportional to the identity operator on all states in which
the particles are all localized elsewhere, outside of R. This condition be expressed
more precisely as

A |ψ〉 ∝ |ψ〉 whenever Cs(R, t)|ψ〉 = 0 for all s.

This defines a model of Nspec different species, each either bosonic or fermionic. The
number of particles of species s is |Is|. Distinct species are detected by different
observables, but those observables are associated with regions of spacetime, not
with individual particles.
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10 The stability of macroscopic matter

The family of models defined in sections 7-9 includes an important special case,
defined by these conditions:

• Space is three-dimensional: D = 3.

• The interactions are Coulomb interactions: Vs,s′(x) = eses′/
(
4πε0|x|

)
.

• Two species, both called electrons,12 are fermions with equal values of es and
the same single-particle mass m.

• The rest of the species, called nuclei, have values of es with the opposite sign
and masses that are � m but otherwise arbitrary. They may be fermions or
bosons.

This special case is important because it captures some of the qualities of electrons
and nuclei that are most important for matter under ordinary conditions. It doesn’t
include electromagnetic interactions (except for the static Coulomb interactions),
but it can still exhibit complex phenomena that resemble real molecules, fluids,
and solids.13

This simplified model of matter predicts that matter is stable, in this sense: the
lowest possible energy E0 of a system with N− electrons of charge e− and N+ nuclei
is bounded by14 E0 ≥ −κ(N− +N+) with κ ∼ me4

−/(ε0~)2, so bringing two chunks
of matter together can’t release tremendous amounts of energy if they were already
in their respective lowest-energy states. The fact that electrons are fermions is
essential: if they were bosons, then matter would not be stable in this sense.15

12Real electrons have nonzero spin. In the family of models defined in sections 7-9, the (elementary) particles
all have zero spin, but since the model excludes non-Coulomb electromagnetic interactions, we can account for the
electron’s spin by using two species of spinless electrons.

13This type of model is commonly used in quantum chemistry and in solid-state physics, often using a further
approximation in which each nucleus has infinite mass (doesn’t move) and is localized at a point.

14The lower bound is negative because the model ignores the particles’ rest-energies (article 15939).
15Both of these results are reviewed in Lieb (1976): the stability of ordinary matter, and the fact that it would be

unstable if electrons were bosons. Both results are derived using models of the type described here in sections 7-9.
Lieb and Seiringer (2010) gives a comprehensive review of related results.
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11 The behavior of well-localized particles

Article 41522 showed that in a model with only one particle of each species, the
particles’ behavior can be described to a good approximation by a classical model,
as long as they’re not significantly entangled with each other and as long as they
each remain well-localized. In that context, using the Schrödinger picture, the
quantity

xn ≡
∫ ∣∣ψ(x1, ...,xN , t)

∣∣2 x∫ ∣∣ψ(x1, ...,xN , t)
∣∣2 (20)

provides a convenient way to keep track of the nth particle’s location – the time-
dependent location of a small region R in which the probability of the outcome
“the particle is in R at time t” would be practically equal to 1 if that observable
were measured. The quantity (20) is meaningful in a context where each particle
– the only one of its species – has its own associated detection observables, as in
article 41522.16

A similar result also applies when multiple particles of each fermion/boson
species are involved, with one caveat: using the quantities (20) to keep track of
the particles’ locations no longer makes sense. It no longer makes sense because
of the (anti)symmetry conditions introduced in section 2. Each species has its
own associated set of detection observables, but the individual particles do not.
Observables are associated with regions of spacetime, not with individual particles.
A similar result still holds, though, because as long as each particle remains well-
localized, we can still describe its motion in terms of a small region R that moves
with time so that a probability of detecting one particle in that region (if that
observable were measured) remains close to 1.17

16That article emphasized the idea of associating observables with regions of spacetime instead of associating them
with particles, but since the models constructed there had only one particle of each species, the two perspectives
were interchangeable. In a model with two or more particles of the same species, the two concepts are no longer
interchangeable.

17We can solve the Schrödinger equation in Haux first and then (anti)symmetrize the solution, because the
projection onto the properly (anti)symmetrized subspace of Haux commutes with the time-evolution operators
U(t) = exp(−iHt).
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